
Network Worms

R ecent incidents have demonstrated the ability of
self-propagating code, or network worms, to in-
fect numerous hosts, exploiting vulnerabilities
in the largely homogeneous deployed software

base.1,2 Such activities often have an impact on the offline
world as well,3 by indirectly affecting critical infrastruc-
ture such as the transportation, finance, and energy sec-
tors. Even when a worm carries no malicious payload,
there are tremendous direct recovery costs from an infec-
tion epidemic’s side effects. Thus, researchers are increas-
ingly focused on countering worms, typically using
content-filtering mechanisms combined with large-scale
coordination strategies.4,5

Given the routers’ limited budget in terms of process-
ing cycles per packet, however, even mildly polymorphic
worms (mirroring the evolution of polymorphic viruses
more than a decade ago) are likely to evade such filtering.
Furthermore, hosts and applications are increasingly
using end-to-end opportunistic encryption such as
Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) or Internet Protocol security (IPsec). We believe
that it’s only a matter of time until worms start using such
encrypted channels to cover their tracks. As with the case
for distributed firewalls, these trends argue for an end-
point worm-countering mechanism. By using invasive
but targeted mechanisms to fix vulnerabilities, an end-
point worm-reaction approach can use its strategic posi-
tion to address vulnerabilities at their source, thus
avoiding masking techniques that attackers can exploit to
bypass detection.

To this end, we’ve developed an architecture that
counters worms through automatic software-patch gen-
eration. Our approach uses sensors to detect potential in-

fection vectors; to
test potential fixes,
we use a clean-room (sandboxed) environment running
appropriately instrumented versions of network applica-
tions. The architecture generates fixes using code-trans-
formation tools to counter specific buffer-overflow
instances. If we can create an application version that’s
both worm resistant and meets some functionality crite-
ria based on running predefined test suites, we update the
production servers.

In proof-of-concept experiments, our architecture
fixed 82 percent of the test cases. Further, an experiment
with a hypothetical Apache Web server vulnerability
showed that the architecture could produce a correct fix
in 3 seconds, creating a total cycle (from detection to
server update, minus the testing) of less than 10 seconds.
Here, we offer an overview of existing approaches and
our own method, as well as the benefits and challenges
our approach entails.

Existing approaches
Most worm-related research falls into three categories:
signature-based network filtering, proactive software
protection, and containment.

Content filtering
Despite promising early results, countering worms using
content filtering and coordination alone will not suffice
in the future. We base this assertion on two primary ob-
servations. First, to achieve coverage, content filters are
intended for use by routers, such as Cisco’s network-
based application recognition (NBAR). As we pointed
out earlier, routers’ limited packet-processing budget

STELIOS

SIDIROGLOU

AND ANGELOS

D. KEROMYTIS

Columbia
University

Countering Network
Worms Through Automatic
Patch Generation

52 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

To counter zero-day worms that exploit software flaws

such as buffer overflows, this end-point architecture uses

source code transformations to automatically create and

test software patches for vulnerable segments of targeted

applications.

Network Worms

makes it easy for even mildly polymorphic worms to
evade filtering.6 Network-based intrusion-detection sys-
tems (NIDS) have encountered similar problems, requir-
ing fairly invasive packet processing and queuing at the
router or firewall. Also, because they must be placed in
the application’s critical path, such filtering mechanisms
adversely affect performance.

Second, the use of opportunistic encryption—which
doesn’t strictly require client or often even server-side au-
thentication—makes it possible for worms to cover their
tracks. Because it’s inherently unsolvable, encryption in-
troduces a much greater problem than filtering. Even
without encryption, the increasing complexity and com-
posability of communication protocols (such as SOAP)
pose similar challenges in terms of detection and filtering.

Prevention and containment approaches
Another approach to preventing zero-day worms is to
eliminate or minimize remotely exploitable vulnerabili-
ties, such as buffer overflows. However, detecting poten-
tial buffer overflows is a difficult problem and only partial
solutions exist. Blanket solutions—such as StackGuard or
MemGuard7—typically either:

• reduce system performance, or
• detect overflows after they’ve occurred and over-

flowed stack information, thus making continuation
undesirable.

They are therefore inappropriate for high-perfor-
mance, high-availability environments such as a heavily
used e-commerce Web server. Type-safe retrofitting of
code and fault isolation techniques incur similar per-
formance degradation, or are altogether inapplicable in
some cases.

Traditionally, antivirus software has also been widely
used to protect against worms. The obvious problem here
is that the approach primarily depends on up-to-date
virus definitions, which, in turn, primarily rely on
human intervention. Further, the approach’s non-real-
time characteristics render it highly ineffective against
zero-day worms (or those that are effectively zero-day,
such as “Witty,” which appeared one day after the ex-
ploited vulnerability was announced). Likewise, patch
management is ineffective against zero-day worms; even
as a tool against well-known vulnerabilities, its use poses
several challenges to administrators.8

Another technology, La Brea, attempts to slow the
growth of Transmission Control Protocol (TCP)
worms by accepting connections and then blocking
them indefinitely, causing the corresponding worm
thread to block also (see www.threenorth.com/La
Brea/LaBrea.txt). Unfortunately, worms can avoid
these mechanisms by probing and infecting asynchro-
nously. With connection-throttling,9 each host restricts

the rate at which connections can be initiated. If
adopted universally, such an approach could reduce a
worm’s spreading rate by up to an order of magnitude
without affecting legitimate communications.

Automatic patching: An overview
We propose an end-point first-reaction mechanism that
tries to automatically patch vulnerable software by identi-
fying and transforming the code surrounding the ex-
ploited flaw. Our approach focuses on memory
violations, specifically buffer overflows, as they continue
to constitute the vast majority of infection vectors—byte
streams that cause the worm to appear in the target system
if they’re “fed” to the target application.

How it works
We use instrumented versions of an enterprise’s impor-
tant services—such as Web servers—in a sandboxed envi-
ronment. This environment is operated in parallel with
the production servers, and doesn’t serve actual requests.
Instead, we use it as a clean-room environment to test the
effects of suspicious requests (such as potential worm in-
fection vectors) in an asynchronous fashion (that is, with-
out necessarily blocking requests). A request that causes a
buffer overflow on the working production server will
have the same effect on the sandboxed version. Appropri-
ate instrumentation lets us determine the buffers and
functions involved in a buffer overflow attack. We then
apply several source code transformation heuristics aimed
at containing the buffer overflow.

Using the same sandboxed environment, we test
patches against both the infection vectors and a site-spe-
cific functionality test suite to identify any obvious prob-
lems. We could also add a comprehensive test suite that
would possibly take several minutes to complete, at the
expense of quick reaction (although we could block ac-
cess to the vulnerable service during testing using a fire-
wall rule). Even at that, our approach is orders of
magnitude faster than waiting for a “proper” fix.

If the tests succeed, we restart the production servers
with the new version of the application. We’re careful to
produce localized patches, so we can be fairly confident
that they won’t introduce additional instabilities—al-
though we (obviously) cannot offer any guarantees; addi-
tional research is needed in this area. Also, patch
generation and testing occurs in a completely decentral-
ized and real-time fashion. We therefore don’t require a
centralized update site, which can itself become an attack
target (as was the intent of the W32/Blaster worm).

General assumptions
Our architecture uses several components that were de-
veloped for other purposes. Its novelty lies in combining
components to fix vulnerable applications without un-
duly impacting their performance or availability.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 53

Network Worms

Our major assumption is that we can extract a worm’s
infection vector—or one instance of it, for polymorphic
worms—using various mechanisms such as honeypots
and host- and network-based intrusion-detection sen-
sors. Vector extraction is a necessary precondition to any
reactive or filtering-based solution to the worm problem.
The Anomalous Payload-based Network Intrusion De-
tection system10 is one example of a likely-vector identi-
fication mechanism.

A secondary assumption is that the application’s
source code is available. Although our architecture can
use binary rewriting techniques, we focus here on source
code transformations. Several popular server applications
are open source, including Apache, Sendmail, MySQL,
and Bind. Furthermore, although our architecture can be
used, as is, to react to lower-intensity “hack-in” attempts,
we focus here on the more high-profile (and easier to de-
tect) worm problem.

Benefits
Although it takes a few seconds to create and test a patch,
throttling a worm’s infection rate can begin immediately
after a vulnerability is detected, either by halting the pro-

duction server while the vulnerability is being patched or
by setting a firewall rule that drops all production server
traffic. When throttling and patching are incorporated
into the logistic equation5—that is, a model used to ana-
lyze worm propagation—our approach clearly helps de-
celerate a worm’s initial spread.

System architecture
As Figure 1 shows, our worm vaccination architecture uses

• a set of worm-detection sensors;
• a correlation engine;
• a sandboxed environment running instrumented ver-

sions of the enterprise network applications, such as the
Apache Web server and the mySQL database server;

• an analysis and patch-generation engine; and
• a software update component.

Worm detection and
the correlation engine
The worm-detection sensors detect potential worm
probes and infection attempts. To this end, our architec-
ture concurrently employs several sensors:

54 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

Figure 1. The worm vaccination architecture. (1) Sensors deployed at various network locations detect a potential worm
and (2) notify an analysis engine, which forwards the infection vector and relevant information to a protected environment
(3). The potential infection vector is tested against an appropriately instrumented version of the targeted application (4) to
identify the vulnerability. (5) Several software patches are generated and tested using several different heuristics. If a patch
is not susceptible to the infection and doesn’t impact functionality (6), the system updates the main application.

Remote sensor

Enterprise network

Honeypot

Application server

Instrumental application

Firewall
sensor

(2) Notifications

(3) Forward
features

(4) Vulnerability testing
and identification

(5) Possible fix generation

(6)Application update

Host-based
sensor

Sandboxed
environment

Patch
generation

Internet

(1) Worm scans/
infection attempts

Anomaly
detection engine

Passive sensor

Hypothesis testing
and analysis

Network Worms

• Host-based sensors monitor the behavior of applica-
tions and servers.

• Passive sensors on the corporate firewall or on indepen-
dent boxes eavesdrop on traffic to and from the servers.

• Honeypots simulate the target application’s behavior
and capture any communication.

We also use other types of sensors, including NIDS, in-
trusion prevention systems (IPSs), and similar sensors run
by other entities. The system can use any combination of
sensors simultaneously; honeypot servers are the most
promising because worm probes don’t distinguish
between real and fake servers. Honeypots and other
deception-based mechanisms are also effective against
hit-list-based worm propagation strategies, assuming
they’re in place during the scanning phase.5

The sensors communicate with each other and with a
central server, which correlates events from independent
sensors and determines potential infection vectors (such
as HTTP request data, as seen by a honeypot). Indepen-
dent entities can then, in turn, use these infection vectors
to test their applications for susceptibility. The payload-
based anomaly detector (PAYL),10 is an example of a
likely-vector identification mechanism. PAYL models
the network traffic’s normal application payload in a fully
automated, unsupervised fashion. PAYL uses the Maha-
lanobis distance during the detection phase to calculate
the similarity of new data against the precomputed pro-
file. This method has multiple advantages: it’s stateless,
doesn’t parse the input stream, and generates a small
model that can be updated using an incremental online
learning algorithm to maintain an accurate real-time
model. Real-time mechanisms such as PAYL are impor-
tant because they also provide a way to potentially iden-
tify Warhol (hit-list) worms.

The correlation engine determines the likelihood of
any particular communication being an infection vector
(or a manually launched attack) and requests sandbox
testing for suspicious communications. It also maintains a
list of fixed exploits and false positives (communications
that have already been deemed innocuous or at least inef-
fective against the targeted application).

Sandboxed environment
Because we use the instrumented server only for clean-
room testing, the instrumentation for target applications
can be fairly invasive in terms of performance. The per-
formance degradation from using a mechanism like
ProPolice or Dynamic Buffer Overflow Containment
(DYBOC),11 our vulnerability detection tool, can intro-
duce up to an order of magnitude increase in overhead.
Although this is prohibitive in production systems, it’s ac-
ceptable for testing purposes.

At its most powerful, the test environment could use
a full-blown machine emulator to determine whether

the application has been subverted. Other potential in-
strumentation includes lightweight virtual machines,
dynamic analysis/sandboxing tools, or mechanisms such
as MemGuard. Such mechanisms are generally not used
for application protection because of their considerable
impact on performance. They also typically cause the
application to fault and cease operation. In our approach,
this drawback is not particularly important given the
sandbox context and our goal of identifying, as accu-
rately as possible, the source of the application’s weak-
ness. MemGuard,7 for example, can identify both the
specific buffer and function that are exploited in a heap-
overflow attack. Alternatively, by using an emulator, we
can detect when execution has shifted to the stack, heap,
or some other unexpected location, such as an unused li-
brary function.

The more invasive the instrumentation, the more
likely it is to detect subversion and identify the vulnerabil-
ity’s source. The analysis step itself can only identify
known attack classes, such as a stack-based buffer over-
flow. However, new attack classes appear less often than
specific attack exploits.

Patch generation and testing
Armed with knowledge of the vulnerability, we can au-
tomatically patch the program. Generally, program analy-
sis is an impossible problem. However, there are a few
fixes that might mitigate an attack’s effects.

The most promising approach—and thus our pri-
mary focus—is to move the offending buffer to the heap
by dynamically allocating the buffer upon entering the
function and freeing it at all exit points. Furthermore, we
can increase the allocated buffer’s size so that it’s larger
than that of the infection vector, thus protecting the ap-
plication from even crashing (for fixed-size exploits). We
can then use a version of malloc() to allocate two ad-
ditional write-protected pages to bracket the target
buffer. Any buffer overflow or underflow will send a seg-
mentation violation (SEGV) signal. A signal handler that
we added to the source code catches the SEGV signal,
and can then longjmp() to the code immediately fol-
lowing the overflow-causing routine. Although we
could make this a blanket approach—applying it any-
where in the code where a buffer overflow might
occur—that would entail a significant performance im-
pact. Instead, we simplify the problem somewhat, using
the worm’s attack side effects as a hint to the potential
vulnerability’s location.

There are also other possible approaches to mitigating
an attack’s effects, including:

• We can use minor code-randomization techniques12 to
“move” the vulnerability so that the infection vector no
longer works.

• We can attempt to “slice-off ” some functionality by

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

Network Worms

immediately returning from the mostly unused code
that contains the vulnerability. For large software sys-
tems with numerous, often untested, features that are
not regularly used, this might be the solution with the
least impact. To determine whether functionality is
unused, we can profile the real application; if the vul-
nerability is in an unused application section, we can
logically remove that part of the functionality (with an
early function-return, for example).

• We can add code that recognizes either the attack itself
or specific conditions in the stack trace (such as a spe-
cific stack records sequence), and then returns from the
function if it detects these conditions. In a sense, this ap-
proach is equivalent to content filtering, and least likely
to work against even mildly polymorphic worms.

We plan to investigate additional heuristics in future
research.

To avoid introducing application instability, we use lo-
calized patches. Although it’s difficult, if not impossible,
to argue about the correctness of any newly introduced
code (whether created by humans or automated
processes such as our own), we’re confident that our
patches don’t exacerbate the problem for two reasons.
First, the patches have minimal scope. Second, they em-
ulate behavior that a compiler or other automated tool
could have introduced automatically during the code au-
thoring or compilation phase. Although this is by no
means a proof of correctness, we believe it is a good argu-
ment for our method’s safety.

Our architecture lets us easily add new analysis tech-
niques and patch-generation components. We can test
several patches (potentially in parallel) until we’re satis-
fied that the application is no longer vulnerable to the
specific exploit. To ensure that the patched version will
continue to function, we use a site-specific test suite to
determine what functionality (if any) has been lost. The
test suite is generated by the administrator in advance,
and should reflect a typical application workload, exer-
cising all critical aspects (such as performing purchasing
transactions for an e-commerce site). Our system also
lets us proactively patch and test all possibly vulnerable
code locations to determine, prior to an attack, whether
any undesirable side effects might manifest. Naturally, if
no heuristic works, it’s impossible to automatically fix
the application and other measures must be used.

Application update
Once we have a worm-resistant application version, we
must instantiate it on the server. Thus, our application’s
final component is a server-based monitor. To achieve
this, we can either use a virtual-machine approach or as-
sume that the target application is somehow sandboxed
and implement the monitor as a regular process residing
outside that sandbox. The monitor receives the applica-

tion’s new version, terminates the running instance
(gracefully, if possible), replaces the executable with the
new version, and restarts the server.

Implementation
Our prototype implementation is comprised of

• ProPolice, to identify software vulnerabilities;
• TXL, to apply potential patches; and
• a sandboxed environment, to provide a secure environ-

ment.

ProPolice
To detect the source of buffer overflow/underflow vul-
nerabilities, we use the OpenBSD version of ProPolice
(www.trl.ibm.com/projectes/security/spp/). ProPolice
is a Gnu Compiler Collection (GCC) extension for pro-
tecting applications from stack-smashing attacks in a
manner similar to StackGuard.7 ProPolice returns the
names of the function and offending buffer that lead to
the overflow/underflow condition. It then forwards this
information to TXL.

ProPolice has several protection features:

• It reorders local variables to place buffers after pointers.
This reordering prevents the corruption of pointers
that the attack could use to further corrupt arbitrary
memory locations,

• It copies function argument pointers to an area preced-
ing local variable buffers. This also prevents pointer
corruption, which can further corrupt arbitrary mem-
ory locations.

• It omits instrumentation code from some functions to
decrease performance overhead.

When an attacker attempts a buffer overflow attack on
applications compiled with ProPolice extensions, the
program execution is interrupted and it reports the of-
fending function and buffer. ProPolice incurs a modest
performance overhead, similar to StackGuard’s.7 Note
that the application under attack detects overflows after
they’ve occurred—and have already overflowed stack in-
formation—making program continuation undesirable.
While this is more palatable than outright subversion, it is
suboptimal in terms of service availability.

Although ProPolice was sufficient for our prototype
implementation, a fully functional system would use a
better mechanism, such as Valgrind (http://valgrind.
kde.org) or MemGuard.7 Both systems can catch all il-
legal memory-dereferences (even those in the heap).
They’re also considerably slower than ProPolice and
can slow down an application by up to an order of mag-
nitude. This makes them unsuitable for production sys-
tems, but usable in our system where performance is
less relevant.

56 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

Network Worms

TXL
Armed with information produced by ProPolice, our
system invokes TXL13 to transform the code. TXL is a
hybrid functional and rule-based language that’s well
suited for source-to-source transformation and for
rapidly prototyping new languages and language proces-
sors. It specifies the grammar responsible for parsing the
source input in a notation similar to Extended Backus-
Nauer (BNF). TXL also supports several parsing strate-
gies, making it comfortable with ambiguous grammars.
This accommodates more natural, user-oriented gram-
mars and thus circumvents the need for strict compiler-
style implementation grammars.

In our system, TXL performs C-to-C transforma-
tions by changing the American National Standards In-
stitute (ANSI) C grammar. In particular, we move to the
heap variables originally defined on the stack using a sim-
ple TXL program.11 The script examines source declara-
tions and transforms them to pointers where the size is
allocated with a malloc() function call. Furthermore,
we adjust the C grammar to free the variables before the
function returns. The other heuristic we use is a “slice-
off” functionality. There, we use TXL to simply com-
ment out the code of the superfluous function and embed
a “return” in the function.

In the move-to-heap approach, we use an alternative
malloc() implementation we developed specifically
for this purpose. As Figure 2 shows, protected malloc
(pmalloc()) allocates two additional, zero-filled write-
protected memory pages that surround the requested al-
located memory region. Any buffer overflow/underflow
will cause the operating system to issue a SEGV signal to
the process. We use mprotect() to mark the surround-
ing pages as read-only.

Our TXL script inserts a setjmp() call immediately
before the function call that caused the buffer overflow.
This operation saves the stack pointers, registers, and pro-
gram counter so that the program can later restore their
state. We also inject a signal handler that catches the
SEGV signal and calls longjmp(), restoring the stack
pointers and registers (including the program counter) to
their values prior to the call to the vulnerable function (in
fact, they are restored to their values as of the call to
setjmp()). The program will then reevaluate the in-
jected conditional statement that includes the
setjmp() call. This time, however, the return value
causes the conditional to evaluate to false, thereby skip-
ping the offending function’s execution. Note that the
targeted buffer will contain exactly the amount of data
(infection vector) it would if the offending function per-
formed correct data-truncation.

There are two benefits in this approach:

• Heap objects are protected from being overwritten by an
attack on the specified variable, because there is a signal vi-

olation when data is written beyond the allocated space.
• Because we can recover the stack context environment

prior to the offending function’s call, we can recover
gracefully from an overflow attempt.

Examining the source code of the Code Security
Analysis Kit (CoSAK) project’s programs showed that
most calls that caused an overflow/underflow—such as
strcpy() and memcpy()—didn’t check for return
values or include calls to other routines. This is an impor-
tant observation, because it validates our assumption that
the heuristic can circumvent the malignant call using
longjmp().

Sandboxed environment
Finally, for our sandboxed environment, we run the
OpenBSD operating system on the VMWare virtual ma-
chine. VMWare lets developers isolate operating systems
and software applications from the underlying OS in se-
cure virtual machines that coexist on a single piece of
hardware. Once we have created a correct application ver-
sion, we simply update its image on the production envi-
ronment outside the virtual environment, and restart it.

Experimental evaluation
To illustrate our system’s capabilities and the patch heuris-
tics’ effectiveness, we constructed a simple file-serving
application that had:

• a buffer overflow vulnerability, to test against stack-
smashing attacks; and

• superfluous services, to test slice-off functionality.

The application used a simple, two-phase protocol in
which a service is requested (through different functions
in the code), and then the application waits for the next
request from the network. We wrote the application in
ANSI C. We constructed a buffer overflow attack to
overwrite the return address and attempt to get access to
a root shell. We compiled the application under
OpenBSD, with the ProPolice extensions to GCC.

Once ProPolice provided the names of the function
and buffer potentially responsible for the buffer overflow,
we invoked the TXL implementation of our heuristics.
At that point, we tested the heuristics and recompiled the

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 57

Figure 2. Protected malloc. Write-protected memory pages surround
a buffer allocated with pmalloc().

User
stack

Write-
protected
memory

Write-
protected
memory

Buffer Heap BSS Data Text

0xFFFF 0x0100 0x00 00

Network Worms

TXL-transformed code, then ran a simple functionality
test on the application. The test—on whether the appli-
cation could correctly serve a given file—was a simple
script that attempted to access the available service. This
application was an initial proof-of-concept for our sys-
tem, and didn’t prove our approach’s correctness. We ac-
quired more substantial results by examining the CoSAK
project’s applications.

CoSAK data
To further test our heuristics, we examined several vul-
nerable, open-source software products through
CoSAK, run by Drexel University’s software engineering
research group (see http://serg.cs.drexel.edu/cosak/
index.shtml). CoSAK is a DARPA-funded project that is
developing a toolkit for software auditors to assist with
the development of high-assurance and secure software
systems. The team has compiled a database of 30 open-
source software products along with their known vulner-
abilities and respective patches. The database is
comprised of tools, products, and libraries with known
vulnerabilities, many of which are listed as susceptible to
buffer overflow attacks.

When we tested the move-to-heap heuristic against
the CoSAK data set, our system fixed 14 out of 17 buffer
overflow vulnerabilities (an 82 percent success rate). The
remaining 13 products were not tested because their vul-
nerabilities were unrelated to buffer overflow. We exam-
ined the three products that our solution didn’t fix, and in
all cases, an appropriate fix would require adjustments to
the TXL heuristics to cover special cases.

Calls to the strcpy() routine caused most CoSAK
dataset vulnerabilities. Examining the respective security
patches showed that, for most cases, the buffer overflow
susceptibility could be repaired by a respective
strncpy(). Furthermore, most routines didn’t check
for return values and didn’t include routines within the
routines, thus providing fertile ground for our pmal-
loc() heuristic.

Performance
To evaluate our system’s performance, we tested the
patch-generation engine on an instrumented version of
Apache 2.0.48. We chose Apache due to its popularity
and source code availability. We tested basic Apache func-
tionality, omitting additional modules. The evaluation’s
purpose was to validate the hypothesis that heuristics can
be applied and tested in a timely manner. We conducted
the tests on a PC with an AMD Athlon processor operat-
ing at 2.8 GHz and 2 GBytes of RAM. The underlying
operating system was OpenBSD 3.3.

One assumption that our system makes is that the in-
strumented application is already compiled in the sand-
boxed environment, so that a patch heuristic wouldn’t
require a complete application recompilation. To get a

realistic insight on the time required from applying a
patch to starting the application test, we applied our
move-to-heap TXL transformation on many different
files, ranging from large to small sizes, and recompiled
Apache’s latest version. The average time across the dif-
ferent files for compilation and relinking was 2.5 seconds.

Another important performance issue is the TXL
transformation time for our basic heuristics. Our ability
to pass the specific function name and buffer to TXL
greatly reduces the transformation time because the rule-
set is concentrated on a targeted section of the source
code. The average transformation time for different ex-
amined functions was 0.045 seconds. This result is very
encouraging; it lets us assume that we can apply the
heuristics in under 3 seconds.

Discussion
Our work here is in its preliminary stages, and naturally
creates many questions as to its practicality, use, and safety.

Challenges
There are several challenges associated with our ap-
proach, including attack identification, reliable software
repair, source code availability, and multipartite worms.

Attack identification. First, our approach must deter-
mine the attack’s nature (such as a buffer overflow) and
identify likely software flaws that permit the exploit. Ob-
viously, our approach can only fix known classes of at-
tacks, such as stack or heap-based buffer overflows. This
knowledge manifests itself through the debugging and
instrumentation of the application’s sandboxed version.
However, we don’t need to know of the specific instances
of such attacks; this is what we designed the system itself
to determine.

Currently, ProPolice identifies the likely functions and
buffers that lead to the overflow condition. Our architec-
ture could use more powerful analysis tools to catch more
sophisticated code-injection attacks; we intend to investi-
gate them in future work. Furthermore, though we’ve yet
to investigate it, our architecture should be general enough
to detect other attack classes, such as email worms.

Reliable software repair. As we noted earlier, reliabil-
ity in this area is impossible to guarantee. Our heuristics
let us generate potential fixes for several buffer overflow
classes using code-to-code transformations,13 and test
them in a clean-room environment. We must further re-
search automated software recovery to develop better re-
pair mechanisms.

Among our research plans are investigating the possi-
ble use of Aspect-Oriented Programming14 to create
source code locations (“hooks”) that would let us insert
appropriate fixes. When the appropriate repair model is
plugged in, our architecture can automatically fix any

58 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

Network Worms

software fault type, including invalid memory derefer-
ences.15 When it’s impossible to automatically obtain a
software fix, we can use “content filtering”16 to tem-
porarily protect the service. Combining our approach
with content filtering is another topic of future research.

Source code availability. Our system assumes that a tar-
get application’s source code is available, making patches
easy to generate and test. When that’s not the case, we
could apply binary-rewriting techniques17—at consider-
ably higher complexity. Application instrumentation also
becomes correspondingly more difficult under some
schemes. One intriguing possibility would be if vendors
ship two application versions: one regular, and one in-
strumented. The latter could then provide a standardized
set of hooks that permit oversight by a general monitor-
ing module.

Multipartite worms. Multipartite worms use multiple,
independent infection vectors and propagation mecha-
nisms, such as spreading over both email and HTTP. Our
architecture treats such infections as independent worms.

Centralized vs. distributed reaction
Some researchers envision a “Cyber Center for Disease
Control” (CCDC) for identifying outbreaks, rapidly
analyzing pathogens, fighting the infection, and proac-
tively devising methods for detecting and resisting fu-
ture attacks.5 However, it seems unlikely that users
would trust an entity other than the software vendor to
arbitrarily patch software. Furthermore, people still
need to craft the fixes, and they’d thus arrive too late to
contain worms.

In our scheme, a CCDC-type enterprise would serve
as a real-time alert coordination and distribution system.
Individual enterprises would independently confirm the
validity of a reported weakness and create their own fixes
in a decentralized manner, thereby minimizing the trust
they would have to place to the CCDC.

When an exploitable vulnerability is discovered, the
CCDC could use our architecture to distribute “fake
worms.” The system would treat this channel as another
sensor supporting the analysis engine. Fake-worm prop-
agation would trigger the creation of a quick fix if the ar-
chitecture deemed the worm bona fide (that is, if the
application crashed when the attack was run in the sand-
box). Again, this would serve as a mechanism for distrib-
uting quick patches by independent parties, by
distributing only the exploit and letting organizations
create their own patches.

Although our speculations assume that such a system
will be deployed in every medium to large enterprise
network, there’s nothing to preclude resource pooling
across multiple, mutually trusted organizations. In par-
ticular, a managed-security company could provide a

quick-fix service to its clients by using sensors in every
client’s location and generating patches in a centralized
facility. The security company would then push fixes to
all clients. Some managed security vendors take a similar
approach, keeping programmers available on a 24-hour
basis. In all cases, administrators must be aware of the ser-
vices offered (officially or unofficially) by all of their net-
work hosts.

Attacks against the system
Naturally, our system should avoid giving attackers new
opportunities to subvert applications and hosts. One con-
cern is the possibility of attackers “gaming,” as when they
opportunistically attack systems solely to cause instability
and unnecessary software updates.

One interesting attack would be to cause oscillation
between software versions that are alternatively vulnera-
ble to different attacks. Although this might be theoreti-
cally possible, we can’t think of a suitable example. Such
attack capabilities are limited by the fact that the system
can test the patching results against current attacks, as
well as previous ones that are still pending (not officially
fixed by an administrator-applied patch). Furthermore,
we assume that the various system components are ap-
propriately protected against subversion—that is, that
the clean-room environment is firewalled, using
TLS/SSL or IPsec to protect component communica-
tions and interactions.

If attackers subvert a sensor and use it to generate false
alarms, event correlation will reveal the anomalous be-
havior. In any case, the sensor can at best mount only a
denial-of-service (DoS) attack against the patching
mechanism by causing it to test many hypotheses. Again,
such anomalous behavior is easy to detect and counter,
without impacting either the protected services or the
patching mechanism.

Our architecture could also be attacked using a DoS to
deny communication between the correlation engine, the
sensors, and the sandbox. Such an attack might in fact be a
by-product of a worm’s aggressive propagation, as with the

SQL worm (see www.siliconedefense.com/research/
worms/slammer). Fortunately, it should be possible to fil-
ter the ports used for these communications, making it dif-
ficult to mount such an attack from an external network.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 59

Individual enterprises would

independently confirm the validity of

a reported weakness and create their

own fixes in a decentralized manner.

Network Worms

As with any fully automated task, we don’t yet fully
understand the risks of relying on automated patching
and testing as the only real-time verification techniques.
To the extent that our system correctly determines that a
buffer overflow attack is possible, the system’s operation is
safe: it will either create a correct patch for the applica-
tion, or the application will be shut-down or replaced
with a non-working version. Considering the alterna-
tive—guaranteed service loss and application subver-
sion—we believe that many people will find the risk
acceptable. The question then focuses on the analysis en-
gine’s correctness. This appears to be a fundamentally im-
possible problem—our architecture enables us to add
appropriate checks as needed, but we cannot guarantee
absolute safety. As with all engineering endeavors, we
seek to determine whether our system presents an ac-
ceptable tradeoff in certain environments.

T he benefits presented by our system are the quick re-
action to attacks by the automated creation of “good

enough” fixes without any sort of dependence on a
central authority, such as a hypothetical CCDC. Com-
prehensive security measures can be administered at a
later time. Furthermore, our architecture is easily ex-
tensible to accommodate detection and reactive mea-
sures against new types of attacks as they become
known. Our experimental analysis using several vulner-
able applications as hypothetical worm-infection targets
shows promising results that validate our approach and
will spur further research.

Acknowledgments
We thank the anonymous reviewers for their constructive comments and
guidance during manuscript preparation.

References
1. D. Moore, C. Shanning, and K. Claffy, “Code-Red: A

Case Study on the Spread and Victims of an Internet
Worm,” Proc. 2nd Internet Measurement Workshop (IMW),
ACM Press, 2002, pp. 273–284.

2. C.C. Zou, W. Gong, and D. Towsley, “Code Red Worm
Propagation Modeling and Analysis,” Proc. 9th ACM
Conf. on Computer and Comm. Security (CCS), ACM Press,
2002, pp. 138–147.

3. E. Levy, “Crossover: Online Pests Plaguing the Offline
World,” IEEE Security & Privacy, vol. 1, no. 6, 2003, pp.
71–73.

4. D. Moore et al., “Internet Quarantine: Requirements
for Containing Self-Propagating Code,” Proc. IEEE Info-
com Conference, IEEE Press, 2003; http://www.ieee
-infocom.org/2003/papers/46_04.PDF.

5. S. Staniford, V. Paxson, and N. Weaver, “How to Own
the Internet in Your Spare Time,” Proc. 11th Usenix Secu-
rity Symp., Usenix Assoc., 2002, pp. 149–167.

6. M. Christodorescu and S. Jha, “Static Analysis of Exe-
cutables to Detect Malicious Patterns,” Proc. 12th
Usenix Security Symp., Usenix Assoc., 2003, pp.
169–186.

7. C. Cowan et al., “Stackguard: Automatic Adaptive Detec-
tion and Prevention of Buffer-Overflow Attacks,” Proc.
7th Usenix Security Symp., Usenix Assoc., 1998, pp. 63–78.

8. J. Twycross and M.M. Williamson, “Implementing and
Testing a Virus Throttle,” Proc. 12th Usenix Security Symp.,
Usenix Assoc., 2003, pp. 285–294.

9. E. Rescorla, “Security Holes...Who Cares?” Proc. 12th
Usenix Security Symp., Usenix Assoc., 2003, pp. 79–90.

10. K. Wang and S. Stolfo, “Anomalous Payload-Based Net-
work Intrusion Detection,” Proc. 7th Int’l Symp. Recent
Advances in Intrusion Detection (RAID), LNCS 3224,
Springer-Verlag, 2004, pp. 201–222.

11. S. Sidiroglou, G. Giovanidis, and A.D. Keromytis, “A
Dynamic Mechanism for Recovering from Buffer Over-
flow Attacks,” Proc. 8th Information Security Conf. (ISC),
LNCS 3224, Springer-Verlag, 2005, pp. 1–15.

12. S. Bhatkar, D.C. DuVarney, and R. Sekar, “Address
Obfuscation: An Efficient Approach to Combat a Broad
Range of Memory Error Exploits,” Proc. 12th Usenix
Security Symp., Usenix Assoc., 2003, pp. 105–120.

13. A.J. Malton, “The Denotational Semantics of a Func-
tional Tree-Manipulation Language,” Computer Languages,
vol. 19, no. 3, 1993, pp. 157–168.

14. G. Kiczales et al., “Aspect-Oriented Programming,” Proc.
European Conf. Object-Oriented Programming, vol. 1241,
M. Aksit and S. Matsuoka, eds., Springer-Verlag, 1997,
pp. 220–242.

15. S. Sidiroglou et al., “Building A Reactive Immune Sys-
tem for Software Services,” Proc. Usenix Annual Technical
Conf., Usenix Assoc., 2005, pp. 149-161.

16. J.C. Reynolds et al., “The Design and Implementation
of an Intrusion Tolerant System,” Proc. Int’l Conf. Depend-
able Systems and Networks (DSN), IEEE CS Press, 2002,
pp. 285–292.

17. M. Prasad and T. Chiueh, “A Binary Rewriting Defense
Against Stack-Based Buffer Overflow Attacks,” Proc.
Usenix Annual Tech. Conf., Usenix Assoc., 2003, pp.
211–224.

Angelos Keromytis is an assistant professor in the Department
of Computer Science at Columbia University, where he directs
the Network Security Lab. His research interests include surviv-
able systems, network security, cryptographic protocol design
and analysis, and operating systems. He has a PhD in computer
science from the University of Pennsylvania. He is a member of
the ACM, IEEE, and USENIX. Contact him at angelos@cs.colum-
bia.edu.

Stelios Sidiroglou is a PhD candidate in the Department of Com-
puter Science at Columbia University, where he is a member of
the Network Security Laboratory. His research interests include
operating systems, network security, and survivable software.
He has an MS in electrical engineering from Columbia Univer-
sity. Contact him at stelios@cs.columbia.edu.

60 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

