Geometry of Similarity Search

Alex Andoni (Columbia University)

Find pairs of similar images

Measuring similarity

Image courtesy of Kristen Grauman

Problem: Nearest Neighbor Search (NNS)

Preprocess: a set P of points

• Query: given a query point q, report a point $p^* \in P$ with the smallest distance to q

Primitive for: finding all similar pairs

 But also clustering problems, and many other problems on large set of multi-feature objects

• Applications:

speech/image/video/music recognition, signal processing, bioinformatics, etc...

n: number of points *d*: dimension

Preamble: How to check for an exact match?

indexing ?

[Williams'04]

Relaxed problem: Approximate Near Neighbor Search

c-approximate *r*-near neighbor: given a query point *q*, report a point $p' \in P$ s.t. $||p' - q|| \leq cr$

- as long as there is some point within distance r
- Remarks:
 - In practice: used as a filter
 - Randomized algorithms: each point reported with 90% probability
 - Can use to solve nearest neighbor too [HarPeled-Indyk-Motwani'12]

Map #1 : random grid

[Datar-Indyk-Immorlica-Mirrokni'04]

Map g:

- partition in a regular grid
- randomly shifted
- randomly rotated

Space	Time	Exponent	<i>c</i> = 2	
$n^{1+\rho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	

Can we do better?

Map #2 : ball carving

[A-Indyk'06]

- Regular grid \rightarrow grid of balls
 - p can hit empty space, so take more such grids until p is in a ball
- How many grids?
 - about d^d
 - start by projecting in dimension t
- Choice of re
 - $\triangleright \rho$ closer to
 - Number of g

Space	Time	Exponent	<i>c</i> = 2
$n^{1+ ho}$	$n^{ ho}$	$\rho \to 1/c^2$	$\rho \rightarrow 1/4$

Similar space partitions ubiquitous:

- Approximation algorithms [Goemans, Williamson 1995], [Karger, Motwani, Sudan 1995], [Charikar, Chekuri, Goel, Guha, Plotkin 1998], [Chlamtac, Makarychev, Makarychev 2006], [Louis, Makarychev 2014]
- Spectral graph partitioning [Lee, Oveis Gharan, Trevisan 2012], [Louis, Raghavendra, Tetali, Vempala 2012]
- Spherical cubes [Kindler, O'Donnell, Rao, Wigderson 2008]
- Metric embeddings [Fakcharoenphol, Rao, Talwar 2003], [Mendel, Naor 2005]
- Communication complexity [Bogdanov, Mossel 2011], [Canonne, Guruswami, Meka, Sudan 2015]

LSH Algorithms for Euclidean space

Space	Time	Exponent	<i>c</i> = 2	Reference
$n^{1+ ho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98, DIIM'04]
		$\rho \approx 1/c^2$	$\rho = 1/4$	[Al'06]

Is there even better LSH map?

NO: any map must satisfy $\rho \ge 1/c^2$ [Motwani-Naor-Panigrahy'06, O'Donell-Wu-Zhou'11]

Example of **isoperimetry**, example of which is question:

- Among bodies in R^d of volume 1, which has the lowest perimeter?
- A ball!

Some other LSH algorithms

- Hamming distance
 - g: pick a random coordinate(s) [IM'98]
- Manhattan distance:
 - g: cell in a randomly shifted grid
- Jaccard distance between sets:
 - $\blacktriangleright J(A,B) = \frac{A \cap B}{A \cup B}$
 - g: pick a random permutation π on the words

 $g(A) = \min_{a \in A} \pi(a)$

min-wise hashing

[Broder'97, Christiani-Pagh' I 7]

LSH is tight... what's next?

Datasets with additional structure [Clarkson'99, Karger-Ruhl'02, Krauthgamer-Lee'04, Beygelzimer-Kakade-Langford'06, Indyk-Naor'07, Dasgupta-Sinha'13, Abdullah-A.-Krauthgamer-Kannan'14,...]

Space-time trade-offs... [Panigrahy'06, A.-Indyk'06, Kapralov'15, A.-Laarhoven-Razenshteyn-Waingarten'17]

Are we really done with basic NNS algorithms?

Beyond Locality Sensitive Hashing?

Can get better maps, if allowed to depend on the dataset!

- Non-example:
 - define g(q) to be the identity of closest point to q
 - computing g(q) is as hard as the problem-to-be-solved!

" I'll tell you where to find The Origin of Species once you recite **all** existing books

Can get better, efficient maps, if depend on the dataset!

Space	Time	Exponent	<i>c</i> = 2	Reference	
$n^{1+\rho}$	$n^{ ho}$	$\rho \approx 1/c^2$	$\rho = 1/4$	[AI'06]	best LSH
		1	$\rho = 1/7$	[AIndyk-Nguyen-Razenshteyn'14,	algorithm
		$\rho \approx \frac{1}{2c^2 - 1}$		ARazenshteyn'15]	

New Approach: Data-dependent LSH [A-Razenshteyn'15]

Two new ideas:

I) a nice point configuration

- > As if vectors chosen randomly from Gaussian distribution
- Points on a unit sphere, where
 - $cr \approx \sqrt{2}$, i.e., dissimilar pair is (near) orthogonal
 - Similar pair: $r = \sqrt{2}/c$

Map g:

- Randomly slice out caps on sphere surface
- Like ball carving
- Curvature helps get better quality partition

I) a nice point configuration

2) can always reduce to such configuration

- A worst-case to (pseudo-)random-case reduction
 - a form of "regularity lemma"
- Lemma: any pointset $P \in R^d$ can be decomposed into clusters, where one cluster is pseudo-random and the rest have smaller diameter

Beyond Euclidean space

- Data-dependent hashing:
 - Better algorithms for Hamming space
 - Also algorithms for distances where vanilla LSH does not work!
 - E.g.: distance $||x y||_{\infty} = \max_{i=1}^{\infty} |x_i y_i|$ [Indyk'98, ...]

- Approach 3: metric embeddings
 - Geometric reduction b/w different spaces
 - Rich theory in Functional Analysis

Summary: Similarity Search

- Different applications lead to different geometries
- Connects to rich mathematical areas:
 - Space partitions and isoperimetry: what's the body with least perimeter?
 - Metric embeddings: can we map some geometries into others well?
- Only recently we (think we) understood the Euclidean metric
 - Properties of many other geometries remain unsolved!

8