
Near-Optimal Sublinear Time Algorithms for Ulam Distance

Alexandr Andoni∗ Huy L. Nguyen†

Abstract

We give near-tight bounds for estimating the edit dis-
tance between two non-repetitive strings (Ulam dis-
tance) with constant approximation, in sub-linear time.
For two strings of length d and at edit distance
R, our algorithm runs in time Õ(d/R +

√
d) and

outputs a constant approximation to R. We also
prove a matching lower bound (up to logarithmic
terms). Both upper and lower bounds are improvements
over previous results from, respectively, [Andoni-Indyk-
Krauthgamer, SODA’09] and [Batu-Ergun-Kilian-
Magen-Raskhodnikova-Rubinfeld-Sami, STOC’03].

1 Introduction

The edit distance (aka Levenshtein distance) between
two strings A and B, denoted ed(A, B), is the minimum
number of character insertions, deletions, and substitu-
tions needed to transform one string into the other. This
distance is of key importance in several fields such as
computational biology and text processing, and conse-
quently computational problems involving the edit dis-
tance were studied quite extensively.

The Ulam metric is a specialization of edit distance
to non-repetitive strings, where a string is non-repetitive
if every symbol appears at most once in it. There are
several motivations for studying this variant. From a
practical perspective, strings with limited or no repe-
titions appear in several important contexts, such as
ranking of objects such as webpages (see, e.g., [AJKS02]
and [Mar95]).

From a theoretical point of view, Ulam metric
presents a concrete waypoint towards the elusive goal
of designing algorithms for edit distance over general
(or even binary) strings. Indeed, there are two reasons
for this. First, Ulam metric appears to retain one of the
core difficulties of the edit distance on general strings,
namely the existence of “misalignments” between the

∗Center for Computational Intractability at Princeton Univer-
sity (andoni@mit.edu). The work was done while the author was
a student at MIT. Supported in part by NSF CAREER award
CCR-0133849, David and Lucille Packard Fellowship and Alfred
P. Sloan Fellowship .

†Princeton University (hlnguyen@princeton.edu). The work
was done while the author was a student at MIT.

two strings. In fact, there is no known lower bound
that would strictly separate general edit distance from
Ulam metric: all known lower bounds are nearly the
same (quantitatively) for both metrics. These include
non-embeddability into normed spaces results [KR06,
AK07], lower bounds on sketching complexity [AK07],
and sub-linear time algorithms [BEK+03]. Second,
Ulam distance is no harder than edit distance over
binary strings, at least up to constant approximation
(see Theorem 1.2 from [AK07]). Thus, the Ulam metric
is a specific roadblock that we must overcome before we
may obtain improved results for general edit distance.
Moreover, algorithms for Ulam metric have already
found applications for a certain smoothed model for edit
distance over binary strings [AK08]. We will discuss this
application later.

In this paper, we give a near-tight bounds for es-
timating the Ulam distance up to a constant approx-
imation, in sublinear time. Formally, given two non-
repetitive strings A and B of length d over an alpha-
bet Σ, with |Σ| ≥ d, the problem is to output a con-
stant approximation to R = ed(A,B). We show that
Θ̃(d/R +

√
d) time is sufficient and required for this

problem.

Theorem 1.1. (Upper Bound) There exists a con-
stant α > 1 for which there exists a randomized al-
gorithm that, given two non-repetitive strings A, B ∈
Σd, approximates R = ed(A,B) up to factor α in
Õ(d/R +

√
d) time, with 2/3 success probability.

Theorem 1.2. (Lower Bound) For every constant
α > 1, if an algorithm approximates Ulam distance up
to a factor α with ≥ 2/3 success probability, then the
algorithm must take Ω(d/R +

√
d) time, where R is the

edit distance between the two input strings. The lower
bound holds for edit distance over binary strings as well.

Our upper bound improves over the bound of
Õ(d/

√
R) obtained in [AIK09]. We note that the bound

from [AIK09] is tight in two extreme regimes: when
R ≈ Θ(d) and R ≈ Θ(1). In contrast, our algorithm
is tight in all the regimes of R, up to logarithmic fac-
tors. Our lower bound improves over the bound of
Ω(d/R+

√
R) that follows from [BEK+03] and folklore,

giving a tighter (near-optimal) bound when R = Ω(
√

d).



We further note that, in comparison, the best
known upper bounds for general edit distance are cur-
rently much weaker: all sublinear time algorithms
achieve a polynomial approximation only. Specifi-
cally, [BEK+03] can distinguish between ed(x, y) < d1−ε

and ed(x, y) = Ω(d) in Õ(d1−2ε) time. The algo-
rithm of [AO09] can distinguish ed(x, y) < nα from
ed(x, y) > nβ in nα+2(1−β)+o(1) time.

Finally, an application of our upper bound theo-
rem is a near-tight distance estimation algorithm for
the smoothed edit distance model over binary strings
defined in [AK08]. There, the authors provided a gen-
eral reduction from distance estimation in the smoothed
model of edit distance over binary strings to distance
estimation of (worst-case) Ulam distance. (We will not
define precisely the smoothed model of [AK08] as it will
not appear further in the present article.)

Corollary 1.1. (Informal) Let x, y ∈ {0, 1}d
be strings drawn from the smoothed model defined
in [AK08]. Then, for every ε > 0, we can
compute ed(x, y) with O(1) approximation in time
Õ(d1+ε/ ed(x, y) + d0.5+ε).

1.1 Overview of techniques We now describe the
main ideas involved in proving Theorems 1.1 and 1.2.

Both the upper bound and lower bound exploit the
fact that the Ulam metric is decomposable as a sum-
product of Ulam metrics. The sum-product of Ulam
metrics is a metric on k-tuples of non-repetitive strings,
i.e., (A1, . . . Ak) ∈ (Σ`)k, with the distance between
tuples (A1, . . . Ak) and (B1, . . . Bk) being defined as∑k

i=1 ed(Ai, Bi). The resulting metric is a submetric of
Ulam (over strings of length `k), as it can be realized by
Ulam distance between two strings: A′ = A1◦A2◦. . . Ak

and B′ = B1 ◦ B2 ◦ . . . Bk, where for each coordinate i
we relabel the symbols with new symbols from a fresh
alphabet Σi, and ◦ is the concatenation operator.

Before presenting the ideas behind the upper
bound, we rather start by presenting the ideas used for
our lower bound, which is both simpler and instructive
for presenting the ideas of the upper bound theorem.
In the following, we will refer only to the testing prob-
lem, which asks to distinguish cases ed(A, B) < R ver-
sus ed(A,B) > αR, for some approximation factor α
and fixed threshold R > 1. We note that considering
algorithms for the testing problem is sufficient (and nec-
essary) for both the upper and lower bound theorems.

Lower bound. The main question here is proving
the bound of Ω(

√
d), for R >

√
d, since the bound

of Ω(d/R) follows immediately from the lower bound
on testing Hamming distance. We first review the
construction from [BEK+03], which gives a weaker

bound, of Ω(
√

R). Suppose the testing algorithm wants
to distinguish the case ed(A,B) < R (“close pair”)
versus ed(A,B) > 2R (“far pair”). Then, the hard
distribution generates A randomly from Σd, for |Σ| À d,
and B is obtained from A by a cyclic rotation of A by
an amount t chosen at random from either [R] (for a
“close pair”) or [100R] (for a “far pair”). Then, invoking
a birthday paradox argument, one can show that the
algorithm must sample Ω(

√
R) positions in order to

distinguish the two distributions.
To prove a sample lower bound of Ω(

√
d), we

consider the sum-product of k ≈ d/R copies of Ulam
metric on strings of length R. To generate a “close
pair” (A′, B′), we pick A′ = (A1, . . . Ak) randomly,
and construct B′ = (B1, . . . Bk) from A′ where each
Bi is a cyclic shift of Ai by an amount ti chosen at
random from [R2/d]. To generate a “far pair”, we
do the same, except that for one position i∗ ∈ [d/R],
we generate Bi∗ from Ai∗ via a cyclic rotation by a
random amount ti ∈ [R]. Now, for a coordinate i,
to distinguish between a random shift ti ∈ [R2/d]
versus ti ∈ [R], by a birthday paradox argument, the
algorithm needs to sample Ω(

√
R2/d) positions from Ai

and Bi. Furthermore, since the algorithm does not know
the value i∗, the algorithm has to sample Ω(

√
R2/d)

positions for most of the coordinates i ∈ [d/R]. This
gives a total bound of Ω(

√
d) samples.

Upper bound. We are now ready to describe the
ideas behind our upper bound. At a very high level,
the upper bound does the converse of the lower bound.
Suppose we want to test whether ed(A,B) < R or
ed(A,B) > αR, where the approximation factor α is
a large enough constant. First, we decompose the Ulam
distance between input strings A, B into sum-product
of k = O(d/R) strings of length Õ(R) by partitioning
the strings A = A1 ◦ . . . Ak and B = B1 ◦ . . . Bk such
that ed(A,B) =

∑
i ed(Ai, Bi). Second, we design an

algorithm for distinguishing whether the sum-product of
Ulam distances

∑
i ed(Ai, Bi) is at most R or is bigger

than αR. We reduce this step to the problem of gap
testing the Ulam distance between two strings: given
strings u, v ∈ {0, 1}`, distinguish whether ed(u, v) < a
or ed(u, v) > b for a ¿ b. In the third step, we design
an algorithm for this gap-testing of Ulam distance, that
runs in Õ(` ·√a/b) time, where ` is the length of strings
u, v. Each of these steps requires additional ideas, which
we now briefly sketch.

We implement the first step, of reducing to testing
of sum-product of k = O(d/R) Ulam distances of strings
of Õ(R) length, as follows. Note that, in general, we
cannot just directly partition A (and B) into blocks of
equal length d/k since, in this case,

∑
i ed(Ai, Bi) can

become as high as k · ed(A,B). Instead, we proceed



as follows. Consider the longest common substring of
A and B, and let its positions in A and B be SA

and SB respectively. We find some matching positions
a1, . . . ak−1 ∈ SA and b1, . . . bk−1 ∈ SB such that
A[ai] = B[bi]. Then, we partition the strings as
A = A[1, a1 − 1] ◦ A[a1, a2 − 1] ◦ . . . ◦ A[ak−1, d] and
B = B[1, b1 − 1] ◦ B[b1, b2 − 1] ◦ . . . ◦ B[bk−1, d]. We
show this can be done such that all the lengths of the
substrings are Õ(R), in Õ(d/R +

√
d) total time.

In the second step, we reduce testing sum-product
of k Ulam metrics, E =

∑
i ed(Ai, Bi), to (many in-

vocations of) the gap-testing problem of Ulam distance.
The idea is to partition the coordinates i ∈ [k] into levels
corresponding to the contributing weight, and estimate
separately the contribution of each level to E. Namely,
we estimate cj , the number of coordinates i ∈ [k] such
that ed(xi, yi) ≥ 2j , for all j = 0, . . . log R. Then,∑

j cj · 2j is a constant-factor approximation to E. For
each j, we estimate cj by subsampling coordinates i with
rate ≈ 2j/R, and, for subsampled i’s, testing whether
ed(xi, yi) ≥ 2j . So far, it looks like we did not save
much: say, for j = 1, we subsample most of coordinates
i for which we have to test whether ed(Ai, Bi) ≥ R/2.
Naively, this would take at least Ω(

√
R) time per co-

ordinate, and Ω(d/
√

R) for all coordinates. However,
we note that, say, a big fraction of coordinates actu-
ally have distance ed(Ai, Bi) ≤ O(1). Thus, at least for
a fraction of i’s, we need to only distinguish between
ed(Ai, Bi) ≤ O(1) and ed(Ai, Bi) ≥ R/2. Indeed, our
gap-testing algorithm manages to do so in almost con-
stant time.

More generally, the approach from above requires
a gap-tester that can distinguish ed(x, y) < a versus
ed(x, y) > b for all a ¿ b ≤ R. Our gap tester does so
in time Õ(` ·

√
a

b ), where ` is the length of the strings x
and y. Note that, for the specific case of b = O(a), our
algorithm’s performance recovers the performance of
the algorithm from [AIK09]. To obtain our gap-testing
algorithm, we develop an alternative characterization of
Ulam distance, based on characterizations of [ACCL07,
GJKK07].

In the end, when using our gap tester in the
algorithm for testing sum-product of k Ulam distances
of strings of length ≤ `, we obtain a total time of
Õ( `

R · (k+
√

kR)). When k = O(d/R) and ` = Õ(R) (as
obtained in the first step), the running time becomes
Õ(d/R +

√
d).

We proceed to describing our algorithms and the
lower bound in detail.

2 Preliminaries and Notation

For a string A, let A[i, j] denote the substring of A
from position i to position j and, abusing notation, also

the set of characters in that substring. If an index i is
outside of the string A ∈ Σl, we extend, by convention,
the string with extra symbols. Namely, for i ≤ 0, we
let A[i] = i, and, for i > l, we let A[i] = (i− l) (in
particular the extension is the same for all strings).
Then Σ will denote the extended alphabet. We assume
all logs are in base 2. In the rest of the paper, we will
make extensive use of the Chernoff bounds, which we
recall below (see, e.g., [MR95]).

Fact 2.1. (Chernoff bound, [MR95]) Let X1,
X2,. . ., Xn be i.i.d. random variables and p = E [Xi],
ε > 0, Xi ∈ {0, 1}. Then, we have that

• If ε ≤ 2e − 1, then Pr[|∑n
i=1 Xi − pn| ≥ εpn] ≤

2 · e−ε2pn/4,

• If ε ≥ 2e − 1, then Pr[|∑n
i=1 Xi − pn| ≥ εpn] ≤

2−(1+ε)pn.

3 Distance Estimation for Ulam Distance

We now describe our algorithm for sublinear time
distance estimation of Ulam distance, thus proving
Theorem 1.1.

The main subroutine is for testing the Ulam dis-
tance between two strings. Namely, the tester has the
following promise for input strings A,B ∈ Σd, and a
given threshold log5 d ≤ R ≤ d:

• If ed(A,B) < R
1400 , then the tester returns CLOSE

with probability at least 2/3.

• If ed(A,B) > R but ed(A,B) ≤ 2R, then the tester
returns FAR with probability at least 2/3.

We note that such a tester is sufficient to ap-
proximate the distance R∗ = ed(A,B). Indeed, we
can run the tester for Ulam distance for each “guess”
R = d/2, d/4, d/8, . . ., and stop once the tester returns
“FAR”. More precisely, for each guess of R, we run the
tester for Ulam distance for O(log d) times and take the
majority answer. If the majority answer is “FAR”, then
we return the current value of R as an approximation
to R∗.

Our tester for Ulam distance is described in Fig-
ure 1, and is named UlamTest(A, B,R). The tester
works as follows. In step one, we decompose A and B
into k = O(d/R) substrings A1, . . . , Ak and B1, . . . , Bk

such that the sum ed(A1, B1) + . . . + ed(Ak, Bk) equals
ed(A,B). We refer to the distance between (A1, . . . Ak)
and (B1, . . . Bk) as the sum-product of k copies of Ulam
distance. In step two, the algorithm tests whether the
sum of Ulam distances ed(A1, B1) + . . . + ed(Ak, Bk)
is bigger than R or is smaller than R/1400. The
first step is described below, and its main statement



is Lemma 3.1. The second step is described in the next
section, Section 4, and its main ingredient is Lemma 4.2.
The two lemmas together imply Theorem 1.1.

Procedure UlamTest(A,B, R)
1. a, b, m← PartialAlign(A,B, 2R)
2. Return UlamProductTest((A[1, a1], B[1, b1]),

. . . , (A[ad/2βR + 1, d], B[bd/2βR + 1, d]), R)

Figure 1: The tester determining whether ed(A,B) > R
or ed(A,B) < R/1400. We assume that ed(A,B) ≤ 2R.
Here, β = C1 log3 d for a sufficiently large constant
C1 > 0.

Procedure PartialAlign(A,B,R)
1. Split A and B into blocks of size βR.
2. m0 ← 0
3. For i← 1 to d

βR
4. For j ← 4 to log 4R
5. Pick a random location p in [(i − 1) ·

βR + 4R, i · βR − 4R] of the ith block.
Pick γ · 2j/2 random positions from each
of A[p, p + 2j ] and B[p + mi−1 − 2j , p +
mi−1 + 2 · 2j ].
If there is at least one collision A[u] =
B[v], then do the following. Choose any
such collision ui, vi. Set mi ← vi −
ui, ai ← ui, bi ← vi. Stop the j loop
and jump to the next i.

6. If the j-loop did not stop, then fail.
7. Return vectors a, b, and m.

Figure 2: Partial alignment of two strings. Here γ =
C2 log d for a sufficiently large constant C2 > 0.

As described before, in the first step, we partition
strings A and B as A = A[1, a1 − 1] ◦ A[a1, a2 − 1] ◦
. . . ◦ A[ak−1, d] and B = B[1, b1 − 1] ◦ B[b1, b2 − 1] ◦
. . . ◦ B[bk−1, d] for some k = O(d/R), where ai, bi are
such that positions ai, bi belong to the longest common
subsequence of A and B respectively and A[ai] = B[bi].
In this case, it is immediate to note that ed(A,B) =
ed(A1, B1)+. . .+ed(Ak, Bk). While this may not always
be possible, we show we can do it under the assumption
that ed(A,B) ≤ 2R.

To be useful for the second step, we also need that
|ai+1 − ai|, |bi+1 − bi| ≤ Õ(R) for all i. In the next
subsection, we show how to find the positions ai, bi with
the required properties.

3.1 Decomposition into a Sum Product of
Ulam Distances We now show how to find positions

ai, bi, i ∈ [k], belonging to some fixed longest com-
mon subsequence (LCS) of A and B and such that
|ai+1 − ai|, |bi+1 − bi| ≤ Õ(R) for all i.

The main idea is as follows. Let SA and SB be the
positions of the LCS in A and B respectively. First we
partition the strings A into substrings of equal length
βR, where β = C1 log3 d for large enough constant C1.
We consider each such substring A[(i−1) ·βR+1, i ·βR]
and take the corresponding substring of B of length
βR starting at si (where the notion “corresponding”
will be clear momentarily; for the moment assume that
|si − (i − 1) · βR| ≤ O(R)). For each such pair of
substrings A[(i−1) ·βR+1, i ·βR] and B[si, si+βR−1],
we find a pair of positions ai, bi that belong to the
sets SA and SB . We note that this is always possible
since ed(A,B) ≤ 2R and thus for each matching pair of
positions ai, bi (in the LCS), we have that |ai−bi| ≤ 2R.
The notion of “corresponding substring” roughly means
that we sequentially correct the start of the ith substring
of B according to the displacement obtained from the
previous matching pair (ai−1, bi−1); i.e., si = (i − 1) ·
βR + bi−1 − ai−1.

To find one such pair of positions (ai, bi), we employ
random sampling from the two substrings and hope for
a collision via the birthday paradox. In general, since
the substrings may be at distance up to O(R), we might
need to sample roughly

√
R positions, which proves to

be too much (and gives a bound of Õ(d/
√

R) only).
Instead, the algorithm adapts to the local distance

in the ith pair of substrings of A and B. Thus, if
the ith pair of substrings are at distance fi, then the
algorithm will sample roughly

√
fi samples for this value

of i (since, intuitively, the matching symbols differ in
position by at most fi, once we make the aforementioned
correction to the start of the B’s substring). This
adaptation to the local distance between substrings
is what gives us the improved bound: indeed, for
every sequence fi with

∑
fi ≤ O(R), we have that∑d/R

i=1 (O(1) +
√

fi) = O(d/R +
√

d).
The complete details of the algorithm are presented

in Figure 2. We prove the following lemma.

Lemma 3.1. (PartialAlign) Consider two non-
repetitive strings A and B at distance ed(A, B) ≤ R
for some R ∈ [d]. Let SA, SB be the sets of in-
dices of characters in A and B respectively of the
longest common subsequence of A and B (note that
|SA| = |SB | ≥ d−R).

Then, with probability at least 2/3, the follow-
ing all hold. The vectors a and b returned by
PartialAlign(A, B) are subsets of SA and SB. Fur-
thermore, |ai+1 − ai|, |bi+1 − bi| ≤ 2βR for all i ∈
[d/βR]. Finally, the running time of PartialAlign(A, B)



is Õ(d/R +
√

d).

Proof. We prove that all ai are from SA with at least
0.9 probability. Since A and B are non-repetitive and
bi are such that A[ai] = B[bi], then all bi must be from
SB as well.

The proof is by induction on i. For convenience of
notation, we set a0 = b0 = 0. Now assume the inductive
hypothesis: that all ak ∈ SA for k < i. We prove that,
conditioned on this event, the algorithm generates an
ai ∈ SA with probability at least 1 − ti, where ti is
a function of ai−1 and will be defined later. We then
prove that, conditioned on all ai ∈ SA, we have that∑

ti ≤ O(γ2 log d/β), which will let us bound the failure
probability.

Let fi be the number of “bad positions” from the
last match A[ai−1] = B[bi−1] to the end of the ith block
in A and B. Formally, fi is the number of positions
in A[ai−1, i · βR] \ SA plus the number of positions in
B[bi−1,mi−1 + i · βR] \ SB .

The next claim bounds the probability that a “bad
position” s 6∈ SA appears amongst the collisions for a
fixed j, where a collision is a sampled pair (u, v) such
that A[u] = B[v].

Claim 3.1. Fix some j ≤ log 4R. The probability that
a position s 6∈ SA appears in the set of collisions is at
most fiγ

2

βR .

Proof. Note that we need to care only about symbols
s ∈ A[(i− 1) · βR + 4R, i · βR] \ SA. The probability of
a fixed such symbol s yielding a collision is bounded
by the probability that s ∈ A[p, p + 2j ], times the
probability that s is sampled from A[p, p + 2j ] and
B[p + mi−1, p + mi−1 + 2j ], which is 2j+1

(β−8)R · γ2j/2

2j+1 ·
γ2j/2

3·2j ≤ γ2

βR . We now apply a union bound over all
s ∈ A[(i−1) ·βR+4R, i ·βR]\SA and use the fact that
|A[(i− 1) · βR + 4R, i · βR] \ SA| ≤ fi, and thus obtain
the desired conclusion.

The probability that ai 6∈ SA is bounded by the
probability that, for any j ≤ log 4R, there exists a
position s 6∈ SA that appears amongst the collisions.
The latter probability is obtained by applying a union
bound over all j to the bound from Claim 3.1, resulting
in a bound of log 2R · fiγ

2

βR .
We also need to bound the probability that a j-loop

fails to stop. We bound this event using the claim from
below, which specifies an upper bound on j at which
the j-loop will stop.

Before stating and proving the claim, we introduce
more notation. Consider fixed p and j. Let Tj be
the set of symbols in A[p, p + 2j ] \ SA, and let T̄j =

A[p, p + 2j ] ∩ SA. Then Ep

[|T̄j |
] ≤ fi

(β−8)R · 2j+1. By

Markov’s inequality, with probability at least 1− 20fi

(β−8)R ,
we have that |T̄j | ≤ 0.1 · 2j .

Claim 3.2. The j-loop stops for some j satisfying 2j ≤
2fi, with probability at least 21fi

(β−8)R . If fi = 0, then j-
loop stops at j = 4.

Proof. Take the smallest j such that 2j ≥ fi. Condition
on the event that |T̄j | ≤ 0.1 · 2j . Then |Tj | ≥ 0.9 · 2j .
Note that each s ∈ Tj ⊆ A[p, p + 2j ] also appears in
B[p+mi−1−2j , p+mi−1+2·2j ] by definition of fi ≤ 2j .

Out of γ2j/2 samples in A[p, p + 2j ], at least
0.8γ · 2j/2 are in Tj , with high probability (by usual
Chernoff bound for γ = Ω(log d)). Let this set of
samples belonging to Tj be denoted by W . Then,
we can compute the probability that, out of the γ2j/2

sampled characters in B[p+mi−1−2j , p+mi−1 +2 ·2j ],
at least one is also in W : this probability is at least
1− (1− 0.8γ2j/2

3·2j+1 )γ2j/2 ≥ 1− e−Ω(γ2) ≥ 1− d−ω(1).
Thus, we have at least one collision and the j-loop

stops with probability at least 1 − d−ω(1) − 20fi

(β−8)R ≥
1− 21fi

(β−8)R .

We can now completely bound the probability that
ai ∈ SA and the algorithm finishes successfully the
corresponding ith step. Indeed, this probability is at
least 1 − log 2R · fiγ

2

βR − 21fi

(β−8)R ≥ 1 − 2γ2 log R
β · fi

R . We

set ti = 2γ2 log R
β · fi

R .
Finally, the probability that there exists some i for

which ai 6∈ SA is at most
∑

i ti ≤ 4γ2 log R
β ·

P
i fi

R .
We claim that

∑
i fi ≤ 4R. Indeed, for fixed i, fi

is the number of positions in A[ai−1, i · βR] \ SA plus
the number of positions in B[bi−1,mi−1 + i · βR] \ SB

(conditioned on the fact that ai−1 ∈ SA). In this
case, each position k 6∈ SA contributes to fi for at
most 2 values of i (and same for k 6∈ SB). Since
also |SA| = |SB | ≥ d − R, we have that

∑
i fi ≤ 4R.

Therefore, the probability that there exists some i for
which ai 6∈ SA is at most 16γ2 log R/β < 0.1.

It remains to bound the running time. Assume
that all ai ∈ SA. Using Claim 3.2, the running
time of the algorithm is

∑d/βR
i=1 O(1 + γ

√
fi log d) =

Õ( d
βR + γ

√
d

βR ·R) = Õ(
√

d + d
R ), where we have

applied the Cauchy-Schwartz the additional O(log d)
appears because of the implementation of checking for
collisions).

4 Tester for Sum-product of Ulam Distance

In this section, we describe a tester for a sum product of
Ulam distances between tuples of strings. Given k pairs



of strings (A1, B1), . . . , (Ak, Bk), where each string has
length at most βR, for β > 1, and

∑k
i=1 ed(Ai, Bi) =

O(R), the tester runs in Õ(β(k +
√

kR)) time and has
the following promise:

• If
∑k

i=1 ed(Ai, Bi) < R
1400 , then the tester returns

CLOSE with probability at least 2
3 .

• If
∑k

i=1 ed(Ai, Bi) > R, then the tester returns
FAR with probability at least 2

3 .

Procedure UlamProductTest((A1, B1), . . . ,
(Ak, Bk), R)

1. for i← 0 to log R
2. Ĉi ← 0
3. Take a set S of pairs by picking each

pair (Au, Bu), u ∈ [k], independently with
probability pi = min(6400 2i log3(kR)

R , 1).
4. For each s ∈ S
5. For j ← 1 to i− 9
6. Run GapUlamTest(As, Bs, 2j , 2i) for

O(log(kR)) times and take the major-
ity answer. Stop the j loop if the ma-
jority answer is CLOSE.

7. If the j-loop is never stopped, increase Ĉi

by 1
pi

= max( R
6400·2i log3(kR)

, 1).

8. Compute the estimate d̂ =
∑log R

i=0 2iĈi.
9. If d̂ > 0.85R, return FAR. Otherwise, return

CLOSE.

Figure 3: Closeness tester for sum product of Ulam
distance.

The tester UlamProductTest is described in details
in Figure 3. The idea of the tester is to partition the
pairs of strings into buckets of pairs of roughly equal
distances and then approximate the number of pairs
in each bucket. Specifically, let Ci be the number of
indices u such that ed(Au, Bu) ≥ 2i. For each i, we
compute an approximation of Ci with small additive
and multiplicative errors. Finally, an approximation
of

∑k
u=1 ed(Au, Bu) can be obtained from the sum∑log R

i=0 2iCi. A subroutine GapUlamTest(A, B, a, b) is
used to differentiate between the case ed(Au, Bu) < a
and the case ed(Au, Bu) > b. Formally, GapUlamTest
satisfies the following properties, which will be proved
in a later section.

Lemma 4.1. (GapUlamTest) Suppose we are given two
non-repetitive strings A and B of length `A and `B,
respectively, of characters in [d] and two constants a, b
satisfying a ≤ b

512 . Let ` = max(`A, `B). With

probability at least 2/3, GapUlamTest runs in Õ(`
√

a/b)
time and distinguishes between the case ed(A,B) < a
and the case ed(A,B) > b.

Assuming the properties of GapUlamTest, we now
state the formal properties of UlamProductTest.

Lemma 4.2. (UlamProductTest) Given k pairs of non-
repetitive strings (A1, B1), . . . , (Ak, Bk) of characters in
[d] where the length of each string is bounded by βR and∑k

i=1 ed(Ai, Bi) = O(R). With probability at least 2/3,
UlamProductTest runs in Õ(β(k+

√
kR)) time and cor-

rectly distinguishes between the cases
∑

i ed(Ai, Bi) > R
and

∑
i ed(Ai, Bi) < R/1400.

Proof. Firstly, we prove the following approximation
claim.

Claim 4.1. Consider a set S of n elements and a subset
T of m elements. Pick a random subset X of S by pick-
ing each element independently with probability p. Let
q = |X ∩T |. Picking X can be implemented in expected
O(pn) time and Pr

[
|q/p−m| ≥ 0.1m + 6400 log n

p

]
≤

1
n3 .

Proof. We pick X as follows. Divide S into blocks of
size 1

p and use the binomial distribution to compute
the number of samples in each block. Finally, pick the
samples from each block according to the computed
number of samples. The expected running time is
O(pn). Now consider two cases.

1. m ≤ 6400 log n
p(2e−1) . By the Chernoff bound, Pr[|q/p −

m| ≥ m · 6400 log n
pm ] ≤ 2−(1+ 6400 log n

mp )pm ≤ 1
n3 .

2. m > 6400 log n
p(2e−1) . By the Chernoff bound, Pr[|q/p −

m| ≥ 0.1m] ≤ 2e−(0.1)2pm/4 ≤ e
16 log n
2e−1 ≤ 1

n3 .

This concludes the proof of claim 4.1.

By the Chernoff bound, the probability that the
majority answer of O(log(kR)) runs of GapUlamTest
(on line 6 of UlamProductTest) is wrong, is bounded
by 1

k3R3 . The majority answer is taken O(k log2(kR))
times, so by the union bound, all majority answers from
runs of GapUlamTest are correct with probability at
least 1− 1

kR . Thus, from now on, we assume all majority
answers are correct.

Now we proceed to give upper and lower bounds on
Ĉi, and hence, the distance estimate d̂. We consider
the case i < log R

6400·log3(kR)
(so pi < 1). When i

is large enough so that pi = 1, the following bounds
still hold because several estimation steps become exact
computation.



We start by showing an upper bound for Ĉi and
d̂. Let Ni be the number of indices s ∈ [k] such that
ed(As, Bs) > 2i

512 . Let Xi be the number of indices
s ∈ S such that ed(As, Bs) > 2i

512 . By Claim 4.1,
1
pi

Xi ≤ 1.1Ni + R
2i log2(kR)

, w.h.p. Hence, Ĉi ≤ 1
pi

Xi ≤
1.1Ni + R

2i log2(kR)
and d̂ ≤∑

i 2i(1.1Ni + R
2i log2(kR)

) <

1130
∑k

i=1 ed(Ai, Bi) + R
log(kR) .

Next we show a lower bound for Ĉi and d̂. Let Mi be
the number of indices s ∈ [k] such that ed(As, Bs) > 2i.
Let Yi be the number of indices s ∈ S such that
ed(As, Bs) > 2i. By Claim 4.1, 1

pi
Yi ≥ 0.9Mi −

R
3·2i log2(kR)

w.h.p. Hence, Ĉi ≥ 1
pi

Yi ≥ 0.9Mi −
R

2i log2(kR)
and d̂ ≥ ∑

i 2i(0.9Mi − R
2i log2(kR)

) ≥ 0.9 ·
∑k

i=1 ed(Ai, Bi)− R
log(kR) .

Therefore, with probability at least 2/3, if∑k
i=1 ed(Ai, Bi) > R, then d̂ > 0.9R − R/ log(kR) >

0.85R, and if
∑k

i=1 ed(Ai, Bi) ≤ R/1400, then d̂ <
1130R/1400 + R/ log kR < 0.85R.

We now prove the stated running time of the
algorithm. The expected number of times a fixed
pair (Au, Bu) is selected when we compute Ĉi is
O(2i log3(kR)/R). When a pair (Au, Bu) is selected,
the j-loop stops as soon as 2j > ed(Au, Bu). Thus, the
expected running time of the algorithm is

log R∑

i=0

k∑
u=1

2i log3(kR)/R · Õ
(

βR(
√

ed(Au, Bu) + 1)
2i

)

≤
k∑

u=1

Õ(β(
√

ed(Au, Bu) + 1)) = Õ(β(k +
√

kR)).

4.1 Gap Closeness Tester for Ulam distance In
this section, we describe the details of GapUlamTest, a
closeness tester differentiating between the case where
the Ulam distance is very large and the case where the
Ulam distance is very small. Specifically, we have two
distance thresholds a and b satisfying a < b/512 and the
algorithm should return FAR if the distance is at least
b, and return CLOSE if the distance is at most a.

The tester GapUlamTest is described in details in
Figure 4. The idea of the algorithm is to divide both
strings into small blocks and estimate the contribu-
tion of each block to the total distance. The contribu-
tion from each block comes from two sources: charac-
ter movements within each block, and character move-
ments between different blocks. Intuitively, the first
kind of movements can be detected by character inver-
sions within corresponding blocks in two strings. We
approximate the number of movements of this kind by
the number of characters witnessing a lot of inversions

in their neighborhoods (similar to the characterizations
from [ACCL07, GJKK07, AIK09]). The number of
movements of the second kind is exactly the difference
between the set of characters in the block in the first
string and the set of characters in the corresponding
block in the second string, which can be approximated
by counting collisions between samples from two strings.
Furthermore, since only an approximation of the sum of
contributions from the blocks is needed, instead of com-
puting the contributions from all blocks, we only sample
some subset of blocks to estimate the sum. Specifically,
for each i, we estimate ni, the number of blocks con-
tributing approximately 2i or more. The total distance
can be estimated by considering the sum

∑
i ni2i. In-

tuitively, the larger i is, the finer the estimation of ni

we need, so the number of sampled blocks grows with
i. On the other hand, the larger the distance 2i, the
easier it is to find mismatches between the correspond-
ing blocks in two strings. It turns out these two effects
cancel each other out and for each i, we can estimate
the contributions from blocks contributing 2i or more
in Õ( `

√
a

b ). Summing over all i, the total running time
is Õ( `

√
a

b ).
The algorithm uses the following characterization

of the Ulam distance in order to approximate the
two aforementioned forms of movement. We note
that this lemma can be seen as a refinement of the
characterizations from [ACCL07, GJKK07, AIK09].

Lemma 4.3. Consider two non-repetitive strings A and
B. Let `A, `B be the length of A and B, respectively.
W.l.o.g. assume `A ≤ `B. Define X =

∑`A/a
k=0 |A[ka +

1, (k + 1)a] \ B[(k − 1)a + 1, (k + 2)a]| i.e. the number
of characters occurring in A[ka + 1, (k + 1)a] but not in
B[(k−1)a+1, (k+2)a] for k ∈ [`A/a]. Let δ ≤ 1/2 be a
constant. Define Yδ to be the number of pairs of indices
u, v such that A[u] = B[v], A[u] ∈ A[ka + 1, (k + 1)a] ∩
B[(k − 1)a + 1, (k + 2)a] for some k and the symmetric
difference |A[u− t, u−1]∆B[v− t, v−1]| > 2δt for some
t ≤ 4a. Then

• If ed(A,B) ≤ a, then X ≤ a and Yδ ≤ 4a/δ.

• If ed(A,B) ≥ b + `B − `A, then X + Yδ ≥ b(1−δ)
2 .

Proof. A character is called red if it contributes to either
X or Yδ.

First, we show that if ed(A,B) ≤ a, then X ≤ a
and Yδ ≤ 4a/δ. Let SA, SB be the set of indices of
characters in A and B belonging to the longest common
subsequence of A and B. Note that |SA| = |SB | ≥
`B − a. The characters in SA cannot contribute to
X, so X ≤ a. Let Tδ be the set of all pairs of
indices u, v such that A[u] = B[v], and the symmetric



Procedure GapUlamTest(A, B, a, b)
1. Let `A, `B be the length of A and B. If
|`B − `A| > b/10, return FAR.

2. Split A into `A/a blocks of size a.
3. For i← 0 to log a− 1
4. Set X̂i ← 0
5. Pick a set S of blocks by picking each block

k ∈ [`A/a] independently with probability
min(O(2i log3 `

b ), 1).
6. For each sampled block k ∈ S
7. If 2i ≤ 6400

√
a log `,

8. Compute the number of characters in
A[ka + 1, (k + 1)a] that are not also
contained in B[(k − 1)a + 1, (k + 2)a]
(i.e., characters contributing to X) by
reading the blocks entirely. Increase
X̂i by 1 if this number of characters is
at least 2i.

9. If 2i > 6400
√

a log `,
10. Read each character in A[ka + 1, (k +

1)a] and B[(k − 1)a + 1, (k + 2)a]
independently with probability p =
min(O(

√
a log `
2i ), 1) and let C be the

number of collisions between the char-
acters being read in A and in B. If
a− C

p2 > 0.9 · 2i then increase X̂i by 1.
11. Read each character in A[ka + 1, (k +

1)a] and B[(k − 1)a + 1, (k + 2)a]
independently with probability r =
min(O( log `

2i/2 ), 1) and find the collisions.
For each collision A[u] = B[v], run
YContributingTest(A, B, u, v, a). Let D
be the number of characters for which
the answer is CONTRIBUTING. If D

p2 >

0.9 · 2i, then increase Ŷi by 1.
12. Set X̂ ←∑

i
b

log3 `
X̂i and Ŷ ←∑

i
b

log3 `
Ŷi

13. If X̂ + Ŷ > b
10 , return FAR. Otherwise return

CLOSE.

Figure 4: Tester distinguishing between the case
ed(A,B) < a and the case ed(A,B) > b.

difference |A[u− t, u−1]∆B[v− t, v−1]| > 2δt for some
t ≤ `B . Notice that Yδ ≤ |Tδ|. By [AIK09, Lemma 2.2],
|Tδ| ≤ 4a/δ.

Second, we show the contra-positive of the second
assertion, i.e. if X + Yδ < b(1−δ)

4 then ed(A,B) <
b+ `B − `A. We select a common subsequence of A and
B by the following removal procedure. For convenience,
add two different special characters at the end of A and
B and they are not red. Start from the end of A and go

back until reaching the beginning of A. At position i,
do the following. If A[i− 1] is not red, proceed to i− 1.
If A[i − 1] is red, let j < i be the largest index where
A[j] is not red and A[j] precedes A[i] in B. Remove
A[j +1, i− 1] and proceed to position j. The remaining
string after the above process finishes is the common
subsequence we need.

Now we bound the number of removed characters
when we reach the ith position and A[i] is not red.
Because A[i] is not red, A[i] = B[u] for some u satisfying
|i− u| ≤ 2a. Consider two cases.

1. i − j ≤ 4a. Because A[i] is not red, |A[j + 1, i −
1]∆B[u − i + j + 1, u − 1]| ≤ 2δ(i − j − 1). All
non-red characters in A[j + 1, i − 1] contribute to
the symmetric difference |A[j + 1, i− 1]∆B[u− i +
j +1, u− 1]| so at least 1− δ fraction of the deleted
characters are red.

2. i − j > 4a. Because A[i] is not red, |A[i − 4a +
1, i − 1]∆B[u − 4a + 1, u − 1] ≤ 8δa. Thus,
in A[i − 4a + 1, i − 1], at most 4δa characters
are not red. We now show that all characters
in A[j + 1, i − 4a] are red. Indeed, any non-red
character in A[j + 1, i − 4a] must appear after the
character A[i] = B[u] in B by the definition of j,
and thus it contributes to X and is red. Therefore,
all characters in A[j + 1, i − 4a] are red. In total,
at least 4a− 4δa + (i− 4a− j) > (i− j − 1)(1− δ)
red characters are removed.

In all cases, at least 1 − δ fraction of the deleted char-
acters are red. Therefore, we get a common subse-
quence of A and B of length greater than `A − b

2 so
ed(A,B) < b + `B − `A. This concludes the proof of
Lemma 4.3.

The tester works by estimating the quantity X
and Y = Yδ, for δ = 1/2 in the above lemma.
To detect characters contributing to Yδ, we use the
YContributingTest described in Figure 5. The following
lemma shows that YContributingTest correctly tests if
a character contributes to Y .

Lemma 4.4. (YContributingTest) With probability at
least 1 − 1

`2 , if |A[u − z, u − 1]∆B[v − z, v − 1]| >
z for some z < 4a, then YContributingTest returns
CONTRIBUTING, and if |A[u− z, u− 1]∆B[v− z, v−
1]| < 0.8z for all z < 4a, then YContributingTest
returns NOT-CONTRIBUTING. The expected running
time of YContributingTest is Õ(

√
a).

Proof. Let Nt = |A[u−1.01t, u−1]∩B[v−1.01t, v−1]|.
Let Dt be the number of collisions between samples from
|A[u − 1.01t, u − 1] and B[v − 1.01t, v − 1]|. We have



E
[
Dt/q2

]
= Nt and Var[Dt/q2] = (1−q2)Nt/q2. By the

Chebyshev inequality, Pr[|Dt/q2 −Nt| ≥ 0.05 · 1.01t] ≤
400(1−q2)Nt

q21.012t < 1
10 . Consider two cases.

1. |A[u−z, u−1]∆B[v−z, v−1]| > z for some z < 4a.
Choose t = blog1.01 zc. Then, |A[u − 1.01t, u −
1]∆B[v − 1.01t, v − 1]| > 0.98 · 1.1t. Therefore,
N < 0.51 · 1.1t. By the Chernoff bound, with
probability at least 1 − 1

`2 , for the majority of the
times, the number of collisions is at most 0.55·1.01t

and the algorithm returns CONTRIBUTING.

2. |A[u − z, u − 1]∆B[v − z, v − 1]| < 0.8z for all
z < 4a. Therefore, N > 0.6 ·1.01t. By the Chernoff
bound, with probability at least 1− 1

`2 , the number
of collisions is at least 0.55 · 1.01t the majority of
the times for all t and the algorithm returns NOT-
CONTRIBUTING.

The expected number of characters being read by
YContributingTest, and hence, the expected running
time, is Õ(

√
a). This concludes the proof of Lemma 4.4.

Procedure YContributingTest(A,B, u, v, a)
1. For t← 0 to log1.1 4a
2. Repeat the following O(log `) times.
3. Read each character in A[u−1.01t, u−1]

and B[v−1.01t, v−1] independently with
probability q = O( 1√

1.01t
) and count the

number of collisions.
4. If the number of collisions is at most 0.55 ·

1.01t the majority of the times then return
CONTRIBUTING.

5. If CONTRIBUTING is never returned then
return NOT-CONTRIBUTING.

Figure 5: A procedure for checking if |A[u − t, u −
1]∆B[v − t, v − 1]| is large for some t < 4a.

Now we proceed to proving Lemma 4.1.

Proof. We first show X̂ approximates X. Consider
a sampled block A[ka + 1, (k + 1)a]. Let Mk =
|A[ka + 1, (k + 1)a] \ B[(k − 1)a + 1, (k + 2)a]| and
Nk = |A[ka + 1, (k + 1)a] ∩ B[(k − 1)a + 1, (k + 2)a]|.
Note that Mk + Nk = a. When 2i ≤ 6400

√
a log `, we

get the exact value of Mk and Nk by reading the whole
block. Now consider the case 2i > 6400

√
a log `. Let

Ck be the number of collisions between samples from
A[ka+1, (k+1)a] and samples from B[(k−1)a+1, (k+
2)a] when reading each symbol with probability p. We
have E [Ck] = p2Nk. Consider two cases.

1. Nk > 0.1·2i

2e−1 . By the Chernoff bound, Pr[|Ck/p2 −
Nk| ≥ Nk

0.1·2i

Nk
] ≤ 2e−(0.1·2i/Nk)2p2Nk/4 < 1

`2 .

2. Nk ≤ 0.1·2i

2e−1 . By the Chernoff bound, Pr[|Ck/p2 −
Nk| ≥ Nk

0.1·2i

Nk
] ≤ 2−(1+0.1·2i/Nk)p2Nk < 1

`2 .

Thus, with high probability, |Ck

p2 − Nk| < 0.1 · 2i.
Therefore, the test on line 10 passes if Mk ≥ 2i and
fails if Mk < 0.8 · 2i. Let Hi be the number of indices
k ∈ [`/a] such that |A[ka+1, (k+1)a]\B[(k−1)a+1, (k+
2)a]| ≥ 2i and Ki be the number of indices k ∈ [`/a]
such that |A[ka+1, (k+1)a]\B[(k−1)a+1, (k+2)a]| >
0.8 · 2i.

By Claim 4.1, with high probability, b
2i log3 `

X̂i <

1.1Ki + b
2i log2 `

and thus, X̂ < 1.1·2
0.8 X + b

log ` . Similarly,

with high probability, b
2i log3 `

X̂i > 0.9Hi − b
2i log2 `

and

thus, X̂ > 0.9X − b
log ` .

We now show Ŷ approximates Y . Let Pk,t be the
number of characters A[u] = B[v] such that ka + 1 ≤
u ≤ (k + 1)a and (k − 1)a + 1 ≤ v ≤ (k + 2)a,
and |A[u − z, u − 1]∆B[v − z, v − 1]| > 2tz for some
z < 4a. By Lemma 4.4 and the union bound, with
probability at least 1 − 1

` , all YContributingTest calls
give correct answers. Each character contributing to Y
is picked in both A and B on line 11 with probability
r2 = O( log2 `

2i ). By Claim 4.1, with high probability,
D < 1.1 · Pk,0.4 + 2i

log ` and D > 0.9 · Pk,0.5 − 2i

log ` .
Let Pi be the number of indices k ∈ [`A/a] such that

Pk,0.5 > 2i and Qi be the number of indices k ∈ [`A/a]
such that Pk,0.4 > 0.8 · 2i. By Claim 4.1, with high
probability, 0.9 · Pi − b

2i log2 `
< b

2i log3 `
Yi < 1.1Qi +

b
2i log2 `

. Thus, 0.9 · Y0.5 − b
log ` < Ŷ < 2.5Y0.4 + b

log ` .
Therefore, with high probability, if ed(A, B) < a,

X̂ + Ŷ < 3a + 2.5·4
0.4 a + 2b

log ` < b/10 and if ed(A,B) > b

and |`B − `A| < b/10, X̂ + Ŷ > 0.8b(1−0.5)
2 ≥ b/10.

Therefore, the algorithm answers correctly.
The expected running time of the algorithm is

log a∑

i=0

`2i log3 `

ab
Õ

(
min(a, a

√
a

2i ) +
a
√

a

2i

)
=

Õ

(
`
√

a

b

)
.

5 Lower bound: Proof of Theorem 1.2

To prove Theorem 1.2, we follow the outline given in
the techniques section. The lower bound Ω( d

R ) follows
directly from the folklore lower bound on testing the
Hamming distance, so we concentrate on the regime
2
√

d ≤ R ≤ d/4α.
Let ` = 4αR and r = R2/d. We define two

distributions over pairs of permutations of [`]. Let µf be
the distribution over pairs (A, B) where A is a random



permutation of [`] and B is obtained from A by a cyclic
rotation of A, moving tf characters at the end of A to
the beginning with tf drawn uniformly from [`/4, `/2].
Let µc be the distribution over pairs (A,B) where A is
a random permutation and B is obtained from A by a
cyclic rotation of A by an amount tc drawn uniformly
from [r/4, r/2].

By an argument similar to [BEK+03, Theorem 3],
there is a constant c such that any deterministic algo-
rithm that, with probability at least 5/9, distinguishes
a pair (A,B) drawn from µf from a pair (A,B) drawn
from µc, must make at least c

√
r queries. For complete-

ness, below we include the sketch of the proof of the
claim.

Lemma 5.1. ([BEK+03]) For any deterministic algo-
rithm M making at most

√
r/5 queries,

∣∣∣∣ Pr
(A,B)←µf

[M(A,B) = 1]− Pr
(A,B)←µc

[M(A,B) = 1]
∣∣∣∣

< 1/9.

Proof. [Proof sketch.] Let B be a cyclic rotation of A by
an amount t ≤ `/2. The longest common subsequence
of A and B has length exactly `− t. Thus, when (A,B)
is drawn from µf , ed(A,B) ≥ tf ≥ `/4. When (A,B)
is drawn from µc, ed(A,B) ≤ 2tc ≤ r. Define Rc to be
the event that the input to M is drawn from µc and M
queries some position i in A and position i + tc in B
for some i ∈ [`]. Also define Rf to be event that the
input to M is drawn from µf and M queries i in A and
i + tf in B for some i ∈ [`]. When Rc and Rf does not
happen, all queried characters are distinct and random
so M can not distinguish between µc and µf . Thus,

∣∣∣∣ Pr
(A,B)←µf

[M(A,B) = 1]− Pr
(A,B)←µc

[M(A,B) = 1]
∣∣∣∣

≤ max(Pr[Rc], Pr[Rf ]).

When M finds two identical characters, it can
correctly distinguish between µf and µc. When M
has not seen two identical characters in A and B, all
queried characters are random and distinct. Therefore,
adaptivity does not help and we can assume M makes
all queries at once. After q queries on A and B, at
most (q/2)2 shifts are checked and because tc and tf
are chosen uniformly at random, we have

max(Pr[Rc], Pr[Rf ]) ≤ max(
(q/2)2

r/4
,
(q/2)2

`/4
) < 1/9.

This concludes the proof of Lemma 5.1.

We now proceed to proving Theorem 1.2. Assume
for contradiction that there is an algorithm M ′ that
with probability at least 2/3, takes at most

√
d

216α queries
and approximates the Ulam distance between two input
strings A,B up to a constant factor α. One can
construct an algorithm to distinguish µc and µf with at
most

√
r/5 samples as follows. Given some pair (A, B)

from either µc or µf , construct a new pair (P, Q), which
consists of d/` blocks each, where one block at a random
index k ∈ [d/`] is (A,B) and all the others are drawn
i.i.d. from µc. Run M ′ on (P, Q). If M ′ queries the
block (A,B) at least R

5
√

d
times, then the algorithm

aborts. Now, our output is “FAR” iff either
1. M ′ outputs “FAR”, or,
2. M ′ takes at least R

5
√

d
from the block (A,B) (i.e.,

the algorithm aborts).
Clearly, our algorithm makes at most R

5
√

d
queries

to (A,B).
Now, we prove the correctness of the algorithm.

When (A,B) is drawn from µc, ed(P,Q) ≤ dr/` = R
4α .

When (A,B) is drawn from µf , ed(P, Q) ≥ `/4 = αR.
Because R

4α · α < R, if aborting is ignored, M should
output the correct answer with probability at least 2/3.
If (A,B) ∈ µf , then with probability at least 2/3, the
output would be “FAR” (at least by criterion 1). Now
consider the case (A,B) ∈ µc. With probability at least
2/3, criterion 1 cannot happen. Let Ni be the number
of queries M makes on the ith block. All blocks are
drawn i.i.d. from µc regardless of the value of k and k
is not revealed to M so E [Ni] = E [Ni|k = 1] = . . . =

E [Ni|k = d/`] ∀i. Thus, E [Nk] =
E
hPd/`

i=1 Ni

i

d/` ≤ R
54
√

d
.

By the Markov inequality, with probability at least
8/9, Nk ≤ R

6
√

d
so criterion 2 cannot happen, either.

Therefore, with probability at least 5/9, the output
when (A, B) ∈ µc would be “CLOSE”.

The resulting algorithm distinguishes µc from µf

which contradicts Lemma 5.1.
The claim for edit distance on binary strings follows

immediately using Theorem 1.2 of [AK07].

References

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Coman-
dur, and Ding Liu. Estimating the distance to a
monotone function. Random Structures and Algo-
rithms, 31:371–383, 2007. Previously appeared in
RANDOM’04.

[AIK09] Alexandr Andoni, Piotr Indyk, and Robert
Krauthgamer. Overcoming the `1 non-embeddability
barrier: Algorithms for product metrics. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 865–874, 2009.



[AJKS02] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. Approximate counting of inversions in
a data stream. In Proceedings of the Symposium on
Theory of Computing (STOC), pages 370–379, 2002.

[AK07] Alexandr Andoni and Robert Krauthgamer. The
computational hardness of estimating edit distance. In
Proceedings of the Symposium on Foundations of Com-
puter Science (FOCS), pages 724–734, 2007. Accepted
to SIAM Journal on Computing (FOCS’07 special is-
sue).

[AK08] Alexandr Andoni and Robert Krauthgamer. The
smoothed complexity of edit distance. In Proceedings
of International Colloquium on Automata, Languages
and Programming (ICALP), pages 357–369, 2008.

[AO09] Alexandr Andoni and Krzysztof Onak. Approxi-
mating edit distance in near-linear time. In Proceedings
of the Symposium on Theory of Computing (STOC),
pages 199–204, 2009.

[BEK+03] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner
Magen, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Rahul Sami. A sublinear algorithm for weakly approx-
imating edit distance. In Proceedings of the Symposium
on Theory of Computing (STOC), pages 316–324, 2003.

[GJKK07] Parikshit Gopalan, T. S. Jayram, Robert
Krauthgamer, and Ravi Kumar. Estimating the sort-
edness of a data stream. In Proceedings of the ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 318–327, 2007.

[KR06] Robert Krauthgamer and Yuval Rabani. Improved
lower bounds for embeddings into L1. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1010–1017, 2006.

[Mar95] John I. Marden. Analyzing and Modeling Rank
Data. Monographs on Statistics and Applied Proba-
bility 64. CRC Press, 1995.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Ran-
domized Algorithms. Cambridge University Press,
1995.


