Distributed Trust

John loannidis, AT&T Labs — Research

Angelos D. Keromytis, Columbia University

CONTENTS

11
1.2

13

1.4

15
1.6
1.7

Abstract

This chapter explores the concept of trust management in access control. We introduce the con-
cepts behind trust management and discuss two such systems. The first, PolicyMaker [Blaze et al.,
1996], first introduced the concepts of trust management, which were further explored in the work
on the KeyNote credential language [Blaze et al., 1999b]. We discuss some applications of trust
management systems, as well as other related work. Our focus is on the concepts and design, rather
than the details of particular approaches or mechanisms. Our goal is to impart enough information
to the readers to make informed decisions as to how best to use the power and expressiveness of

Access Control and Trust Management
Technical Foundations
121 Authentication
1.2.2 PublicKey Certificates
Distributed Trust Management
131 PolicyMaker e
132 KeyNote e
Applications of Trust Management Systems
1.41 Network-layer Access Control
1.4.2 Distributed Firewalls and the STRONGMAN Architecture
1.43 Grid Computing and Transferable Micropayments
1.4.4 Micropayments: Microchecks and Fileteller
145 Active Networking
Other Trust-Based Systems
ClosingRemarks
Acknowledgements

trust management.

X-XXXX-XXXX-XIXXIEX X X+$X. XX
(© 2004 CRC PressLLC.

Distributed Trust loannidis & Keromytis

1.1 Access Control and Trust Management

Authorization and access control is the process by which a security enforcement point deter-
mines whether an entity should be allowed to perform a certain action. Authorization takes place
after said entity has been authenticated. Furthermore, authorization occurs within the scope of
an access control policy. In simpler terms, the first step in making an access control decision is
determining who is making a request; the second step is determining, based on the result of the
authentication as well as additional information (the access control policy), whether that request
should be allowed.

One security mechanism often used in operating systems is the Access Control List (ACL).
Briefly, an ACL is a list describing which access rights a principal has on an object (resource). For
example, an entry might read “User Foo can Read File Bar.” Such a list (or table) need not physi-
cally exist in one location but may be distributed throughout the system. The Uniz” filesystem
“permissions” mechanism is essentially an ACL.

ACLs have been used in distributed systems, because they are conceptually easy to grasp and
because there is an extensive literature about them. However, there are a number of fundamental
reasons that ACLs are inadequate for distributed-system security, e.g.,

e Authentication: In an operating system, the identity of a principal is well known. This is not

so in a distributed system, where some form of authentication has to be performed before the
decision to grant access can be made.

e Delegation is necessary for scalability of a distributed system. It enables decentralization of
administrative tasks. Existing distributed-system security mechanisms usually delegate di-
rectly to a “certified entity.” In such systems, policy (or authorizations) may only be specified
at the last step in the delegation chain (the entity enforcing policy), most commonly in the
form of an ACL. The implication is that high-level administrative authorities cannot directly
specify overall security policy; rather, all they can do is “certify” lower-level authorities. This
authorization structure leads easily to inconsistencies among locally-specified sub-policies.

e Expressibility and Extensibility: A generic security mechanism must be able to handle new
and diverse conditions and restrictions. The traditional ACL approach has not provided suffi-
cient expressibility or extensibility. Thus, many security policy elements that are not directly
expressible in ACL form must be hard-coded into applications. This means that changes in
security policy often require reconfiguration, rebuilding, or even rewriting of applications.

e Local trust policy: The number of administrative entities in a distributed system can be quite
large. Each of these entities may have a different trust model for different users and other
entities. For example, system A may trust system B to authenticate its users correctly, but
not system C; on the other hand, system B may trust system C. It follows that the security
mechanism should not enforce uniform and implicit policies and trust relations.

The trust-management approach to distributed-system security was developed as an answer to
the inadequacy of traditional authorization mechanisms. Trust-management engines avoid the need
to resolve “identities” in an authorization decision. Instead, they express privileges and restrictions
in a programming language. This allows for increased flexibility and expressibility, as well as stan-
dardization of modern, scalable security mechanisms. Further advantages of the trust-management
approach include proofs that requested transactions comply with local policies and system archi-
tectures that encourage developers and administrators to consider an application’s security policy
carefully and specify it explicitly.

Section 1 provides some background material on the concepts of authentication and public key
certificates, which form the basis on which trust management systems are built. Section 1.2.2 de-
scribes the trust-management approach to authorization and access control, focusing on the Policy-

2 M. P Singh, ed.

loannidis & Keromytis Distributed Trust

Maker and KeyNote systems. Section 1.3.2 describes various applications of trust management
systems (especially KeyNote), while Section 1.4.5 briefly describes some related work.

1.2 Technical Foundations

1.2.1 Authentication

The term authentication in network security and cryptography is used to indicate the process by
which one entity convinces another that it has possession of some secret information, for the purpose
of “identifying” itself. This identification does not necessarily correspond to a real-world entity;
rather, it implies the continuity of a relationship (or, as stated in [Schneier, 2000], knowing who to
trust and who not to trust).

In computer networks, strong authentication is achieved through cryptographic protocols and
algorithms. In particular, public key cryptography forms the basis for many protocols and proposals
for scalable network-based authentication. A discussion of the various constraints and goals in these
protocols is beyond the scope of this chapter. The interested reader is referred to [Schneier, 1996].

1.2.2 Public Key Certificates

Public key certificates are statements made by a principal (an entity, such as a user or a process acting
on behalf of a user, that can undertake an action in the system and is identified by a cryptographic
public key) about another principal (also identified by a public key). Public key certificates are
cryptographically signed, such that anyone can verify their integrity (the fact that they have not
been modified since the signature was created). Public key certificates are utilized in authentication
because of their natural ability to express delegation (more on this in Section 1.3.1).

A traditional public key certificate cryptographically binds an identity to a public key. In the
case of the X.509 standard [CCITT, 1989], an identity is represented as a “distinguished name,”
e.g.,

| C=US/ ST=PA/ L=Phi | adel phi a/ O=Uni versity of Pennsyl vani a/
OU=Departnent of Conputer and Information Sci ence/ CN=Jonathan M Snith

In more recent public key certificate schemes [Ellison et al., 1999; Blaze et al., 1999b] the
identity is the public key, and the binding is between the key and the permissions granted to it.
Public key certificates also contain expiration and revocation information.

Revoking a public key certificate means notifying entities that might try to use it that the infor-
mation contained in it is no longer valid, even though the certificate itself has not expired. Possible
reasons for this include theft of the private key used to sign the certificate (in which case, all certifi-
cates signed by that key need to be revoked), or discovery that the information contained in the cer-
tificate has become inaccurate. This happened when Verisign, a commercial Certification Authority
(CA), mistakenly issued an X.509 certificate to an unknown person with the common name “Mi-
crosoft Corporation.” There exist various revocation methods (Certificate Revocation Lists (CRLS),
Delta-CRLs, Online Certificate Status Protocol (OCSP), refresher certificates), each with its own
tradeoffs in terms of the amount of data that needs to be kept around and transmitted, any online
availability requirements, and the window of vulnerability.

Practical Handbook of Internet Computing 3

Distributed Trust loannidis & Keromytis

Information found External
"Traditional" on certificate lookup
public-key | Name/ Identity > Authorization
certificate

Information found
Trust-Management on credential

credential S Authorization

Figure 1.1: The difference between access control using traditional public-key certificates and trust
management.

1.3 Distributed Trust Management

A traditional “system-security approach” to the processing of a signed request for action (such as
access to a controlled resource) treats the task as a combination of authentication and authorization.
The receiving system first determines who signed the request and then queries an internal database to
decide whether the signer should be granted access to the resources needed to perform the requested
action. It has been argued that this is the wrong approach for today’s dynamic, internetworked world
[Blaze et al., 1996, 1999a; Ellison, 1999; Ellison et al., 1999]. In a large, heterogeneous, distributed
system, there is a huge set of people (and other entities) who may make requests, as well as a huge
set of requests that may be made. These sets change often and cannot be known in advance. Even
if the question “who signed this request?” could be answered reliably, it would not help in deciding
whether or not to take the requested action if the requester is someone or something from whom the
recipient is hearing for the first time.

The right question in a far-flung, rapidly changing network becomes “is the key that signed
this request authorized to take this action?” Traditional name-key mappings and pre-computed
access-control matrices are inadequate. The former because they do not convey any access control
information, the latter because of the amount of state required: given N users, M objects to which
access needs to be restricted, X variables which need to be considered when making an access
control decision. We would need access control lists of minimum size N x X associated with
each object, for a total of N x M policy rules of size X in our system. As the conditions under
which access is allowed or denied become more refined (and thus larger), these products increase. In
typical systems, the number of users and objects (services) is large, whereas the number of variables
is small; however, the combinations of variables in expressing access control policy can be non-
trivial (and arbitrarily large, in the worst case). Furthermore, these rules have to be maintained,
securely distributed, and stored across the entire network. Thus, one needs a more flexible, more
“distributed” approach to authorization.

The trust-management approach, initiated by Blaze et al. [1996], frames the question as follows:
“Does the set C of credentials prove that the request » complies with the local security policy P?”
This difference is shown graphically in Figure 1.1.

Each entity that receives requests must have a policy that serves as the ultimate source of author-
ity in the local environment. The entity’s policy may directly authorize certain keys to take certain
actions, but more typically it will delegate this responsibility to credential issuers that it trusts to
have the required domain expertise as well as relationships with potential requesters. The trust-
management engine is a separate system component that takes (r, C, P) as input, outputs a decision
about whether compliance with the policy has been proven, and may also output some additional

4 M. P Singh, ed.

loannidis & Keromytis Distributed Trust

Request, Key, Sig

[——
Verifier Requester

Gather information
local policy
(remote credentials)

Pass

information
Give response

KeyNote Evaluate

Figure 1.2: Interaction between an application and a trust-management system.

information about how to proceed if the required proof has not been achieved. Figure 1.2 shows an
example of the interactions between an application and a trust-management system.

An essential part of the trust-management approach is the use of a general-purpose, application
independent algorithm for checking proofs of compliance. Why is this a good idea? Any product
or service that requires some form of proof that requested transactions comply with policies, could
use a special-purpose algorithm or language implemented from scratch. Such algorithms/languages
could be made more expressive and tuned to the particular intricacies of the application. Compared
to this, the trust-management approach offers two main advantages.

The first is simply one of engineering: it is preferable (in terms of simplicity and code reuse) to
have a “standard” library or module, and a consistent API, that can be used in a variety of different
applications.

The second, and perhaps most important gain is in soundness and reliability of both the def-
inition and the implementation of “proof of compliance.” Developers who set out to implement
a “simple,” special-purpose compliance checker (in order to avoid what they think are the overly
“complicated” syntax and semantics of a universal “meta-policy”) discover that they have underes-
timated their application’s need for proof and expressiveness. As they discover the full extent of
their requirements, they may ultimately wind up implementing a system that is as general and ex-
pressive as the “complicated” one they set out to avoid. A general-purpose compliance checker can
be explained, formalized, proven correct, and implemented in a standard package, and applications
that use it can be assured that the answer returned for any given input (r, C, P) depends only on
the input and not on any implicit policy decisions (or bugs) in the design or implementation of the
compliance checker.

Basic questions that must be answered in the design of a trust-management engine include:

e How should “proof of compliance” be defined?

e Should policies and credentials be fully or only partially programmable? In which language
or notation should they be expressed?

e How should responsibility be divided between the trust-management engine and the calling
application? For example, which of these two components should perform the cryptographic
signature verification? Should the application fetch all credentials needed for the compliance
proof before the trust-management engine is invoked, or may the trust-management engine
fetch additional credentials while it is constructing a proof?

At a high level of abstraction, trust-management systems have five components:

Practical Handbook of Internet Computing 5

Distributed Trust loannidis & Keromytis

A language for describing actions, which are operations with security consequences that are
to be controlled by the system.

e A mechanism for identifying principals, which are entities that can be authorized to perform
actions.

e A language for specifying application policies, which govern the actions that principals are
authorized to perform.

e A language for specifying credentials, which allow principals to delegate authorization to
other principals.

e A compliance checker, which provides a service to applications for determining how an action
requested by principals should be handled, given a policy and a set of credentials.

By design, trust management unifies the notions of security policy, credentials, access control,
and authorization. An application that uses a trust-management system can simply ask the compli-
ance checker whether a requested action should be allowed. Furthermore, policies and credentials
are written in standard languages that are shared by all trust-managed applications; the security con-
figuration mechanism for one application carries exactly the same syntactic and semantic structure
as that of another, even when the semantics of the applications themselves are quite different.

1.3.1 PolicyMaker

PolicyMaker was the first example of a “trust-management engine.” That is, it was the first tool
for processing signed requests that embodied the “trust-management” principles articulated in Sec-
tion 1.2.2. It addressed the authorization problem directly, rather than handling the problem indi-
rectly via authentication and access control, and it provided an application-independent definition of
“proof of compliance” for matching up requests, credentials, and policies. PolicyMaker was intro-
duced in the original trust-management paper by Blaze et al. [1996], and its compliance-checking
algorithm was later fleshed out in [Blaze et al., 1998]. A full description of the system can be found
in [Blaze et al., 1996, 1998], and experience using it in several applications is reported in [Blaze
etal., 1997; Lacy et al., 1997].

PolicyMaker credentials and policies (collectively referred to as “assertions”) are programmable:
they are represented as pairs (f, s), where s is the source of authority, and f is a program describ-
ing the nature of the authority being granted as well as the party or parties to whom it is being
granted. In a policy assertion, the source is always the keyword POLICY. For the PolicyMaker
trust-management engine to be able to make a decision about a requested action, the input supplied
to it by the calling application must contain one or more policy assertions; these form the “trust root,”
i.e., the ultimate source of authority for the decision about this request, as shown in Figure 1.3. In a
credential assertion, the source of authority is the public key of the issuing entity. Credentials must
be signed by their issuers, and these signatures must be verified before the credentials can be used.

PolicyMaker assertions can be written in any programming language that can be “safely” inter-
preted by a local environment that has to import credentials from diverse (and possibly untrusted)
issuing authorities. A version of AWK without file 1/0 operations and program execution time lim-
its (to avoid denial of service attacks on the policy system) was developed for early experimental
work on PolicyMaker (see [Blaze et al., 1996]), because AWK’s pattern-matching constructs are a
convenient way to express authorizations. For a credential assertion issued by a particular authority
to be useful in a proof that a request complies with a policy, the recipient of the request must have
an interpreter for the language in which the assertion is written (so that the program contained in the
assertion can be executed). Thus, it would be desirable for assertion writers ultimately to converge
on a small number of assertion languages so that receiving systems have to support only a small
number of interpreters and so that carefully crafted credentials can be widely used. However, the

6 M. P Singh, ed.

loannidis & Keromytis Distributed Trust

Trusted public Y
key C Public key 4

Delegation to a (user’s) public key

Figure 1.3: Delegation in PolicyMaker, starting from a set of trusted assertions. The dotted lines
indicate a delegation path from a trusted assertion (public key) to the user making a request. If all
the assertions along that path authorize the request, it will be granted.

question of which languages these will be was left open by the PolicyMaker project. A positive
aspect of PolicyMaker’s not insisting on a particular assertion language is that all of that work that
has gone into designing, analyzing, and implementing the PolicyMaker compliance-checking algo-
rithm will not have to be redone every time an assertion language is changed or a new language is
introduced. The “proof of compliance” and “assertion-language design” problems are orthogonal
in PolicyMaker and can be worked on independently.

One goal of the PolicyMaker project was to make the trust-management engine as small as possi-
ble and analyzable. Architectural boundaries were drawn so that a fair amount of responsibility was
placed on the calling application rather than the trust-management engine. In particular, the calling
application was made responsible for all cryptographic verification of signatures on credentials and
requests. One pleasant consequence of this design decision is that the application developer’s choice
of signature scheme(s) can be made independently of his choice of whether or not to use Policy-
Maker for compliance checking. Another important responsibility that was assigned to the calling
application is credential gathering. The input (r, C, P) supplied to the trust-management module is
treated as a claim that credential set C' contains a proof that request » complies with Policy P. The
trust-management module is not expected to be able to discover that C' is missing just one credential
needed to complete the proof and to go fetch that credential from e.g., the corporate database, the
issuer’s web site, the requester himself, or elsewhere. Later trust-management engines, including
KeyNote [Blaze et al., 1999b] and REFEREE [Chu et al., 1997] divide responsibility between the
calling application and the trust-management engine differently than the way PolicyMaker divides
it.

The main technical contribution of the PolicyMaker project is a notion of “proof of compliance”
that is fully specified and analyzed. We give an overview of PolicyMaker’s approach to compliance
checking here; a complete treatment of the compliance checker can be found in [Blaze et al., 1998].

The PolicyMaker runtime system provides an environment in which the policy and credential as-
sertions fed to it by the calling application can cooperate to produce a proof that the request complies

Practical Handbook of Internet Computing 7

Distributed Trust loannidis & Keromytis

with the policy (or can fail to produce such a proof). Among the requirements for this cooperation
are a method of inter-assertion communication and a method for determining that assertions have
collectively succeeded or failed to produce a proof.

Inter-assertion communication in PolicyMaker is done via a simple, append-only data structure
on which all participating assertions record intermediate results. Specifically, PolicyMaker initial-
izes the proof process by creating a “blackboard” containing only the request string » and the fact
that no assertions have thus far approved the request or anything else. Then PolicyMaker runs the
various assertions, possibly multiple times each. When assertion (f;, s;) is run, it reads the contents
of the blackboard and then adds to the blackboard one or more acceptance records (i, s;, R;;). Here
R;; is an application-specific action that source s; approves, based on the partial proof that has been
constructed thus far. R;; may be the input request r, or it may be some related action that this appli-
cation uses for inter-assertion communication. Note that the meanings of the action strings R;; are
understood by the application-specific assertion programs f;, but they are not understood by Poli-
cyMaker. All PolicyMaker does is run the assertions and maintain the global blackboard, making
sure that the assertions do not erase acceptance records previously written by other assertions, fill
up the entire blackboard so that no other assertions can write, or exhibit any other non-cooperative
behavior. PolicyMaker never tries to interpret the action strings R;;.

A proof of compliance is achieved if, after PolicyMaker has finished running assertions, the
blackboard contains an acceptance record indicating that a policy assertion approves the request r.
For example, consider the following two assertions, the first of which is a policy and the second a
credential:

Sour ce: POLI CY

if (has_posted(KEY_ALICE) == "accept") post("accept");

Source: KEY_ALI CE

if (action_string("file") == "/hone/angel os/htm /index.htm" &&
action_string("operation") == "read") post("accept");

Si gnat ur e:

The policy assertion will approve a request if an assertion that has been signed by KEY _ALICE
approves it. The second assertion will approve any “read” request to the given file. The function
action_string() is used to read the action strings, post() is used to issue assertion acceptance records,
and has_posted() reads acceptance records posted on the board.

Among the nontrivial decisions that PolicyMaker must make are (1) in what order assertions
should be run, (2) how many times each assertion should be run, and (3) when an assertion should
be discarded because it is behaving in a non-cooperative fashion. Blaze et al. [1998] provide:

e A mathematically precise formulation of the PolicyMaker compliance-checking problem.

e Proof that the problem is undecidable in general and is NP-hard even in certain natural special
cases.

e One special case of the problem that is solvable in polynomial-time, is useful in a wide variety
of applications, and is implemented in the current version of PolicyMaker, as described below.

Although the most general version of the compliance-checking problem allows assertions to be
arbitrary functions, the computationally tractable version that is analyzed in [Blaze et al., 1998] and
implemented in PolicyMaker is guaranteed to be correct only when all assertions are monotonic.
(Basically, if a monotonic assertion approves action a when given evidence set F, then it will also
approve action a when given an evidence set that contains E; see [Blaze et al., 1998] for a formal
definition.) In particular, correctness is guaranteed only for monotonic policy assertions, and this
excludes certain types of policies that are used in practice, most notably those that make explicit

8 M. P Singh, ed.

loannidis & Keromytis Distributed Trust

use of “negative credentials” such as revocation lists. Although it is a limitation, the monotonicity
requirement has certain advantages. One of them is that, although the compliance checker may not
handle all potentially desirable policies, it is at least analyzable and provably correct on a well-
defined class of policies. Furthermore, the requirements of many non-monatonic policies can often
be achieved by monotonic policies. For example, the effect of requiring that an entity not occur on
a revocation list can also be achieved by requiring that it present a “certificate of non-revocation”;
the choice between these two approaches involves trade-offs among the (system-wide) costs of the
two kinds of credentials and the benefits of a standard compliance checker with provable properties.
Finally, restriction to monotonic assertions encourages a conservative, prudent approach to security:
In order to perform a potentially dangerous action, a user must present an adequate set of affirmative
credentials; no potentially dangerous action is allowed “by default,” simply because of the absence
of negative credentials.

1.3.2 KeyNote

KeyNote [Blaze et al., 1999b] was designed according to the same principles as PolicyMaker, using
credentials that directly authorize actions instead of dividing the authorization task into authenti-
cation and access control. Two additional design goals for KeyNote were standardization and ease
of integration into applications. To address these goals, KeyNote assigns more responsibility to the
trust-management engine than PolicyMaker does and less to the calling application; for example,
cryptographic signature verification is done by the trust-management engine in KeyNote and by the
application in PolicyMaker. KeyNote also requires that credentials and policies be written in a spe-
cific assertion language, designed to work smoothly with KeyNote’s compliance checker. By fixing
a specific assertion language that is flexible enough to handle the security policy needs of different
applications, KeyNote goes further than PolicyMaker toward facilitating efficiency, interoperability,
and widespread use of carefully written credentials and policies, at the cost of reduced expressibility
and interaction between different policies (compared to PolicyMaker).

A calling application passes to a KeyNote evaluator a list of credentials, policies, and requester
public keys, and an “Action Attribute Set.” This last element consists of a list of attribute/value
pairs, similar in some ways to the Uniz’™ shell environment (described in the environ(7) manual
page of most Unix installations). The action attribute set is constructed by the calling application
and contains all information deemed relevant to the request and necessary for the trust decision. The
action-environment attributes and the assignment of their values must reflect the security require-
ments of the application accurately. Identifying the attributes to be included in the action attribute
set is perhaps the most important task in integrating KeyNote into new applications. The result of
the evaluation is an application-defined string (perhaps with some additional information) that is
passed back to the application. In the simplest case, the result is of the form “authorized.”

The KeyNote assertion format resembles that of e-mail headers. An example (with artificially
short keys and signatures for readability) is given in Figure 1.4.

As in PolicyMaker, policies and credentials (collectively called assertions) have the same format.
The only difference between policies and credentials is that a policy (that is, an assertion with the
keyword POLICY in the Authorizer field) is locally trusted (by the compliance-checker) and thus
needs no signature.

KeyNote assertions are structured so that the Licensees field specifies explicitly the principal
or principals to which authority is delegated. Syntactically, the Licensees field is a formula in
which the arguments are public keys and the operations are conjunction, disjunction, and threshold.
Intuitively, this field specifies which combinations of keys must approve a request to satisfy the
issuer of the assertion. Thus, for example, a request may be granted if the CEO, or all three vice-
presidents together, or any 5 out of 10 members of the Board approve it. The full semantics of these
expressions are specified in [Blaze et al., 1999b].

The programs in KeyNote are encoded in the Conditions field and are essentially tests of the

Practical Handbook of Internet Computing 9

Distributed Trust loannidis & Keromytis

KeyNot e- Ver si on: 2
Aut hori zer: "rsa-hex: 1023abcd"

Li censees: "dsa- hex: 986512al" || "rsa-hex: 19abcd02"
Conment: Aut horizer del egates read access to either of the
Li censees
Conditions: (file == "/etc/passwd" &&
access == "read") -> "true"

Si gnature: sig-rsa-nmd5-hex:"f00f 5673"

Figure 1.4: Sample KeyNote assertion authorizing the two keys appearing in the Licensees field to
read the file “/etc/passwd.” Noone else is authorized to read this file, based on this credential.

action attributes. These tests are string comparisons, numerical operations and comparisons, and
pattern-matching operations.

The design choice of using a simple language for KeyNote assertions was based on the following
reasons:

e AWK, one of the first assertion languages used by PolicyMaker, was criticized as too heavy-
weight for most relevant applications. Because of AWK'’s complexity, the footprint of the
interpreter is considerable, and this discourages application developers from integrating it
into a trust-management component. The KeyNote assertion language is simple and has a
small-size interpreter.

e In languages that permit loops and recursion (including AWK), it is difficult to enforce
resource-usage restrictions, but applications that run trust-management assertions written by
unknown sources often need to limit their memory and CPU usage.

In retrospect, a language without loops, dynamic memory allocation, and certain other fea-
tures seems sufficiently powerful and expressive [Blaze et al., 2001b,a]. The KeyNote asser-
tion syntax is restricted so that resource usage is proportional to the program size. Similar
concepts have been successfully used in other contexts [Hicks and Keromytis, 1999].

e Assertions should be both understandable by human readers and easy for a tool to generate
from a high-level specification. Moreover, they should be easy to analyze automatically, so
that automatic verification and consistency checks can done. This is currently an area of
active research.

e One of the design goals is to use KeyNote as a means of exchanging policy and distributing
access control information otherwise expressed in an application-native format. Thus the
language should be easy to map to a number of such formats (e.g., from a KeyNote assertion
to packet-filtering rules).

e The language chosen was adequate for KeyNote’s evaluation model.

This last point requires explanation.

In PolicyMaker, compliance proofs are constructed via repeated evaluation of assertions, along
with an arbitrated “blackboard” for storage of intermediate results and inter-assertion communica-
tion.

In contrast, KeyNote uses an algorithm that attempts (recursively) to satisfy at least one policy
assertion. Referring again to Figure 1.3, KeyNote treats keys as vertices in the graph, with (directed)
edges representing assertions delegating authority. The prototype implementation uses a Depth First
Search algorithm, starting from the set of trusted (“POLICY™) assertions and trying to construct a

10 M. R Singh, ed.

loannidis & Keromytis Distributed Trust

path to the key of the user making the request. An edge between two vertices in the graph exists
only if:

e There exists an assertion where the Authorizer and the Licensees are the keys corresponding
to the two vertices.

e The predicate encoded in the Conditions field of that KeyNote assertion authorizes the re-
quest.

Thus, satisfying an assertion entails satisfying both the Conditions field and the Licensees key
expression. If no such graph exists (due to missing credentials or requests that were not accepted by
an assertion’s predicate), the request will be denied. Thus, as in PolicyMaker, it is the responsibility
of the requester to provide all necessary material for the request to succeed.

Note that there is no explicit inter-assertion communication as in PolicyMaker; the acceptance
records returned by program evaluation are used internally by the KeyNote evaluator and are never
seen directly by other assertions. Because KeyNote’s evaluation model is a subset of PolicyMaker’s,
the latter’s compliance-checking guarantees are applicable to KeyNote. In PolicyMaker, the pro-
grams contained in the assertions and credentials can interact with each other by examining the
values written on the blackboard, and reacting accordingly. This, for example, allows for a negoti-
ation of sorts: “l will approve, if you approve,” “I will also approve if you approve,” “I approve,”
“l approve as well”... In KeyNote, each assertion is evaluated exactly once, and cannot directly ex-
amine the result of another assertion’s evaluation. Whether the more restrictive nature of KeyNote
allows for stronger guarantees to be made, e.g., a tighter space/time evaluation bound, is an open
question requiring further research.

Ultimately, for a request to be approved, an assertion graph must be constructed between one
or more policy assertions and one or more keys that signed the request. Because of the evaluation
model, an assertion located somewhere in a delegation graph can effectively only refine (or pass on)
the authorizations conferred on it by the previous assertions in the graph. (This principle also holds
for PolicyMaker, although its evaluation model differs.) For more details on the evaluation model,
see [Blaze et al., 1999b].

It should be noted that PolicyMaker’s restrictions regarding “negative credentials” also apply to
KeyNote. Certificate revocation lists (CRLs) are not built into the KeyNote (or the PolicyMaker)
system; these can be provided at a higher (or lower) level, perhaps even transparently to KeyNote.
(Note that the decision to consult a CRL is (or should be) a matter of local policy.) The problem of
credential discovery is also not explicitly addressed in KeyNote.

Finally, note that KeyNote, like other trust-management engines, does not directly enforce pol-
icy; it only provides “advice” to the applications that call it. KeyNote assumes that the application
itself is trusted and that the policy assertions are correct. Nothing prevents an application from
submitting misleading assertions to KeyNote or from ignoring KeyNote altogether.

1.4 Applications of Trust Management Systems

In this section we briefly describe the use of KeyNote in various systems. Although the ability
to use KeyNote in such a wide range of applications validates its generality, we also identify several
shortcomings.

1.4.1 Network-layer Access Control

One of the first applications of KeyNote was providing access control services for the IPsec [Kent
and Atkinson, 1998] architecture. The IPsec protocol suite, which provides network-layer security
for the Internet, has been standardized in the IETF and is beginning to make its way into commercial

Practical Handbook of Internet Computing 11

Distributed Trust loannidis & Keromytis

implementations of desktop, server, and router operating systems. IPsec does not itself address
the problem of managing the policies governing the handling of traffic entering or leaving a node
running the protocol. By itself, the IPsec protocol can protect packets from external tampering
and eavesdropping, but does nothing to control which nodes are authorized for particular kinds
of sessions or for exchanging particular kinds of traffic. In many configurations, especially when
network-layer security is used to build firewalls and virtual private networks, such policies may
necessarily be quite complex.

[Blaze et al., 2001b, 2002] introduced a new policy management architecture for IPsec. A
compliance check was added to the IPsec architecture that tests packet filters proposed when new
security associations are created for conformance with the local security policy, based on creden-
tials presented by the peer node. Security policies and credentials can be quite sophisticated (and
specified in KeyNote), while still allowing very efficient packet-filtering for the actual IPsec traffic.
The resulting implementation [Hallgvist and Keromytis, 2000] has been in use in the OpenBSD
[de Raadt et al., 1999] operating system for several years. This system has formed the basis of
several commercial VPN and SoHo firewall products.

1.4.2 Distributed Firewalls and the STRONGMAN Architecture

Conventional firewalls rely on topology restrictions and controlled network entry points to enforce
traffic filtering. The fundamental limitation of the firewall approach to network security is that
a firewall cannot filter traffic it does not see; by implication, everyone on the protected side has
to be considered trusted. While this model has worked well for small to medium size networks,
networking trends such as increased connectivity, higher line speeds, extranets, and telecommuting
threaten to make it obsolete. To address the shortcomings of traditional firewalls, the concept of
a distributed firewall has been proposed [Bellovin, 1999]. In this scheme, security policy is still
centrally defined, but enforcement is left up to the individual endpoints. Credentials distributed
to every node express parts of the overall network policy. The use of KeyNote for access control
at the network layer enabled us to develop a prototype distributed firewall [loannidis et al., 2000].
Under certain circumstances, the prototype exhibited better performance than the traditional-firewall
approach, as well as handle the increasing protocol complexity and the use of end-to-end encryption.

This functionality has been used in other projects where dynamic access control was necessary.
In [Keromytis et al., 2002], the ability to effectively control a large number of firewalls, any of which
can be contacted by any of a large number of potentially users was allowed to build a distributed
denial of service (DDoS) resistant architecture for allowing authorized users to contact sites that are
under attack.

The distributed firewall concept was later generalized in the STRONGMAN architecture, which
allowed coordinated and decentralized management of a large number of nodes and services through-
out the network stack [Keromytis et al., 2003; Keromytis, 2001]. STRONGMAN offers three new
approaches to scalability, applying the principle of local policy enforcement complying with global
security policies. First is the use of a compliance checker to provide great local autonomy within
the constraints of a global security policy. Second is a mechanism to compose policy rules into a
coherent enforceable set, e.g., at the boundaries of two locally autonomous application domains.
Third is the lazy instantiation of policies to reduce the amount of state that enforcement points need
to maintain. STRONGMAN is capable of managing such diverse resources and protocols as fire-
walls, web access control (discussed later), filesystem accesses, and process sandboxing. Work on
STRONGMAN is continuing, focusing on the ease of management and correctness components of
the system [loannidis et al., 2003].

Another use of KeyNote has been in web access control, where it is used to mediate requests for
pages or access to CGI scripts [Levine et al., 2003]. This is implemented as a module for the Apache
web server, mod_keynote, which performs the compliance checking functions on a per-request basis.
This module has also been distributed with the OpenBSD operating system for several years, and

12 M. R Singh, ed.

loannidis & Keromytis Distributed Trust

the functionality has been folded into the STRONGMAN architecture.

1.4.3 Grid Computing and Transferable Micropayments

KeyNote is used to manage the authorization relationships in the Secure WebCom Metacomputer
[Foley et al., 2001, 2002]. WebCom [Morrison et al., 1999] is a client/server based system that
may be used to schedule mobile application components for execution across a network. In Secure
WebCom, KeyNote credentials are used to determine the authorization of X.509-authenticated SSL
connections between WebCom masters and clients. Client credentials are used by WebCom masters
to determine what operations the client is authorized to execute; WebCom master credentials are
used by clients to determine if the master has the authorization to schedule the (trusted) mobile
computation that the client is about to execute.

Systems that provide access to their resources can be paid using hash-chain based micropay-
ments [Foley and Quillinan, 2002]. KeyNote credentials are used to codify hash-chain micropay-
ment contracts; determining whether a particular micropayment should be accepted amounts to a
KeyNote compliance check that the micropayment is authorized. This scheme is generalized in [Fo-
ley, 2003] to support the efficient transfer of micropayment contracts whereby a transfer amounts
to delegation of authorization for the contract. Characterizing a payment scheme as a trust manage-
ment problem means that trust policies that are based on both monetary and conventional authoriza-
tion concerns can be formulated.

1.4.4 Micropayments: Microchecks and Fileteller

One of the more esoteric uses of KeyNote has been as a micropayment scheme that requires neither
online transactions nor trusted hardware for either the payer or payee. Each payer is periodically
issued certified credentials that encode the type of transactions and circumstances under which
payment can be guaranteed. A risk management strategy, taking into account the payer’s history,
and other factors, can be used to generate these credentials in a way that limits the aggregated risk
of uncollectible or fraudulent transactions to an acceptable level. [Blaze et al., 2001a] showed a
practical architecture for such a system that used KeyNote to encode the credentials and policies,
and described a prototype implementation of the system in which vending machine purchases were
made using off-the-shelf consumer PDAs.

[loannidis et al., 2002] uses this micropayment architecture to build a credential-based network
file storage system with provisions for paying for file storage and getting paid when others access
files. Users get access to arbitrary amounts of storage anywhere in the network, and use a micropay-
ments system to pay for both the initial creation of the file and any subsequent accesses. Wide-scale
information sharing requires that a number of issues be addressed; these include distributed access,
access control, payment, accounting, and delegation (so that information owners may allow others
to access their stored content). Utilizing the same mechanism for both access control and payment
results in an elegant and scalable architecture.

Ongoing work in this area is examining at distributed peer-to-peer filesystems and pay-per-use
access to 802.11 networks.

1.4.5 Active Networking

Finally, STRONGMAN has been used in the context of active networks [Alexander et al., 1998a]
to provide access control services to programmable elements [Alexander et al., 1998b, 2000, 2001].
An active network is a network infrastructure that is programmable on a per-user or even per-packet
basis. Increasing the flexibility of such network infrastructures invites new security risks. Coping
with these security risks represents the most fundamental contribution of active network research.
The security concerns can be divided into those which affect the network as a whole and those which

Practical Handbook of Internet Computing 13

Distributed Trust loannidis & Keromytis

affect individual elements. It is clear that the element problems must be solved first, as the integrity
of network-level solutions will be based on trust of the network elements. In the SANE architecture,
KeyNote was used to limit the privileges of network users and their mobile code, by specifying the
operations such code was allowed to perform on any particular active node. KeyNote was used in a
similar manner in the FLAME architecture [Anagnostakis et al., 2001, 2002b,a], and to provide an
economy for resources in an active network [Anagnostakis et al., 2000].

1.5 Other Trust-Based Systems

The REFEREE system of Chu et al. [1997] is like PolicyMaker in that it supports full programma-
bility of assertions (policies and credentials). However, it differs in several important ways. It allows
the trust-management engine, while evaluating a request, to fetch additional credentials and to per-
form cryptographic signature-verification. (Recall that PolicyMaker places the responsibility for
both of these functions on the calling application and insists that they be done before the evaluation
of a request begins.) Furthermore, REFEREE’s notion of “proof of compliance” is more complex
than PolicyMaker’s; for example, it allows non-monotonic policies and credentials. The REFEREE
proof system also supports a more complicated form of inter-assertion communication than Poli-
cyMaker does. In particular, the REFEREE execution environment allows assertion programs to
call each other as subroutines and to pass different arguments to different subroutines, whereas the
PolicyMaker execution environment requires each assertion program to write anything it wants to
communicate on a global “blackboard” that can be seen by all other assertions.

REFEREE was designed with trust management for web browsing in mind, but it is a general-
purpose language and could be used in other applications. Some of the design choices in REFEREE
were influence by experience (reported in [Blaze et al., 1997]) with using PolicyMaker for web-page
filtering based on PICS [Resnick and Miller, 1996] labels and users’ viewing policies. It is unclear
whether the cost of building and analyzing a more complex trust-management environment such
as REFEREE is justified by the ability to construct more sophisticated proofs of compliance than
those constructible in PolicyMaker. Assessing this tradeoff would require more experimentation
with both systems, as well as a rigorous specification and analysis of the REFEREE proof system,
similar to the one for PolicyMaker given in [Blaze et al., 1998].

The Simple Public Key Infrastructure (SPKI) project of Ellison et al. [Ellison, 1999] has pro-
posed a standard format for authorization certificates. SPKI shares with our trust-management
approach the belief that certificates can be used directly for authorization rather than simply for au-
thentication. However, SPKI certificates are not fully programmable; they are data structures with
the following five fields: “Issuer” (the source of authority), “Subject” (the entity being authorized
to do something), “Delegation” (a boolean value specifying whether or not the subject is permitted
to pass the authorization on to other entities), “Authorization” (a specification of the power that the
issuer is conferring on the subject), and “Validity dates.”

The SPKI documentation [Ellison, 1999] states that the processing of certificates and related
objects to yield an authorization result is the province of the developer of the application or system.
The processing plan presented in that document is an example that may be followed, but its primary
purpose is to clarify the semantics of an SPKI certificate and the way it and various other kinds of
certificate might be used to yield an authorization result.

Thus, strictly speaking, SPKI is not a trust-management engine according to our use of the term,
because compliance checking (referred to above as “processing of certificates and related objects™)
may be done in an application-dependent manner. If the processing plan presented in [Ellison, 1999]
were universally adopted, then SPKI would be a trust-management engine. The resulting notion
of “proof of compliance” would be considerably more restricted than PolicyMaker’s; essentially,

14 M. R Singh, ed.

loannidis & Keromytis Distributed Trust

proofs would take the form of chains of certificates. On the other hand, SPKI has a standard way
of handling certain types of non-monotonic policies, because validity periods and simple CRLs are
part of the proposal.

1.6 Closing Remarks

Trust management is a powerful approach to specifying and enforcing access control policies.
The fundemental concepts behind trust management are the inherent constrained-delegation capa-
bility, assertion monotonicity, and a policy evaluation model that ensures safety and correctness.
We briefly identified some uses of trust management systems in various applications, which should
demonstrate the versatility and adaptability of the concepts and mechanisms presented.

The opportunity to use trust-management techniques exists in many projects that require some
security component. Although the specific approaches we discussed may not be appropriate for
any given application, the concepts are general enough and should be applicable in any context.
The designer should carefully consider the system’s needs and determine how best to use trust
management. Doing so will allow them to easily manage fine-grained authorization and access
control in a scalable and powerful way.

1.7 Acknowledgements

We would like to thank our collaborators in this work, Matt Blaze and Joan Feigenbaum.

References

D. S. Alexander, W. A. Arbaugh, M. Hicks, P. Kakkar, A. D. Keromytis, J. T. Moore, C. A. Gunter,
S. M. Nettles, and J. M. Smith. The SwitchWare Active Network Architecture. IEEE Network
Magazine, special issue on Active and Programmable Networks, 12(3):29-36, 1998a.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, S. Muir, and J. M. Smith. Secure Quality of
Service Handling (SQoSH). IEEE Communications, 38(4):106-112, April 2000.

D. S. Alexander, W. A. Arbaugh, A. D. Keromytis, and J. M. Smith. A Secure Active Network
Environment Architecture: Realization in SwitchWare. IEEE Network Magazine, special issue
on Active and Programmable Networks, 12(3):37-45, 1998b.

D.S. Alexander, P.B. Menage, A.D. Keromytis, W.A. Arbaugh, K.G. Anagnostakis, and J.M. Smith.
The Price of Safety in an Active Network. Journal of Communications (JCN), special issue on
programmable switches and routers, 3(1):4-18, March 2001.

K. G. Anagnostakis, M. B. Greenwald, S. loannidis, and S. Miltchev. Open Packet Monitoring on
FLAME: Safety, Performance and Applications. In Proceedings of the 4rd International Working
Conference on Active Networks (IWAN), December 2002a.

K. G. Anagnostakis, M. W. Hicks, S. loannidis, A. D. Keromytis, and J. M. Smith. Scalable Re-
source Control in Active Networks. In Proceedings of the Second International Working Confer-
ence on Active Networks (IWAN), pages 343-357, October 2000.

K. G. Anagnostakis, S. loannidis, S. Miltchev, J. loannidis, Michael B. Greenwald, and J. M. Smith.
Efficient Packet Monitoring for Network Management. In Proceedings of IFIP/IEEE Network
Operations and Management Symposium (NOMS) 2002, April 2002b.

Practical Handbook of Internet Computing 15

Distributed Trust loannidis & Keromytis

K. G. Anagnostakis, S. loannidis, S. Miltchev, and J. M. Smith. Practical Network Applications on a
Lightweight Active Management Environment. In Proceedings of the 3rd International Working
Conference on Active Networks (IWAN), October 2001.

S. M. Bellovin. Distributed Firewalls. ;login: magazine, special issue on security, pages 37-39,
November 1999.

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromytis. The Role of Trust Management in Dis-
tributed Systems Security. In Secure Internet Programming, volume 1603 of Lecture Notes in
Computer Science, pages 185-210. Springer-Verlag Inc., 1999a. ISBN 3-540-66130-1.

M. Blaze, J. Feigenbaum, J. loannidis, and A. D. Keromytis. The KeyNote Trust Management
System Version 2. Internet RFC 2704, September 1999b.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust Management. In Proceedings of the 17th
IEEE Symposium on Security and Privacy, pages 164-173, 1996.

M. Blaze, J. Feigenbaum, P. Resnick, and M. Strauss. Managing Trust in an Information Labeling
System. In European Transactions on Telecommunications, 8, pages 491-501, 1997.

M. Blaze, J. Feigenbaum, and M. Strauss. Compliance Checking in the PolicyMaker Trust-
Management System. In Proceedings of the Financial Cryptography Conference, Lecture Notes
in Computer Science, vol. 1465, pages 254-274. Springer, 1998.

M. Blaze, J. loannidis, and A. D. Keromytis. Offline Micropayments without Trusted Hardware.
In Proceedings of the Fifth International Conference on Financial Cryptography, pages 21-40,
February 2001a.

M. Blaze, J. loannidis, and A.D. Keromytis. Trust Management for IPsec. In Proc. of Network and
Distributed System Security Symposium (NDSS), pages 139-151, February 2001b.

M. Blaze, J. loannidis, and A.D. Keromytis. Trust Management for IPsec. ACM Transactions on
Information and System Security (TISSEC), 32(4):1-24, May 2002.

CCITT. X.509: The Directory Authentication Framework. International Telecommunications
Union, Geneva, 1989.

Y.-H. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. REFEREE: Trust Manage-
ment for Web Applications. In World Wide Web Journal, 2, pages 127-139, 1997.

T. de Raadt, N. Hallgvist, A. Grabowski, A. D. Keromytis, and N. Provos. Cryptography in
OpenBSD: An Overview. In Proceedings of the USENIX Annual Technical Conference, Freenix
Track, pages 93 — 101, June 1999.

C. Ellison. SPKI Requirements. Request for Comments 2692, Internet Engineering Task Force,
September 1999. URL ftp://ftp.isi.edu/in-notes/rfc2692.txt.

C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI Certificate The-
ory. Request for Comments 2693, Internet Engineering Task Force, September 1999. URL
ftp://ftp.isi.edu/in-notes/rfc2693.txt.

S.N. Foley. Using Trust Management to Support Transferable Hash-Based Micropayments. In
Proceedings of the International Financial Cryptography Conference, January 2003.

S.N. Foley and T.B Quillinan. Using Trust Management to Support MicroPayments. In Proceedings
of the Annual Conference on Information Technology and Telecommunications, October 2002.

16 M. R Singh, ed.

loannidis & Keromytis Distributed Trust

S.N. Foley, T.B. Quillinan, and J.P. Morrison. Secure Component Distribution Using WebCom.
In Proceedings of the 17th International Conference on Information Security (IFIP/SEC), May
2002.

S.N. Foley, T.B. Quillinan, J.P. Morrison, D.A. Power, and J.J. Kennedy. Exploiting KeyNote in
WebCom: Architecture Neutral Glue for Trust Management. In Fifth Nordic Workshop on Secure
IT Systems, Oct 2001.

Niklas Hallgvist and Angelos D. Keromytis. Implementing Internet Key Exchange (IKE). In Pro-
ceedings of the Annual USENIX Technical Conference, Freenix Track, pages 201-214, June 2000.

Michael Hicks and Angelos D. Keromytis. A Secure PLAN. In Stefan Covaci, editor, Pro-
ceedings of the First International Working Conference on Active Networks, volume 1653
of Lecture Notes in Computer Science, pages 307-314. Springer-Verlag, June 1999. URL
http://ww. ci s. upenn. edu/ swi tchware/ papers/iwan99. ps.

John loannidis, Sotiris loannidis, Angelos Keromytis, and Vassilis Prevelakis. Fileteller: Paying and
Getting Paid for File Storage. In Proceedings of the Sixth International Conference on Financial
Cryptography, March 2002.

S. loannidis, S. M. Bellovin, 1. loannidis, A. D. Keromytis, and J. M. Smith. Design and Imple-
mentation of Virtual Private Services. In Proceedings of the IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), Workshop on
Enterprise Security, Special Session on Trust Management in Collaborative Global Computing,
June 2003.

S. loannidis, A.D. Keromytis, S.M. Bellovin, and J.M. Smith. Implementing a Distributed Firewall.
In Proceedings of the ACM Conference on Computer and Communications Security (CCS), pages
190-199, November 2000.

S. Kent and R. Atkinson. Security Architecture for the Internet Protocol. Request for Com-
ments (Proposed Standard) 2401, Internet Engineering Task Force, November 1998. URL
ftp://ftp.isi.edu/in-notes/rfc2401.txt.

A. D. Keromytis. STRONGMAN: A Scalable Solution To Trust Management In Networks. PhD
thesis, University of Pennsylvania, Philadelphia, November 2001.

A.D. Keromytis, S. loannidis, M.B. Greenwald, and J.M. Smith. The STRONGMAN Architecture.
In Proceedings of DISCEX |11, April 2003.

Angelos D. Keromytis, Vishal Misra, and Daniel Rubenstein. SOS: Secure Overlay Services. In
Proceedings of ACM SIGCOMM, pages 61-72, August 2002.

J. Lacy, J. Snyder, and D. Maher. Music on the Internet and the Intellectual Property Protection
Problem. In Proceedings of the International Symposium on Industrial Electronics, pages SS77—
83, 1997.

A. Levine, V. Prevelakis, J. loannidis, S. loannidis, and A. D. Keromytis. WebDAVA: An
Administrator-Free Approach to Web File-Sharing. In Proceedings of the IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
Workshop on Distributed and Mobile Collaboration, June 2003.

J.P. Morrison, D.A. Power, and J.J. Kennedy. WebCom: A Web Based Distributed Computation
Platform. In Proceedings of Distributed computing on the Web, June 1999.

Practical Handbook of Internet Computing 17

Distributed Trust loannidis & Keromytis

P. Resnick and J. Miller. PICS: Internet Access Controls Without Censorship. Communications of
the ACM, pages 87-93, October 1996.

B. Schneier. Applied Cryptography. John Wiley, 1996.

B. Schneier. Secrets and Lies: Digital Security in a Networked World. John Wiley & Sons, 2000.
ISBN 0471253111.

18 M. R Singh, ed.

