
0

The Smoothed Complexity of Edit Distance1

Alexandr Andoni2 , Microsoft Research SVC (andoni@microsoft.com)

Robert Krauthgamer3 , The Weizmann Institute of Science (robert.krauthgamer@weizmann.ac.il)

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems; G.3 [Mathematics of Computing]: Probability and Statistics

General Terms: Algorithms, Theory

Additional Key Words and Phrases: edit distance, smooth complexity, linear time, sublinear time

1. INTRODUCTION

The edit distance (aka Levenshtein distance) between two strings is the number of in-
sertions, deletions, and substitutions needed to transform one string into the other.
This distance is of key importance in several fields, such as computational biology and
text processing, and consequently computational problems involving the edit distance
were studied extensively, both theoretically and experimentally, see e.g. the detailed
survey on edit distance by Navarro [Navarro 2001]. Despite extensive research, the
worst-case guarantees currently known for algorithms dealing with edit distance are
quite poor, especially in comparison to the Hamming distance (which is just the num-
ber of substitutions to transform one string into the other). Below, we discuss the prob-
lems of computing and/or estimating the distance between two input strings, which
are the focus of our paper, but the situation is similar for other problems like pattern
matching and near-neighbor searching.

The most basic problem is to compute the edit distance between two strings of length
d over alphabet Σ. The worst-case running time known for this problem has not im-
proved in three decades — the problem can be solved using dynamic programming
in time O(d2) [Wagner and Fischer 1974], and in time O(d2/ log2 d) when the alpha-
bet has constant size [Masek and Paterson 1980] (see also [Bille and Farach-Colton
2008]).4 Unfortunately, such near-quadratic time is prohibitive when working on large
datasets, which is common in areas such as computational biology. The gold standard
is to achieve a linear-time algorithm, or even sublinear in several cases, which has
triggered the study of very efficient distance estimation algorithms – algorithms that

1An extended abstract of this article appeared in Proceedings of ICALP 2008 [Andoni and Krauthgamer
2008].
2Part of this work done while the author was a student at MIT, supported in part by NSF CAREER award
CCR-0133849, David and Lucille Packard Fellowship and Alfred P. Sloan Fellowship, and while an intern at
IBM Almaden Research Center.
3Part of this work done while at IBM Almaden Research Center. This research was supported in part by a
grant from the Fusfeld Research Fund, and by the Israel Science Foundation grant #452/08.
4In contrast, the Hamming distance can clearly be computed in O(d) time.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 0 ACM 1549-6325/0/-ART0 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:2 A. Andoni and R. Krauthgamer

compute an approximation to the edit distance. In particular, prior to our work the
best quasi-linear time algorithm, due to Batu, Ergün, and Sahinalp [Batu et al. 2006],
achieves d1/3+o(1) approximation (improving over [Bar-Yossef et al. 2004]).5 The only
known sublinear time algorithm, due to Batu, Ergün, Kilian, Magen, Raskhodnikova,
Rubinfeld and Sami [Batu et al. 2003], decides whether the edit distance is O(dα)
or Ω(d) in time O(dmax{α/2,1−2α}).6 In fact, distance estimation with sublogarithmic
approximation factor was recently proved impossible in a certain model of low com-
munication complexity [Andoni and Krauthgamer 2010].7 In practice, this situation is
mitigated by heuristic algorithms. In computational biology settings for instance, tools
such as BLAST [Altschul et al. 1990] are commonly used to solve the problem quickly,
essentially by relying on heuristic considerations that sacrifice some sensitivity.

We initiate the study of the smoothed complexity of sequence alignment, by propos-
ing a semi-random model of edit distance (the input is a worst-case instance modified
by a random perturbation), and design for it very efficient approximation algorithms.
Specifically, an adversary chooses two strings and a longest common subsequence of
them, and every character is perturbed independently with probability 0 ≤ p ≤ 1, ex-
cept that every character in the common subsequence is perturbed in the same way in
the two strings. Semi-random models appeared in the literature in other contexts, but
to the best of our knowledge, not for sequence alignment problems; see Section 1.2 for
more details. Our algorithms for the smoothed model approximate the edit distance
within a constant factor in linear, and even sublinear time.

Why study semi-random models of sequence alignment? First, they elude the ex-
treme difficulty posed by worst-case inputs, while avoiding the naivete of average-case
(random) inputs. Using these models as a theoretical testbed for practical algorithms
may lead to designing new algorithmic techniques, and/or to providing rigorous expla-
nation for the empirical success of well-known heuristics. Second, studying algorithms
for semi-random models may be viewed as an attack on the worst-case complexity. It is
difficult to quantify the progress we manage to make in this direction, but we certainly
achieve much better performance guarantees on a very large collection of inputs (in-
cluding random inputs as an extreme case), by delineating rather general assumptions
on the input, under which we have efficient algorithms.

1.1. Our Contribution

A smoothed model. Let 0 < p ≤ 1 be a perturbation probability. In our smoothed
model for edit distance, an input consisting of two strings, x and y, is generated as
follows. (A more formal description is given in Section 1.3.)

(1) An adversary chooses two strings x∗, y∗ ∈ {0, 1}d, and a longest common subse-
quence A of x∗, y∗.

(2) Every character in x∗ and y∗ is replaced independently with probability p by a
random bit, except that the perturbation of A inside x and that of A inside y are
identical.

Results. We start by investigating the typical properties of a smoothed instance
(x, y), proving along the way that the expected edit distance ed(x, y) is comparable
to that of the generating strings, ed(x∗, y∗).

5After the conference version of our paper appeared [Andoni and Krauthgamer 2008], the approximation

factor was improved to 2Õ(
√

log d) [Andoni and Onak 2009], and then to (log d)O(1/ε) in d1+ε time, for any
0 < ε < 1 [Andoni et al. 2010b].
6In contrast, the analogous decision problem under Hamming distance can clearly be solved in O(1) time.
7In contrast, the analogous problem under Hamming distance can be solved within 1 + ε approximation
[Kushilevitz et al. 2000].

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:3

Our first result is a deterministic algorithm that approximates the edit distance
within a constant factor, and its smoothed runtime complexity is near-linear. Specifi-
cally, for any desired 0 < ε < 1, the algorithm always obtains an O(1

εp log 1
εp) approx-

imation to ed(x, y), and with high probability over the randomness in the smoothing,
it runs in time O(d1+ε). For comparison, the algorithm of Batu, Ergün, and Sahinalp
[Batu et al. 2006] for worst-case inputs requires a similar running time of O(d1+ε) and
achieves approximation d(1−ε)/3+o(1).

Our second result is a sublinear time algorithm for smoothed instances. Specifically,
for every desired 0 < ε < 1, the algorithm achieves an O(1

εp log 1
εp) approximation in

time O(d0.5+ε +d1+ε/ ed(x, y)). For comparison, the algorithm of Batu et al. [Batu et al.
2003] for worst-case inputs can only distinguish a polynomially large gap in the edit
distance, and only at the highest regime Ω(d). This second result obviously subsumes
the first one; we nevertheless present the first result because its algorithm is simpler
(and deterministic), and because it gradually introduces the ideas necessary for the
second algorithm.

While not the focus of this article, we note that it is likely that the results may
be extended to larger alphabets (adapting a natural extension of the smoothed model)
without degradation in the parameters of the algorithms. We concentrate on the binary
alphabet case since this seems to be the hardest regime, as suggested by the recent
work of [Andoni et al. 2010b] (see Theorem 4.12 and Lemma 4.13).

Techniques. Our algorithms are based on two new technical ideas. The first one is
to find matches of blocks (substrings) of length L = O(1

p log d) between the two strings,

where two blocks are considered a match if they are at a small edit distance (say εL).
This same idea, but in a more heuristic form, is used by practical tools. In particular,
PatternHunter [Ma et al. 2002] uses such a notion of matches (to identify “seeds”),
significantly improving over BLAST [Altschul et al. 1990], which considers only iden-
tical blocks to be a match. Thus, our smoothed analysis may be viewed as giving some
rigorous explanation for the empirical success of such techniques.

The second idea is to reduce the problem to edit distance on permutations (in worst-
case), called in the literature Ulam’s distance, or the Ulam metric. Here and through-
out, a permutation is a string in which every symbol appears at most once.8 The Ulam
metric is a submetric of edit distance, but the algorithmic bounds known for it are sig-
nificantly better than those for the general edit distance. In particular, Ulam’s distance
between permutations of length d can be computed in linear time O(d log d), e.g. using
Patience Sorting [Aldous and Diaconis 1999]. The main challenge we overcome is to
design a reduction that distorts distances by at most a constant factor. Indeed, there
is an easy reduction with distortion L = O(1

p log d), that follows simply because with

high probability, in each string, the blocks of length L are all distinct, see [Charikar
and Krauthgamer 2006, Section 3.1].

1.2. Related Work

Average-case analysis of edit distance. Random models for edit distance were stud-
ied in two contexts, for pattern matching and for nearest neighbor searching. In the
former, the text is typically assumed to be random, i.e., each character is chosen uni-
formly and independently from the alphabet, and the pattern is usually not assumed
to be random. We refer the reader to the survey [Navarro 2001, Section 5.3] for details

8It is sometimes convenient, though not crucial, to use an alphabet Σ with size larger than d. We then define
a permutation as a string whose characters are all distinct.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:4 A. Andoni and R. Krauthgamer

and references. For nearest neighbor search, the average-case model is quite similar,
see [Navarro et al. 2001; Gollapudi and Panigrahy 2006].

Our model is considerably more general than the random strings model. In particu-
lar, the average-case analysis often relies on the fact that no short substring of the text
is identical to any substring of the pattern, to quickly “reject” most candidate matches.
In fact, for distance estimation, it is easy to distinguish the case of two random strings
from the case of two (worst-case) strings at a smaller edit distance — just choose one
random block of logarithmic length in the first string and check whether it is close in
edit distance to at least one block in the second string. We achieve a near-linear time
algorithm for a more adversarial model, albeit by allowing constant factor approxima-
tion.

Smoothed complexity and semi-random models. Smoothed analysis was pioneered
by Spielman and Teng [Spielman and Teng 2004] as a framework aimed to explain the
practical success of heuristics that do not admit traditional worst-case analysis. They
analyzed the simplex algorithm for linear programming, and since then researchers in-
vestigated the smoothed complexity of several other problems, mostly numerical ones,
but also some discrete problems. An emerging principle in smoothed analysis is to per-
form property-preserving perturbations [Spielman and Teng 2003], example of which
is our model. Specifically, our model may be seen as performing a perturbation of x∗

and y∗ that preserves the common subsequence A.
In combinatorial optimization problems, smoothed analysis is closely related to an

earlier notion of semi-random models, which were initiated by Blum and Spencer
[Blum and Spencer 1995]. This research program encompasses several interesting
questions, such as what algorithmic techniques are most effective (spectral methods?),
and when is the optimum solution likely to be unique, hard to find, or easy to certify, see
e.g. [Frieze and McDiarmid 1997; Feige and Kilian 2001] and the references therein.

To the best of our knowledge, smoothed analysis and/or semi-random models were
not studied before for sequence alignment problems.

Distance estimation. Algorithms for distance estimation are studied also in other
scenarios, using different notions of efficiency. One such model is the communica-
tion complexity model, where two parties are each given a string, and they wish to
estimate the distance between their strings using low communication [Kushilevitz
and Nisan 1997]. A communication lower bound was recently proved in [Andoni and
Krauthgamer 2010; Andoni et al. 2010a] for the edit distance metric, even on permu-
tations, and it holds for approximations as large as Ω(log d/ log log d).

1.3. Preliminaries

Strings. Let x be a string of length d over alphabet Σ. A position in the string is an
index i ∈ [d], where throughout we let [k] = {1, 2, . . . , k}. We write x[i] or xi to denote
the symbol appearing in position i in x. Let [i : j] denote the sequence of positions
(i, i + 1, . . . , j). We write x[i : j] or x[i:j] for the corresponding substring of x. A block is
a substring, often of a predetermined length.

A variant of edit distance. Let x, y be two strings. Define ed(x, y) to be the minimum
number of character insertions and deletions needed to transform x into y. Character
substitution are not allowed, in contrast to ed(x, y), but a substitution can be simulated
by a deletion followed by an insertion, and thus ed(x, y) ≤ ed(x, y) ≤ 2 ed(x, y). Observe
that

ed(x, y) = |x| + |y| − 2 LCS(x, y),

where LCS(x, y) is the length of the longest common subsequence of x and y.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:5

Example. For x = 010111 and y = 101000, LCS(x, y) = 3 (corresponding, e.g., to
substring 101), and ed(x, y) = 6, whereas ed(x, y) = 4 (corresponding to a deletion,
insertion and two substitutions).

Alignments. For two strings x, y of length d, an alignment is a function A : [d] →
[d] ∪ {⊥} that is monotonically increasing on A−1([d]) and satisfies x[i] = y[A(i)] for
all i ∈ A−1([d]). Define the length (or size) of the alignment as len(A) = |A−1([d])|,
i.e., the number of positions in x that are matched by A. Let the cost of A be cost(A) =
2(d−len(A)) = 2|A−1(⊥)|, i.e. the number of positions in x and in y that are not matched
by A. Observe that an alignment between x and y corresponds exactly to a common
subsequence to x and y. Thus, if A is an alignment between x and y, then

cost(A) = 2(d − len(A)) ≥ 2d − 2 LCS(x, y) = ed(x, y),

with equality if and only if A is an alignment of maximum length.
Example. For the same x = 010111 and y = 101000, the alignment corresponding to

the substring 101 would be defined as A = (⊥, 1, 2, 3,⊥,⊥), hence cost(A) = 6.

Block matches. Consider two strings x, y and a block length L ∈ [d]. For blocks
x[i:i+L−1] and y[j:j+L−1] of length L, we let edA(x[i:i+L−1], y[j:j+L−1]) be the number of
positions k ∈ [i : i+L−1] such that A(k) 6∈ [j : j +L−1]. We let match(x[i:i+L−1]) denote
the block y[j:j+L−1], where j ∈ [d−L+1] minimizes ed(x[i:i+L−1], y[j:j+L−1]), breaking the
ties arbitrarily. For an alignment A between x and y, let matchA(x[i:i+L−1]) be the block
y[j:j+L−1], where j ∈ [d − L + 1] minimizes edA(x[i:i+L−1], y[j:j+L−1]), breaking the ties
arbitrarily. Slightly abusing notation, we sometimes let match and matchA represent
the corresponding position j (instead of the substring y[j:j+L−1]), but the distinction
will be clear from the context.

Example. Consider the example from above and L = 3. Then, edA(x[1:3], y[2:4]) = 2,
even if ed(x[1:3], y[2:4]) = 0. Also, match(x[1:3]) = y[2:4], but matchA(x[1:3]) = y[1:3].

Smoothed model. Let 0 ≤ p ≤ 1, let x∗, y∗ ∈ {0, 1}d be two strings, and fix a
maximum-length alignment A∗ between x∗ and y∗. Let x, y ∈ {0, 1}d be the strings
obtained from x∗, y∗ respectively, by replacing, independently with probability p, each
character with a random one, except that the positions aligned by A∗ are kept corre-
lated. Formally, let πx ∈ {0, 1}d be a string where each πx[j] is drawn independently
to be 1 with probability p/2 and 0 otherwise, and let πy be defined similarly (and in-
dependently), except for position j ∈ A∗([d]), for which we set πy[j] = πx[(A∗)−1(j)].
Now let x[i] = x∗[i] + πx[i] and y[i] = y∗[i] + πy[i], where addition is done modulo 2. We
call the pair (x, y) a smoothed instance of edit distance, and denote its distribution by
Smoothp(x

∗, y∗, A∗).

2. TYPICAL PROPERTIES OF SMOOTHED INSTANCES

We first show that the edit distance of a smoothed instance is likely to be similar to that
of the strings used to generate it. We then turn our attention to the distance between
different substrings of the smoothed strings x and y. Specifically, we show that blocks
of length L = O(p−1 log d) are likely to be far from each other in terms of edit distance,
with the few obvious exceptions of overlapping blocks and blocks that are aligned via
the original optimal alignment A∗. Besides the inherent interest, these bounds are
useful in the smoothed analysis of our algorithms carried out in subsequent sections.

2.1. Typical Edit Distance of a Smoothed Instance

We start by proving that for any two strings x∗, y∗, their smoothed instance preserves
the original edit distance, up to a constant factor.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:6 A. Andoni and R. Krauthgamer

THEOREM 2.1. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d, and fix
0 < p ≤ 1. Then a smoothed instance (x, y) ∈ Smoothp(x

∗, y∗, A∗) satisfies

Pr
(x,y)

[

Ω(p
log(2/p)) ed(x∗, y∗) ≤ ed(x, y) ≤ ed(x∗, y∗)

]

≥ 1 − 2−Ω(p)·ed(x∗,y∗).

PROOF. Observe that ed(x, y) ≤ ed(x∗, y∗) always holds (i.e. with probability 1). We
proceed to show that with high probability, ed(x, y) ≥ Ω(p

log(2/p)) · ed(x∗, y∗), which by

the facts from Section 1.3 would complete the proof. We let U denote the unaligned
positions in x under A∗, i.e. U = (A∗)−1(⊥) and |U | = 1

2 ed(x∗, y∗).
Consider a potential alignment A between x and y, i.e. a map A : [d] 7→ [d] ∪ {⊥}

that is monotonically increasing on A−1([d]), and suppose that cost(A) = 2|A−1(⊥)| is
at most α · ed(x∗, y∗) for a small 0 < α ≤ 1/4 to be chosen later. For A to be an actual
alignment, we must additionally have that x[i] = y[A(i)] for every position i /∈ A−1(⊥),
and in particular for every position i ∈ U \ A−1(⊥). The number of such positions is at
least |U | − |A−1(⊥)| ≥ 1

2 ed(x∗, y∗) − 1
2α ed(x∗, y∗) ≥ 1

4 ed(x∗, y∗). For each of them, x∗[i]
is perturbed independently of y∗[A(i)], and thus x[i] 6= y[A(i)] occurs with probability
at least p/2. Thus, the probability that A is an actual alignment is at most

Pr
[

x[i] = y[A(i)] for all i ∈ U \ A−1(⊥)
]

≤
(

1 − p
2

)ed(x∗,y∗)/4

≤ e−p/8·ed(x∗,y∗).

We will apply a union bound on all potential alignments, and thus it suffices to have
an upper bound on the number of different values taken by A|U , the restriction of A
to the positions in U . Observe that A|U is determined by the number of insertions
and deletions occurring between every two successive positions in U (including the
insertions and deletions before the first position in U and after the last position in U),
and thus we can count the number of A|U as:

#{A|U} ≤
(|U | + 1

2α ed(x∗, y∗)
1
2α ed(x∗, y∗)

)2

≤
(

e(1+α)
α

)α ed(x∗,y∗)

≤ (1
α2)α ed(x∗,y∗).

Applying a union bound and choosing α = cp
log(2/p) for a sufficiently small constant

c > 0, we get

Pr
[

ed(x, y) ≤ α ed(x∗, y∗)
]

≤ e[2α ln(1/α)−p/8]·ed(x∗,y∗) ≤ e−(p/16)·ed(x∗,y∗),

which completes the proof of Theorem 2.1.

2.2. Typical Edit Distance Between Substrings (Blocks)

We now turn to showing some finer properties of a smoothed instance. The next lemma
analyzes the distances between two arbitrary blocks of logarithmic length from x and
y. We show that, two such blocks are almost always far away in terms of edit distance,
modulo two obvious exceptions: (1) blocks at nearby positions in the same string; and
(2) blocks from different strings that are (mostly) matched under the original optimal
alignment A∗. This lemma is similar in spirit to Theorem 2.1, but the main difference is
that here we also consider blocks whose perturbations are correlated, e.g., overlapping
blocks in the same string. This technical difficulty impedes direct concentration bounds
used in the previous theorem, and thus will require more ideas to complete the proof.

The lemma comprises three parts, taking care of three types of pairs of blocks: (a)
both blocks coming from the same string (either x or y); (b) a block from x and a block
from y that are (mostly) not matched under A∗; and finally (c) a block from x and a
block from y that are largely matched under A∗. See Figures 1 and 2 for illustrations
of the first two parts. We shall use of the notation introduced in Section 1.3.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:7

LEMMA 2.2. Let A∗ be an optimal alignment between x∗, y∗ ∈ {0, 1}d and fix 0 <
p ≤ 1. Let L ≥ C

p log d for a sufficiently large constant C > 0, and let ca, cb, cc > 0

be sufficiently small constants. Then with probability at least 1 − d−Ω(C), a smoothed
instance (x, y) ∈ Smoothp(x

∗, y∗, A∗) satisfies the following for all i, j ∈ [d − L + 1]:

(1) ed(x[i:i+L−1], x[j:j+L−1]) ≥ ca · min{pL, |j − i|}, and similarly for y.

(2) If edA∗(x∗
[i:i+L−1], y

∗
[j:j+L−1]) = βL for some cc

32 < β ≤ 1, then

ed(x[i:i+L−1], y[j:j+L−1]) ≥ cb
β

log(2/β) · pL.

(3) Let k∗ = matchA∗(i, L), then

ed(x[i:i+L−1], y[j:j+L−1]) ≥ min{cc · pL, cc · |j − k∗| − 2 edA∗(x∗
[i:i+L−1], y

∗
[k∗:k∗+L−1])}.

Furthermore, if |j − k∗| ≥ L, then ed(x[i:i+L−1], y[j:j+L−1]) ≥ cc · pL.

i

j

x =

i+L−1

j+L−1

[i, i+L−1]

[j, j+L−1]

Fig. 1. Illustration of Lemma 2.2(a) addressing two blocks from the same string x.

i

x =

i+L−1
[i, i+L−1]

j

y =

j+L−1
[j, j+L−1]

k∗

· · ·alignment A∗

Fig. 2. Illustration of Lemma 2.2(b) addressing blocks from x and from y that are mostly not matched under
A∗.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:8 A. Andoni and R. Krauthgamer

PROOF. It suffices to prove these bounds for fixed i, j ∈ [d − L + 1] and βL ∈ [L],
because the lemma follows by a union bound, when C > 0 is sufficiently large.

We start by proving part (a). Consider the case when |j − i| ≥ L. Since the cor-
responding blocks x[i:i+L−1] and x[j:j+L−1] do not overlap, they are perturbed indepen-
dently of each other. We will use the following observation: for every collection of events
E , F1, . . . , Ft,

Pr[∪iFi] ≤ Pr[Ē] +
∑

i

min{Pr[Fi], Pr[Fi|E]}. (2.1)

In particular, let E be the event that at least pL/4 bits in x[i:i+L−1] are flipped by the

perturbation. Note that Pr[Ē] ≤ e−Ω(pL) by Chernoff bound. We shall use the notation
p̂ = min{p, 1

2} (the reason to consider p̂ is that the cases p ≤ 1
2 and p > 1

2 require slightly
different bounds).

Consider a potential alignment A between the two blocks x[i:i+L−1] and x[j:j+L−1],
i.e. a map A : [L] → [L]∪{⊥} that is monotonically increasing on A−1([L]), and assume
that cost(A) = 2|A−1(⊥)| equals αpL for a constant 0 < α < 1/6 to be determined later.
Consider the mismatches under A between the unperturbed blocks namely,

MA = {k ∈ A−1([L]) : x∗
[i−1+k] 6= x∗

[j−1+A(k)]}. (2.2)

First suppose that |MA| ≥ pL/16. Then for A to be an actual alignment between the
two blocks in x, for every mismatch k ∈ MA, the perturbation must flip exactly one of
the two relevant bits, which happens with probability 2 · p/2 · (1− p/2) ≤ p̂. Since these
events are independent, in this case

Pr
[

A is an alignment
]

≤ p̂pL/16.

Now we consider the case when |MA| < pL/16, and assume that the event E occurs.
Then the number of mismatches after perturbing only x∗

[i:i+L−1], i.e. number of k ∈
A−1([L]) such that x[i−1+k] 6= x∗

[j−1+A(k)], is at least pL/4−|MA|−|A−1(⊥)| ≥ pL/16. For

A to be an actual alignment between the two perturbed blocks, all the corresponding
positions j − 1 + A(k) must also be flipped by the perturbation. Since each of these
happens with probability p/2 and they are independent,

Pr
[

A is an alignment | E
]

≤ (p/2)pL/16 ≤ p̂pL/16.

The number of potential alignments of cost αpL is exactly (as one needs to determine
the unaligned positions in each block)

(

L
1
2αpL

)2

≤
(

2e
αp

)αpL

≤
(

1
α2p

)αpL

. (2.3)

Finally we apply (2.1) with events Fi corresponding to all potential alignments A.
Choosing α > 0 to be a sufficiently small constant independent of p, we obtain that

Pr[ed(x[i:i+L−1], x[j:j+L−1]) ≤ αpL] ≤ e−Ω(pL) +
(

(1
α2p)16α · p̂

)pL/16

≤ e−Ω(pL),

which proves part (a) in the case |j − i| ≥ L.
The above proof immediately extends to the case |j − i| ≥ L/4 (the constant

1/4 is arbitrary here). Indeed, consider in each block the initial segment of length
t = |j − i|, which do not overlap. By the above argument, with high probability
ed(x[i:i+t−1], x[j:j+t−1]) ≥ Ω(pt) = Ω(pL), implying a similar lower bound for the two
blocks of length L.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:9

Next we prove part (a) in the remaining case where t = |j − i| < L/4. Note that in
this slightly harder case, the blocks x[i:i+L−1] and x[j:j+L−1] have a large overlap and
thus we do not have the easy independence from before.

Assume without loss of generality that i < j. As before, consider a potential align-
ment A : [L] → [L] ∪ {⊥} of cost α · min{pL, t} for a constant 0 < α < 1/16 to be deter-
mined later. Observe that for every k ∈ A−1([L]), we have |k −A(k)| ≤ 1

2 cost(A) ≤ 1
2αt,

thus i − 1 + k 6= j − 1 + A(k), and in particular these two positions are perturbed
independently of each other.

Define MA as in Eqn. (2.2), and consider the case where |MA| ≥ pL/64. Then for A
to be an actual alignment, for every k ∈ MA the event x[i − 1 + k] = x[j − 1 + A(k)]
must hold, i.e., exactly one of the two relevant bits must be flipped by the perturbation.
These events might not be independent, but we can easily find at least 1/3 of them that
are independent (here is a simple non-optimized argument: every bit x[l] appears in at
most two such events, so if we take a subset of the events greedily, for every event
taken, at most two need to be discarded). Thus in this case,

Pr
[

A is an alignment
]

≤ p̂pL/192.

Next suppose that |MA| < pL/64. Partition the interval [i : i + L − 1] into subintervals
of length t/2, and take every fourth subinterval starting from the first one, namely
I = [i : i+ t

2 −1]∪ [i+2t : i+ 5t
2 −1]∪ We define E to be the event that at least pL/16

positions in I are flipped by the perturbation. Notice that this event does not depend
on the choice of A, and that by a Chernoff bound, Pr[Ē] ≤ e−Ω(pL). As before, we shall
assume that the event E occurs. Observe that if k ∈ A−1([L]) and i − 1 + k ∈ I then
j − 1 + A(k) /∈ I (because the difference between these two positions is j − i + A(k) − k
which falls in the range [t − 1

2αt, t + 1
2αt]). After conditioning on the outcomes of the

perturbations inside I (only), the number of such k for which x[i−1+k] 6= x∗
[j−1+A(k)] is

at least pL/16− |MA|− |A−1(⊥)| ≥ pL/64. For A to be an actual alignment between the
two perturbed blocks, all the corresponding positions j − 1 + A(k) must also be flipped
by the perturbation. Since each of these happens with probability p/2 and they are
independent,

Pr
[

A is an alignment | E
]

≤ (p/2)pL/64 ≤ p̂pL/64.

The number of potential alignments of cost α · min{pL, t} ≤ αpL is at most (1
α2p)αpL by

Eqn. (2.3). Hence, applying (2.1) with events Fi corresponding to all potential align-
ments A, and choosing α > 0 to be a sufficiently small constant independent of p, we
have Pr[ed(x[i:i+L−1], x[j:j+L−1]) ≤ α · min{pL, t}] ≤ e−Ω(pL). This completes the proof of
part (a).

Before continuing to parts (b) and (c), we prove the claim below, which will be used
in both parts. It is a variant of the argument from above for alignments between blocks
of x and y.

CLAIM 2.3. Fix i, j ∈ [d − L + 1], and let 0 < β ≤ 1 and α ≤ β
64 log(1/β) . Suppose that

for every potential alignment A : [L] → [L]∪ {⊥} between x[i:i+L−1] and y[j:j+L−1] of cost

at most αpL, there is S ⊂ [L] of size |S| = βL, such that for all k ∈ S \ A−1(⊥) we have
j + A(k) − 1 6= A∗(i + k − 1) (that is, A and A∗ map positions in S differently). Then

Pr[ed(x[i:i+L−1], y[j:j+L−1]) ≤ αpL] ≤ e−Ω(βpL).

PROOF. Fix a potential alignment A of cost αpL. First, we can pick a subset Ŝ ⊂ S,

such that all events x[i − 1 + k]
?
= y[j − 1 + A(k)] for k ∈ Ŝ \ A−1(⊥) are independent.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:10 A. Andoni and R. Krauthgamer

Formally, Ŝ is such that A∗(i − 1 + Ŝ \ A−1(⊥)) ∩ (j + A(Ŝ) \ A−1(⊥)) = ∅. The largest

such set has size |Ŝ| ≥ |S|/2.

Define MA ⊆ Ŝ to be those positions in Ŝ which are non-matching positions under A
in x∗, y∗:

MA = {k ∈ A−1([L]) ∩ Ŝ : x∗
[i−1+k] 6= y∗

[j−1+A(k)]}.
First, suppose MA ≥ p

32βL. Then, for each k ∈ MA, the event x[i−1+k] = y[j−1+A(k)]

happens only with probability at most p̂. Since all these events are independent (due
to that fact that MA ⊆ Ŝ), we conclude that A is a valid alignment with probability at
most p̂|MA| ≤ p̂pβL/32.

Now suppose MA < p
32βL. Define E to be the event that there are at least p

8βL

positions k ∈ Ŝ that are flipped: x[i+k−1] 6= x∗[i+k−1]. Note that Pr[Ē] ≤ e−Ω(pβL) by

Chernoff bound. Now we condition on the event E . Consider the positions k ∈ Ŝ\A−1(⊥)
such that x[i + k − 1] 6= y∗[j + A(k)− 1]; the number of such positions is at least p

8βL −
|MA|− |A−1(⊥)| ≥ p

16βL. For each such position k, the event x[i+k−1] = y[j +A(k)−1]
happens with probability p/2 ≤ p̂. Furthermore, all such events are independent, even
after we condition on E , and thus A is a valid alignment with probability at most
p̂pβL/16.

The number of alignments of cost αpL is at most (1
α2p)αpL by Eqn. (2.3). Finally,

applying (2.1), we obtain that

Pr[ed(x[i:i+L−1], y[j:j+L−1]) ≤ αpL] ≤ e−Ω(pβL) + p̂pβL/16 · (1
α2p)αpL.

The conclusion follows as long as α ≤ β
64 log(1/β) . This completes the proof of

Claim 2.3.

Part (b) now follows easily from the above claim. In particular, suppose
edA∗(x∗

[i:i+L−1], y
∗
[j:j+L−1]) = βL for some β > 0. Let

U = {k ∈ [L] : A∗(i + k − 1) 6∈ [j : j + L − 1]}
be the set of positions in x∗

[i:i+L−1] not matched into y∗
[j:j+L−1] under A∗. Note that

|U | = βL. Then just apply Claim 2.3 with S = U .

We proceed to proving part (c). Suppose βL = edA∗(x∗
[i:i+L−1], y

∗
[k∗:k∗+L−1]) ≥ L/4.

Then edA∗(x∗
[i:i+L−1], y

∗
[j:j+L−1]) cannot be smaller, and the proof follows by apply-

ing part (b). So assume henceforth that βL ≤ L/4. Now if |j − k∗| ≥ L/2, then
edA∗(x∗

[i:i+L−1], y
∗
[j:j+L−1]) ≥ L/2 − L/4, and the again the proof follows by applying

part (b).
It remains to deal with the case that |j − k∗| < L/2 (and βL ≤ L/4). We use the

triangle inequality to deduce that

ed(x[i:i+L−1], y[j:j+L−1]) ≥ ed(y[k∗:k∗+L−1], y[j:j+L−1]) − ed(x[i:i+L−1], y[k∗:k∗+L−1]).

Thus, by part (a), and using the fact that ed(x[i:i+L−1], y[k∗:k∗+L−1]) ≤
2 edA∗(x∗

[i:i+L−1], y
∗
[k∗:k∗+L−1]) = 2βL, we have

ed(x[i:i+L−1], y[j:j+L−1]) ≥ ca · min{pL, |j − k∗|} − 2βL.

If βL < ca

4 pL, then we are done:

ed(x[i:i+L−1], y[j:j+L−1]) ≥ min{ ca

2 pL, ca · |j − k∗| − 2βL}.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:11

We are thus left with the case ca

4 pL ≤ βL ≤ L/4. We may further assume that

|j − k∗| ≥ 2
cc

· βL, as otherwise, the inequality we need to prove is trivial (asserting

some edit distance is at least some negative number). Assuming this last condition,
we shall prove that ed(x[i:i+L−1], y[j:j+L−1]) ≥ Ω(pL). Recall that cc > 0 is a sufficiently
small absolute constant.

We now want to show that we can apply Claim 2.3. Without loss of generality, sup-
pose k∗ < j. Consider a potential alignment A : [L] → [L] ∪ {⊥} between x[i:i+L−1] and

y[j:j+L−1] of cost αpL for α ≤ O(β
log(2/β)) (in particular α ≤ β/4). Let S be the set of

positions in x[i : i + L − 1] that A matches to y[k∗ : k∗ + L − 1], formally

S = {z ∈ [L] : A(z) ∈ [1 : k∗ − j + L]}
For each z ∈ S, the alignments A and A∗ cannot map x[i + z − 1] to the same symbol in
y, formally, j + A(z)− 1 6= A∗(i + z − 1), because j + A(z)− 1 ≥ j + (z − αpL/2)− 1 and
at the same time A∗(i + z − 1) ≤ k∗ + z − 1 + βL or A∗(z) = ⊥ (recall j − k∗ ≥ 2

cc
· βL

and αp ≤ α ≤ β). Moreover, by definition of S we have |S| ≥ (k∗ − j + L) − 1
2 cost(A) ≥

L/4 ≥ βL (recall |j − k∗| < L/2). We are thus in position to apply Claim 2.3, and this
completes the proof of part (c) and of the entire Lemma 2.2.

3. NEAR-LINEAR TIME DISTANCE ESTIMATION

Our first algorithm is guaranteed to give a correct answer for any input strings,
but has an improved runtime for smoothed inputs, coming from a distribution
Smoothp(x

∗, y∗, A∗).

THEOREM 3.1. For every ε > 0 and p > 0 there is a deterministic algorithm that,
given as input two strings x, y ∈ {0, 1}d, approximates ed(x, y) within factor O(1

εp log 1
εp),

and on a p-smoothed instance, with high probability its running time is O(d1+ε).

Before proving the theorem, we present two lemmas that establish useful properties
of the edit distance between two strings and lead us to the algorithm. These lemmas
are driven by the basic approach of the algorithm — to break the two input strings
into blocks (short substrings later chosen to be of logarithmic length), and rely only
on distances between blocks, by essentially finding for every block in x its best match
in y, with no attempt to “coordinate” the decisions for successive blocks in x. We show
that this crude information is enough for estimating the edit distance between the
two strings, up to a constant factor. We believe these lemmas may be useful in other
scenarios as well.

3.1. Structural Lemmas

The first lemma gives properties of an optimal alignment between two (worst-case)
strings and, as such, does not deal with smoothed instances. In this section we will
only need the first two parts of the lemma, which are easier to state, but in Section 4
we will use all four parts. We shall use the notation matchA(·) and related definitions
of block matches from Section 1.3.

Let us briefly outline the intuition behind this lemma. Consider an optimal align-
ment A between two strings x, y and fix a block-length L. Suppose we partition x
into d/L such blocks, each starting at a position (i − 1)L + 1 for i ∈ [d/L]. We would
like to find, for each such block Xi = x[iL−L+1:iL], a corresponding block in y, denoted
Yi = y[si:si+L−1], such that the alignment A between x and y is largely contained inside
the pairs (Xi, Yi) (i.e., only a small part of A maps a position in Xi to a position in Yj

for j 6= i). Indeed, part (a) shows that, for an appropriate choice of Yi’s, this can be
accomplished without increasing too much the cost of the alignment (equivalently, the

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:12 A. Andoni and R. Krauthgamer

edit distance between the two strings). Furthermore, part (b) shows that if we remove
from A matches within pairs (Xi, Yi) that are at a large edit distance, then the cost of
the resulting alignment will not increase too much. Finally, parts (c) and (d) describe
the relative positions of the blocks Yi, namely that the blocks Yi do not have much
overlap. This property will be needed in Section 4, where an alignment between x and
y is not constructed explicitly (in full), and we need to ensure that any single position
in y contributes to the alignment of at most one pair (Xi, Yi).

LEMMA 3.2. Fix an optimal alignment A between two strings x, y ∈ {0, 1}d. Let

L ∈ [d] divide d. Partition x into successive blocks of length L, denoted (Xi)
d/L
i=1 , and let

Yi = matchA(Xi). Let V be the set of i for which edA(Xi, Yi) < L. Then the following
holds.

(1)
∑

i∈[d/L] edA(Xi, Yi) ≤ 2 ed(x, y).

(2) For ε > 0, let Bε = {i ∈ [d/L] : ed(Xi, Yi) > εL}. Then |Bε| ≤ 4
εL · ed(x, y).

(3) For i ∈ [d/L], let si be the starting position of Yi. Then for all i, i′ ∈ V and i < i′, we
have

si′ − si ≥ L − edA(Xi, Yi) − edA(Xi′ , Yi′).

(4) For i ∈ [d/L], let Si be the positions in Yi = y[si:si+L−1] that appear also in some

block Yi′ for i′ 6= i. Then
∑

i∈[d/L] |Si| ≤ 2 ed(x, y).

PROOF. For i ∈ [d/L], let MINi and MAXi, respectively, be the positions of the first
and last aligned symbol in Xi, i.e., MINi = min{j ∈ [iL − L + 1 : iL] | A(j) ∈ [d]} and
similarly for MAXi. It could be that MINi and MAXi are undefined, when A(j) = ⊥ for
all j ∈ [iL − L + 1 : iL], in which case, abusing the notion, we define A(MINi) = 0 and
A(MAXi) = −1. Let ux

i be the number of unaligned positions in Xi = x[iL−L+1:iL], i.e.
ux

i = |{j ∈ [iL−L+1 : iL] | A(j) = ⊥}|. Also, let uy
i be the number of unaligned positions

in y[A(MINi):A(MAXi)]. If MINi, MAXi are undefined, then set ux
i = L and uy

i = 0.
If A(MAXi) − A(MINi) < L, then edA(Xi, Yi) = ux

i . If A(MAXi) − A(MINi) ≥ L, then
edA(Xi, Yi) ≤ ux

i + uy
i . Observing that each of

∑

i ux
i and

∑

i uy
i is bounded by ed(x, y)

proves part (a).
To prove part (b), notice that if ed(Xi, Yi) > εL, then edA(Xi, Yi) ≥ 1

2 ed(Xi, Yi) > 1
2εL.

By previous part, there could be at most 4
ε such blocks, and thus the claimed bound on

the size of Bε.
For part (c), note that, since A(MAXi) < A(MINi′), we have

si ≤ A(MAXi) + 1 −
(

L − edA(Xi, Yi)
)

≤ A(MINi′) − L + edA(Xi, Yi).

We also observe that si′ ≥ A(MINi′)−edA(Xi′ , Yi′). Taking si′−si implies the inequality.
Finally, we prove part (d). For i ∈ [d/L], define r′i to be the number of j ∈ [si : si+L−1]

such that j 6∈ [A(MINi) : A(MAXi)]. Then we argue that 2
∑

i∈V r′i ≥ ∑

i∈V |Si|.
We charge all contribution in

∑

i∈V |Si| to the positions j ∈ [si : si + L − 1] with
j 6∈ [A(MINi) : A(MAXi)]. Any such position j contributes at most twice to the sum
∑

i∈V |Si|: at most once in |Si| and once in |Sk| for k ∈ V such that j ∈ [A(MINk) :
A(MAXk)].

We conclude that
∑

i∈[d/L] |Si| ≤ 2 ed(x, y). We upper bound r′i by ux
i . Indeed, if

A(MAXi) − A(MINi) ≥ L, then r′i = 0. If A(MAXi) − A(MINi) ≤ L − 1, then
r′i = L − 1 − (A(MAXi) − A(MINi)) ≤ ux

i . Also, for i 6∈ V , we have that |Si| ≤ L = ux
i .

Thus,
∑

i∈[d/L] |Si| ≤ 2
∑

i∈V r′i + L · (d/L − |V |) ≤ 2
∑

ux
i ≤ 2 ed(x, y).

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:13

The next lemma proves a converse to the previous lemma, and applies to smoothed
instances only. The previous lemma essentially said that, for a typical block Xi in x,
there exists a block Yi in y that contains most of the alignment of Xi and hence is “close”
in edit distance to Xi. The next lemma says that, after the smoothing operation, the
block Xi is also far from all “other” blocks of y (those that do not overlap with Yi).

LEMMA 3.3. Let C > 1 and 0 < c′ < 1 be sufficiently large and sufficiently small
constants, respectively, and let L = C

p log d. Let A∗ be a maximum-length alignment

between x∗, y∗ ∈ {0, 1}d. Then for every i ∈ [d] there is j∗i ∈ [d] such that, for (x, y) ∈
Smoothp(x

∗, y∗, A∗), with probability at least 1 − d−2, for all j with |j − j∗i | > L we have
ed(x[i:i+L−1], y[j:j+L−1]) > c′pL.

PROOF. Take j∗i = matchA∗(x∗
[i:i+L−1]). If edA∗(x∗

[i:i+L−1], y
∗
[j∗

i
:j∗

i
+L−1]) < L/4, then for

all j with |j − j∗i | > L we have edA∗(x∗
[i:i+L−1], y

∗
[j:j+L−1]) ≥ L − L/4. Otherwise, for

all j we have edA∗(x∗
[i:i+L−1], y

∗
[j:j+L−1]) ≥ L/4. In both cases the conclusion results by

applying Lemma 2.2(b).

3.2. A Near-Linear Time Algorithm for Smoothed Instances

Having established the two structural lemmas, we proceed to present our near-linear
time algorithm. We will need the following algorithmic result, which can be seen as
a generalization of the Patience Sorting algorithm for computing the edit distance be-
tween two non-repetitive strings (such as permutations), to handle (worst-case) strings
with only mild repetitions. For a cleaner statement, we give a graph-theoretic inter-
pretation, where edges of a bipartite graph should be viewed as potential matches
between positions in the two strings. In this language, non-repetitive strings imply
that the number of edges in the graph is |E| ≤ d.

LEMMA 3.4. Consider a bipartite graph G = ([d], [d], E), and call two edges (i, j) ∈
E and (k, l) ∈ E intersecting if (i − k)(j − l) ≤ 0. Then a maximum-cardinality subset
of non-intersecting edges can be found in time O(d + |E| log d) by reducing the problem
to Patience Sorting.

PROOF. Construct a string z of length |E| via the following procedure. Start with
an empty string. For each node i = 1, . . . , d, we append to the end of z the list of
characters (j1,−i), . . . (jk,−i) where j1 > j2 > . . . > jk are the neighbors of i, i.e.,
{j1, . . . , jk} = {j ∈ [d] : (i, j) ∈ E}. Notice that j1, . . . , jk are appended in decreasing
order.

It should now be clear that the longest increasing subsequence of x gives a maxi-
mum subset of non-intersecting edges (the order of symbols (j,−i) is the lexicographic
one). More precisely an increasing sequence (j1,−i1) < . . . < (jl,−il) forms a non-
intersecting set (i1, j1), (i2, j2), . . . (il, jl) and vice-versa.

The string z has length |E|, and thus, using Patience Sorting (or just straightfor-
ward dynamic programming), we can find the longest increasing subsequence of z
in O(|z| log |z|) = O(|E| log d) time. The complete procedure is given below as Algo-
rithm 1.

We now prove Theorem 3.1. The main algorithm follows the intuition built up by
the structural lemmas. Consider a smoothed instance (x, y) = Smoothp(x

∗, y∗, A∗). We
partition the string x into blocks Xi = x[iL−L+1:iL], and for each Xi we find all the
blocks (substrings) of y that are close to Xi in edit distance, and treat them as potential
candidate matches for positions in Xi. Using Lemma 3.2, we know that we will discover
in this fashion most of the original alignment A∗. Furthermore, Lemma 3.3 predicts
that the number of such potential candidates is small, and hence we can apply the

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:14 A. Andoni and R. Krauthgamer

ALGORITHM 1: Matching(edge set E ⊂ {1, . . . , d} × {1, . . . , d})

// Finds a maximum subset of non-intersecting edges
1 Set z to be an empty string
2 for i = 1 . . . d do
3 Let j1 > . . . > jk be the neighbors of i in the edge set E
4 Append to the end of z the characters (j1,−i), . . . (jk,−i)

5 Find a longest increasing subsequence of z using Patience Sorting (where tuples are ordered
lexicographically), and denote it by (j1,−i1), . . . (jl,−il)

6 return {(j1, i1), . . . , (jl, il)}

algorithm from Lemma 3.4. An important step of the algorithm is to find, for each Xi,
the substrings of y that are at a small edit distance. While a naive implementation
of this step would take a quadratic time, we can obtain a near-linear time by using a
Near Neighbor data structure, in the case where the block length L is logaritmic. This
step is the only one using the fact that the strings are a smoothed instance. Full details
follow below.

PROOF PROOF OF THEOREM 3.1. Our algorithm uses as a building block a Near
Neighbor (NN) data structure under edit distance, defined as follows. Preprocess a
database of m strings each of length L, so that given a query string, the algorithm re-
turns all database strings at distance ≤ εL from the query. We will construct such data
structure at the end, and for now assume it can be implemented with preprocessing
P (m, L) and query time Q(m, L)+O(|output|), where output is the list of points reported
by the query.

Let C > 1 and L be as in Lemma 3.3 and assume ε < c′p. Our algorithm proceeds in
two stages. The first one uses the NN data structure to find, for each position in x, a
few “candidate matches” in y, presumably including the correct match (under optimal
alignment) for a large fraction of positions in x. The second stage views the candidate
matches between positions in x and in y as the edge-set E of a bipartite graph and
applies the algorithm from Lemma 3.4, thereby reconstructing an alignment.

Let us describe the algorithm in more detail. The first stage builds an NN data
structure on all the substrings of length L in y. Then, it partitions x into successive
blocks x[iL−L+1:iL] for i ∈ [d/L], and for each such block, queries the NN data structure
to identify all blocks in y that are within edit distance εL. For each such block in y,
collect all the character matches between the two blocks, i.e., every zero in the block in
x with every zero in the block in y, and similarly for ones. Let E be the resulting list
of all candidate matches. The second stage simply applies Lemma 3.4 to this list E to
retrieve an alignment between x and y. The reported approximation to ed(x, y) is then
twice the cost of this alignment. We present the complete algorithm as Algorithm 2.

Next we argue the correctness of the algorithm. Consider an optimal alignment A
between x and y. Lemma 3.2 guarantees that for all but 4 ed(x, y)/εL blocks from x,
there exists a corresponding block y[si:si+L−1] at distance ≤ εL. Since the algorithm

detects all pairs of blocks at distance ≤ εL, the lemma implies that all but O(1
ε) ed(x, y)

of aligned pairs from the alignment A will appear in the list of candidate matches. The
algorithm will then compute an alignment A′ that has at least d−O(1

ε) ed(x, y) aligned
pairs. Concluding, the algorithm will output a distance D such that ed(x, y) ≤ D ≤
O(1

ε) ed(x, y).
Next we show that, with high probability, the running time of the algorithm

is O(dL log d + P (d, L) + d
L · Q(d, L)). Indeed, by Lemma 3.3, for each query block

x[iL−L+1:iL], only blocks y[j:j+L−1] for |j − j∗iL−L+1| ≤ L can be at distance εL. Thus, for
each position in x[iL−L+1:iL], we have at most 3L candidate matches, hence |E| ≤ O(dL).

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:15

ALGORITHM 2: EDIT(strings x, y ∈ {0, 1}d, reals p, ε ∈ (0, 1))

// Approximates edit distance on a smoothed instance (x, y) ∈ Smoothp(x
∗, y∗, A∗).

1 L← C
p

log d, where C is the constant from Lemma 3.3

2 NNS-Preprocess (all length L substrings of y, ε)
3 E ← ∅
4 for i← 1 to n/L do
5 Q← NNS-Query(x[iL−L+1:iL])
6 foreach y[j:j+L−1] ∈ Q do add to E all the pairs of the form (a, b), such that x[a] = y[b] and

a ∈ [iL− L + 1 : iL], b ∈ [j : j + L− 1]

7 M ← Matching(E)
8 return 2(d− |M |)

We can now conclude that the first stage runs in O(P (d, L)+d/L ·(Q(d, L)+L2)), where
O(L2) is the time to compute all the character matches between a block in x and the cor-
responding 3L positions in y. The second stage runs in time O(|E| log d) = O(dL log d).

Finally, it remains to describe the NN data structure. We achieve preprocessing time
P (m, L) = m · 2L·O(ε log 1/ε) and query time Q(m, L) = O(L). The data structure simply
prepares all answers in advance: for each string σ in the database and every string τ
at edit distance ≤ εL from σ, store the pair (τ, σ) in a trie (we can also use a hash table
if we allow a randomized algorithm). To query a string q, the algorithm uses the trie to
find all pairs (q, η), where η ∈ {0, 1}L, and, for each such pair, reports the string η. The
complete description of the data structure is presented as Algorithm 3.

ALGORITHM 3: Data structure for Near Neighbors within edit distance εL

NNS-Preprocessing(set S of m strings in {0, 1}L, real 0 < ε < 1):

1 Compute all tuples (τ, σ) ∈ {0, 1}L × {0, 1}L where σ ∈ S and ed(τ, σ) ≤ εL
2 Construct a trie on this set

NNS-Query(string q ∈ {0, 1}L):

1 Retrieve from the trie all tuples of the form (q, η) where η ∈ {0, 1}L

2 For each such tuple (q, η), report η

Recall that a trie with t strings of length L, has query time O(L), and preprocessing

time O(tL). Thus, Q(m, L) ≤ O(L) and since there are at most
(

2L
εL

)3
strings at edit

distance ≤ εL from a given string (the exponent 3 provides a crude bound on the

number of deletions, insertions of zeros, and insertions of ones), we have t ≤ m
(

2L
εL

)3

and

P (m, L) ≤ O(m ·
(

2L
εL

)3 · L) ≤ m · 2L·O(ε log(1/ε)).

The overall running time for O(1/ε) approximation is (with high probability)

d1+O(p−1ε log(1/ε)). To complete the proof with respect to a given ε > 0, apply the en-
tire analysis shown so far to a smaller ε′ = Θ(εp/ log 1

pε). The resulting running time is

now d1+ε and the approximation factor is O(1/ε′) = O(1
εp log 1

εp).

4. SUBLINEAR-TIME DISTANCE ESTIMATION

We now present a sublinear-time algorithm that estimates the edit distance of a
smoothed instance (x, y) within a constant factor. The precise guarantees are stated

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:16 A. Andoni and R. Krauthgamer

in the following theorem. As before, we assume that (x, y) ∈ Smoothp(x
∗, y∗, A∗), where

A∗ is the optimal alignment between two strings x∗, y∗ ∈ {0, 1}d, and 0 < p ≤ 1.

THEOREM 4.1. For every ε > 0 and p > 0 there is a randomized algorithm
that, given as input (x, y) ∈ Smoothp(x

∗, y∗, A∗), approximates ed(x, y) within factor

O(1
εp log 1

εp) in time (
√

d + d/ ed(x, y)) · (dε log d
p)O(1), with success probability at least

1 − d−2 (over the randomness in the smoothing operation and the algorithm’s coins).

The high-level approach is to map the smoothed instance (x, y) to a pair of permuta-
tions (P, Q), such that the edit distance between x and y is approximately equal to the
Ulam distance between P and Q. We can then estimate the Ulam distance between P
and Q using an off-the-shelf sublinear algorithm for estimating Ulam distance. Specif-
ically, we use the following algorithm of [Andoni and Nguyen 2010]9. We use Õ(f(d))
as a shorthand for O(f(d) · (log d)O(1)).

THEOREM 4.2 ([ANDONI AND NGUYEN 2010]). There exists a randomized algo-
rithm that, given access to two permutations P, Q of length d, approximates ed(P, Q)

within a constant factor in time Õ(
√

d + d/ ed(P, Q)), with success probability at least
2/3.

We remark that this algorithm is based on adaptive sampling, i.e. query positions
depend on the outcome of earlier queries. As mentioned earlier, a direct application of
this theorem implies a much weaker version of Theorem 4.1, with approximation factor
O(log d), by employing the mapping of [Charikar and Krauthgamer 2006, Theorem
3.1], which views each block (with overlaps) in x or y as a symbol in a large alphabet
{0, 1}L. Thus, the main challenge we face is to obtain O(1)-approximation.

A key observation is that the algorithm in Theorem 4.2 (for Ulam distance estima-
tion) works exactly the same way regardless of any relabeling of the symbols used in
P, Q. More precisely, when the algorithm queries some position i in P , the value of P [i]
is used only to check whether P [i] is equal to any previously queried character Q[j],
and vice versa. Other than the value of j, and the information whether such j exists,
the name of the read symbol is not important.10 This observation can be leveraged in
the following way: if the algorithm is about to query P [i], and the matching character
Q[j] (i.e. position j such that P [i] = Q[j]) was not queried yet, then we may relabel this
unread symbol, changing both P [i] and Q[j] to an arbitrary other symbol that does not
appear anywhere at all. (Of course, such Q[j] might not exist or might not be queried
at all by a sublinear algorithm.) For the sake of analysis (but not in the algorithm) we
may further assume, again by relabeling symbols, that Q is a fixed permutation, say
the identity, i.e. Q[j] = j for all j ∈ [d]. In what follows, the permutations P, Q will
always be of length d and over the alphabet Σ = [2d].

Our algorithm constructs P, Q (from x, y) based on the following principle. Let A be
an alignment between x and y, say of near-optimal cost O(ed(x, y)). Then we can con-
struct P (while Q is the identity) so that A is an optimal alignment between P and
Q, as follows: set P [i] = Q[A(i)] whenever A(i) ∈ [d], and set P [i] = d + i whenever
A(i) = ⊥. For our purpose, A has to be computable “on the fly”. More precisely we
require that, for every two queried positions i, j in P, Q respectively, we can determine
whether A(i) = j by querying x and y only at (or near) positions i and j, respectively; in

9We note that the original conference version used the earlier result of [Andoni et al. 2009], whose runtime
is Õ(d/

p

ed(P, Q)), and hence led to a O(d1+ε/
p

ed(P, Q) time algorithm for smoothed instances.
10In fact, it is plausible that every algorithm for Ulam distance estimation can be assumed, in effect, to
satisfy this property, by a simple transformation that incurs no loss in approximation factor and query
complexity.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:17

particular, it is independent of the rest of the strings x, y. We term this property local-
ity, and ensuring it is the main technical part of our proof. We note that for worst-case
strings (x, y), constructing a near-optimal alignment A that satisfies the locality prop-
erty seems hard; for a smoothed instance, on the other hand, we show this is possible,
largely due to Lemmas 2.2 and 3.2. In our presentation below, we will not describe the
alignment A explicitly, but instead construct P directly. The actual construction of P, Q
will differ from the above description in that it will actually work with whole blocks
rather than single characters.

4.1. Block Structure Lemma

We now prove a lemma that provides further structural properties of the edit distance
between two smoothed strings. These properties have a local nature, based on the
substrings of x and y, and will be useful later when we design our reduction. Namely,
the lemma guarantees that our local operations in reducing to permutations result in
a correct (global) edit distance.

This lemma should be seen as an extension of Lemma 3.2 for the more restricted
case of smoothed instances. As before, we assume that (x, y) ∈ Smoothp(x

∗, y∗, A∗),
where A∗ is the optimal alignment between two strings x∗, y∗ ∈ {0, 1}d, and 0 < p ≤ 1.
Intuitively, Lemma 3.2 shows that after partitioning the string x into blocks Xi, for
each such block Xi there is a “good” matching block Yi in y. In contrast, the lemma
below shows how to efficiently find such a block Yi without knowledge of the original
optimal alignment A∗. Indeed, in the case of a smoothed instance, it is essentially
enough to choose Yi to be the substring of y that minimizes the edit distance to Xi

(more precisely Yi = match(Xi)). For this choice of Yi’s, we prove essentially the same
properties as in Lemma 3.2.

LEMMA 4.3. Consider a smoothed instance (x, y) ∈ Smoothp(x
∗, y∗, A∗). Let L =

C
p log d for a sufficiently large constant C > 0. Partition x into successive blocks of length

L, denoted X1, X2, . . . , Xd/L, and let Yk = match(Xk) for k ∈ [d/L]. For sufficiently small

ε > 0, let M = {k ∈ [d/L] : ed(Xk, Yk) ≤ εpL}. Then, with probability at least 1−d−Ω(C),
we have:

(1)
∑

k∈M ed(Xk, Yk) ≤ 4 · ed(x∗, y∗).

(2) d/L − |M | ≤ 4
εpL · ed(x, y).

(3) For k ∈ [d/L], let Sk be the set of positions in Yk that appear also in some block Yk′

for k′ ∈ M \ {k}; then
∑

k∈M |Sk| ≤ O(1) · ed(x∗, y∗).
(4) The starting positions of blocks Yk, for k ∈ M , are in a strictly increasing order, and

moreover the distance between two consecutive such positions is greater than L/2.

PROOF.
We start by proving part (a). Let X∗

k , Y ∗
k denote the blocks from x∗, y∗ that correspond

to (i.e. have the same positions as) blocks Xk, Yk, respectively. Let s∗k = matchA∗(X∗
k)

for all k ∈ [d/L]. The following inequality is immediate.

ed(Xk, Yk) ≤ ed(Xk, y[s∗

k
:s∗

k
+L−1]) ≤ ed(X∗

k , y∗
[s∗

k
:s∗

k
+L−1]). (4.1)

Combining Eqn. (4.1) with Lemma 3.2(a) and using an immediate relation between ed
and edA, we obtain

∑

k∈[d/L]

ed(Xk, Yk) ≤ 2
∑

k∈[d/L]

edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) ≤ 4 · ed(x∗, y∗).

We now prove part (b). The upper bound on d/L − |M | follows from Lemma 3.2(b)
applied to the strings x, y, since Bεp in the language of that lemma is precisely [d/L]\M .

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:18 A. Andoni and R. Krauthgamer

Next, we turn to part (c), but before bounding
∑

k∈M |Sk| itself, we prove the fol-
lowing two claims. Let jk denote the starting position of Yk, and let 0 < cc < 1 be the
constant from Lemma 2.2. The first claim bounds the distance between the starting po-
sition of the empirical match of Xk, namely Yk, and the starting position of the “ideal”
match of Xk under the original alignment A∗, namely matchA∗(X∗

k).

CLAIM 4.4. With probability at least 1 − d−Ω(C), for all k ∈ M :

|jk − s∗k| ≤ 4
cc

· edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]). (4.2)

PROOF. Fix k ∈ M and notice that, by Lemma 2.2(c), with high probability,

ed(Xk, Yk) ≥ min{cc · pL, cc · |jk − s∗k| − 2 edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1])}.

For k ∈ M and assuming ε < min{cb, cc}, the minimum must be attained by the second
term, hence |jk − s∗k| ≤ 1

cc
(ed(Xk, Yk) + 2 edA∗(X∗

k , y∗
[s∗

k
:s∗

k
+L−1])). Finally, by Eqn. (4.1),

ed(Xk, Yk) ≤ ed(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) ≤ 2 edA∗(X∗

k , y∗
[s∗

k
:s∗

k
+L−1]),

and altogether this proves Claim 4.4.

The second claim proves that the sum to be estimated,
∑

k∈M |Sk| (corresponding to
empirical matches of Xk), is composed of two parts: the analogous sum corresponding
to “ideal” matches under A∗, plus (twice) the deviation in the starting positions of
empirical matches Yk versus the “ideal” matches Y ∗

k . Specifically, define S∗
k to be the

positions in y∗
[s∗

k
:s∗

k
+L−1] that appear also in some block y∗

[s∗

k′
:s∗

k′
+L−1] for k′ ∈ M \ {k}.

We have the following claim.

CLAIM 4.5. With probability at least 1 − d−Ω(C), we have
∑

k∈M |Sk| ≤
∑

k∈M (|S∗
k | + 2|s∗k − jk|).

PROOF. Consider k, k′ ∈ M with k < k′. Observe that edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) and

edA∗(X∗
k′ , y∗

[s∗

k′
:s∗

k′
+L−1]) must be at most cc

32 · L, or otherwise, by Lemma 2.2(b), with

high probability, ed(Xk, Yk) or ed(Xk′ , Yk′) respectively is at least cb · cc/32
log 64/cc

· pL, and

thus k or k′ respectively is not in M .
We can now apply Lemma 3.2(c) to obtain that

s∗k′ − s∗k ≥ L − edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) − edA∗(X∗

k′ , y∗
[s∗

k′
:s∗

k′
+L−1])

and this, together with Claim 4.4, yields

jk′ − jk ≥ s∗k′ − s∗k − |jk − s∗k| − |jk′ − s∗k′ |
≥ L − 5

cc
·
[

edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) + edA∗(X∗

k′ , y∗
[s∗

k′
:s∗

k′
+L−1])

]

.

Concluding, since edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) and edA∗(X∗

k′ , y∗
[s∗

k′
:s∗

k′
+L−1]) are at most cc

32 ·L,

we have

jk′ − jk > L/2. (4.3)

Thus, every position in Yk for k ∈ M can appear in at most one other block Yk′ for
k′ ∈ M \ {k}. It not difficult to see that

∑

k∈M |Sk| ≤
∑

k∈M (|S∗
k | + 2|s∗k − jk|), since

every position in Sk either contributes also to S∗
k, or to |s∗k − jk|, or to some |s∗k′ − jk′ |,

for k′ ∈ M , and furthermore the contributions of the same type are all distinct. Claim
4.5 follows.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:19

We can now prove part (c) by combining all the above. Specifically, applying Claim
4.5, then Lemma 3.2(d) and Claim 4.4, and finally Lemma 3.2(a), we have
∑

k∈M

|Sk| ≤
∑

k∈M

(|S∗
k |+2|s∗k−jk|) ≤ 2 ed(x∗, y∗)+O(1)

∑

k∈M

edA∗(X∗
k , y∗

[s∗

k
:s∗

k
+L−1]) ≤ O(ed(x∗, y∗)).

Part (d) of the lemma follows directly from Eqn. (4.3).

4.2. Reducing a Smoothed Instance to an Ulam Instance

Next we show how to efficiently translate a smoothed instance of edit distance into an
instance of Ulam’s distance, while distorting the distance by only a constant factor. As
mentioned earlier, for the sake of analysis we may set Q to be the identity permutation,
and construct P as a function of x and y. The lemma below defines P in its entirety,
while ensuring the locality property: that every character in P can be computed from
local information. (As we shall see later, the algorithm uses this locality property to
compute “on the fly” the same P, Q, up to relabeling of the symbols.)

The basic idea appears simple. First, we partition x into blocks of length L =
O(1

p log d). Then, each such block x[kL−L+1:kL] is matched to its closest block in y,

say y[l:l+L−1], and then P[kL−L+1:kL] is defined in a simple way that depends only on
Q[l:l+L−1] and on ed(x[kL−L+1:kL], y[l:l+L−1]), and satisfies ed(P[kL−L+1:kL], Q[l:l+L−1]) =
ed(x[kL−L+1:kL], y[l:l+L−1]). This reduction preserves the edit distance locally (at the
block level), although it is not clear it is true also globally (for the entire strings). We
indeed prove the latter, i.e. that ed(P, Q) approximates ed(x, y), using the technical
machinery developed in Lemma 4.3.

The main challenge we face in implementing this basic idea is that characters may
repeat in P , because the blocks we match against in y may overlap with each other.
A straightforward fix to this issue could be to change these repetitions to completely
new symbols (distinct symbols that do not appear in Q). This fix increases ed(P, Q),
although, as we show, only by a small factor. Unfortunately, this fix also introduces
dependencies between different blocks in P , violating the locality requirement. We
thus refine this fix by going through two smaller transformations of P , which reduces
the dependencies of a position to only the nearby blocks (in x and in y).

LEMMA 4.6 (REDUCTION TO ULAM). Fix ε > 0, let (x, y) ∈ Smoothp(x
∗, y∗, A∗) and

L = C
p log d for a sufficiently large constant C > 0. Then there exist two permutations P

and Q = (1, 2, . . . , d) such that, with probability at least 1− d−Ω(C), the following holds.

— Distance: Ω(1) · ed(x, y) ≤ ed(P, Q) ≤ O(log 1/p
p + 1

εp) · ed(x, y); and

— Locality: For all k ∈ [d/L], j ∈ [kL − L + 1 : kL], and sk = match(x[kL−L+1:kL]):

(1) P [j] can be computed in time O(L3), using only sk, x[kL−2L+1:kL], and

y[sk−6L:sk+L−1]. Furthermore, either P [j] ∈ [d] or P [j] = d + j.

(2) For all l ∈ [d−L+1] such that |l− sk| ≥ 2L, we have ed(x[kL−L+1:kL], y[l:l+L−1]) ≥
Ω(pL). Furthermore, if P [j] ∈ [d] then necessarily ed(x[kL−L+1:kL], y[sk:sk+L−1]) ≤
εpL.

PROOF. We shall say that position j ∈ [d] (in P) is invalidated if it is set to the
symbol d + j. All other positions will be set to symbols in the range [d]. Recall that the
alphabet is Σ = [2d] and that Q is the identity, hence invalidated positions in P match
no character in Q. We first give a complete description of the construction of P , and
then prove its properties (distance and locality).

The permutation P is constructed by first defining a string P 1, then invalidating
some positions to obtain P 2, and then invalidating more positions to obtain the final

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:20 A. Andoni and R. Krauthgamer

P . The intermediate strings P 1 and P 2 might not be permutations. We now describe
these three stages and a preceding setup stage.

Setup:. Partition x into d/L blocks of length L, denoted Xk, and for each k ∈ [d/L]
let Yk = match(Xk). Let sk be the starting position of Yk and let ck = ed(Xk, Yk). Let
M = {k ∈ [d/L] : ed(Xk, Yk) ≤ εpL}.
P

1:. For every k ∈ M , set P 1
[kL−L+1:kL] to be equal to the block

Q[sk:sk+L−1], except that the first ck symbols are invalidated (thus ensuring
ed(P 1

[kL−L+1:kL], Q[sk:sk+L−1]) = ck). For each k ∈ [d/L] \ M , invalidate the entire

block P 1
[kL−L+1:kL].

P
2:. Let F ⊆ M be the following set. For each k ∈ M , k > 1, put k into F if (i)

k − 1 6∈ M ; or (ii) k − 1 ∈ M and sk − sk−1 > 2L. We obtain P 2 by invalidating all
blocks P 1

[kL−L+1:kL] with k ∈ F .

P:. Invalidate all positions j ∈ [d] for which the symbol P 2[j] occurs previously
in P 2 to the left of the position j. That is, for each symbol, we invalidate all its
occurrences except the very first one.

It should be evident why we invalidate the entire blocks Xk for k 6∈ M . The reason we
further invalidate blocks Xk for k ∈ F during the construction of P 2 is to ensure that
the computation of the last step (P) is local. In particular, for a particular symbol P 1[j],
we need to be able to check whether the symbol has occured to the left of j in P 1. In
particular, it is possible that there is some j′ satisfying P 1[j′] = P 1[j] with j−j′ ≫ Ω(L),
and hence hard to find locally. However such a situation — where j− j′ ≫ Ω(L) — may
be possible only when k − 1 6∈ M . Hence we invalidate all blocks k with k − 1 6∈ M ,
which is condition (i) in the definition of F . Checking condition (i) by itself may also
not be a local operation, and this concern is rectified by condition (ii), because checking
the combination of (i) or (ii) is now a local operation.

We proceed to prove the distance property, using two claims that provide a lower
bound and an upper bound on ed(P, Q), respectively.

CLAIM 4.7. ed(x, y) ≤ 6 · ed(P, Q).

PROOF. First observe that ed(P 1, Q) ≤ ed(P, Q) because invalidating some positions
can only increase the edit distance. We proceed to show that ed(x, y) ≤ 6 · ed(P 1, Q).
Fix an optimal alignment Ã between P 1 and Q, and construct an alignment A between
x and y as follows. For each k ∈ [d/L], consider the block Xk. If k /∈ M (i.e. ck > εpL),
then the corresponding block in P 1 has only invalidated positions, which cannot be
aligned to Q, hence the same alignment is valid for x on these blocks. Otherwise, by
construction, ed(x[kL−L+1:kL], y[sk:sk+L−1]) = ck = ed(P 1

[kL−L+1:kL], Q[sk:sk+L−1]). Let tk

be the number of non-aligned positions in the kth block of P 1 under Ã. Clearly, tk ≥ ck

since the kth block of P 1 has ck invalidated positions that cannot match any position in
Q. We construct A by aligning the corresponding kth block in x against only the middle
L − 2tk symbols in y[sk:sk+L−1], in the best possible way. The number of unaligned
positions in x[kL−L+1:kL] is at most ck + 2tk ≤ 3tk, and thus ed(x, y) ≤ 2 edA(x, y) ≤
2

∑

k 3tk = 6 edÃ(P 1, Q) ≤ 6 ed(P 1, Q).
It remains to show that A is a valid alignment. It suffices to consider k, k′ ∈ M with

k < k′, and prove that matches under A from the kth block are to the left of those from
the k′th block. If it were true that sk +L−1 < sk′ , we would have been done; but this is
not generally true. Instead, by definition of tk we must have (sk +L−1)− tk < sk′ + tk′ :

as Ã (a valid alignment between P and Q) must align a position from the kth block to
character of value at least sk + L − 1 − tk and, at the same tie, Ã must align a position

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:21

from the k′th block to a character of value at most sk′ + tk′ . Since our construction of
A is limited to the middle L − 2tk symbols in each y[sk:sk+L−1], we get that A is indeed
monotonically increasing on A−1([d]).

CLAIM 4.8. With high probability, ed(P, Q) ≤ O(log(1/p)
p + 1

εp) ed(x, y).

PROOF. First we argue that the non-invalidated positions of P (in any of the three
stages) form an increasing sequence, and thus 1

2 ed(P, Q) is upper bounded by the
number of the invalidated positions. Note that we are precisely in the conditions of
Lemma 4.3. We use the notation from that lemma for the rest of this proof, and as-
sume that the high-probability event holds (i.e., all conclusions hold). The lemma says
that the starting positions of Yk, for k ∈ M , are strictly increasing and moreover in-
crease by > L/2 each time. Thus, after the invalidations, a block P[kL−L+1:kL] is either
completely invalidated (if k 6∈ M \ F), or its invalidated positions form a contiguous
sequence at the beginning of the block. Furthermore, in the latter case, the symbol in
the position of kL is smaller than any non-invalidated symbol in P[kL+1:d]. Thus all the
non-invalidated position of P form an increasing sequence.

We now upper bound the number of invalidated positions in the construction of P 1,
in the transformation to P 2, and in the transformation to P . The number of positions
invalidated in the construction of P 1 is L · (d/L − |M |) +

∑

k∈M ck. The number of
positions invalidated in the transformation to P 2 is at most L · |F |. The number of
positions invalidated in the transformation to P is at most

∑

k |Sk|, because the number
of positions in P[kL−L+1:kL] invalidated in this step is at most |Sk|. Lemma 4.3 bounds
all these quantities, except for |F |.

We now bound L · |F |. Notice that each k ∈ F corresponds either to a block k − 1 ∈
[d/L] \ M (case (i) in the definition of F) or to some block of length L strictly between
the blocks Yk−1 and Yk (case (ii)). Positions appearing in blocks of the latter type do
not belong to any Yk for k ∈ M , and thus their number is at most L · (d/L − |M |)
plus the number of positions that appear in two blocks Yk, Y ′

k for distinct k, k′ ∈ M .
Since the number of such latter positions is at most

∑

k |Sk| by the definition of Sk (in
Lemma 4.3), the total comes out to L · |F | ≤ L · (d/L− |M |)+ (L · (d/L− |M |)+

∑

k |Sk|).
Concluding, using Lemma 4.3, we get that, with high probability,

1
2 ed(P, Q) ≤

∑

k∈M

ck + L · (d/L − |M |) + L · |F | +
∑

k∈M

|Sk|

≤
∑

k∈M

ed(Xk, Yk) + 3L · (d/L − |M |) + 2
∑

k∈M

|Sk|

≤ O(1) · ed(x∗, y∗) + O(1
εp) ed(x, y).

Futhermore, using Theorem 2.1, we conclude that ed(P, Q) ≤ O(log(1/p)
p +

1
εp) ed(x, y).

We proceed to proving the locality property. In our language, j is inside the block
Xk and we need to prove that P [j] depends only on the blocks Xk, Yk together with
regions of 6L positions preceding them. The algorithm for computing P [j] follows the
description of the construction of P .

Specifically, we compute P [j] in a local manner as follows. For Yk = match(Xk) start-
ing at sk in y, we set P [j] = sk + j − (kL − L + 1), unless it is invalidated according
to the following procedure, in which case P [j] = d + j. If ed(Xk, Yk) > εpL, then j
in invalidated (stage 1 invalidation). Also, if kL − L + 1 + ed(Xk, Yk) > j, then j is
invalidated (stage 1 invalidation). In case k > 1, we consider the block Xk−1 and de-

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:22 A. Andoni and R. Krauthgamer

fine s′k−1 to be the position s ∈ [sk − 4L : sk] that minimizes ed(Xk−1, y[s:s+L−1]). If
ed(Xk−1, y[s′

k−1
:s′

k−1
+L−1]) > εpL or if sk − s′k−1 > 2L, then j is invalidated (stage 2

invalidation). Next, we take

s′k−2 = argmins∈[s′

k−1
−4L:s′

k−1
] ed(Xk−2, y[s:s+L−1]).

If k = 2 or ed(Xk−2, y[s′

k−2
:s′

k−2
+L−1]) ≤ εpL and s′k−1 − s′k−2 ≤ 2L, and also if j − (kL −

L + 1) < (s′k−1 + L) − sk, then j is invalidated (stage 3 invalidation).
The correctness of this algorithm follows from the claim that P [j] is invalidated in

the above procedure if and only if it is invalidated in the original three-stages con-
struction. We argue this claim next. It is easy to see that stage 1 invalidations are
correct. Next, suppose k > 1 and j is not invalidated in stages 1 or 2 of the original
construction, which happens if k−1 ∈ M and sk−sk−1 ≤ 2L. In this case, our algorithm
will obtain s′k−1 = sk−1, and thus P [j] will not be invalidated in stage 2 of the above
algorithm. Conversely, if k − 1 6∈ M , then we have ed(Xk−1, y[s′

k−1
:s′

k−1
+L−1]) > εpL, or

else sk − sk−1 > 2L, and then s′k−1 ≤ max{sk−1, sk − 4L + (2L − 1)} < sk − 2L (namely,
if sk−1 < sk − 4L, then ed(Xk−1, y[s:s+L−1]) > εpL for all s ≥ sk − 2L by Lemma 2.2(c)).
In both cases, the algorithm invalidates P [j]. Finally, if P [j] was not invalidated in
stages 1 or 2, P [j] can be invalidated in the third stage if Yk intersects with Yk−1 (when
k − 1 ∈ M \ F). To check the intersection with Yk−1, the algorithm checks additionally
that k − 2 ∈ M (unless k = 2) and sk−2 − sk−1 ≤ 2L (implying k − 1 ∈ M \ F). If this
condition passes, then we invalidate P [j] iff symbol P [j] = sk + j − (kL − L + 1) is in
the intersection of Yk and Yk−1 (note that the matching symbol P [j − L − sk + sk−1] in
P[kL−2L+1:kL−L] cannot have been invalidated in stages 1 and 2).

We now prove the second part of the locality property. By construction, P [j] = d + j
if ed(x[kL−L+1:kL], y[sk:sk+L−1]) > εpL. Now, let k∗ = matchA∗(i, L), and let cc be the
constant from Lemma 2.2. If edA∗(x∗

[i:i+L−1], y
∗
[k∗:k∗+L−1]) ≥ cc

4 L, then, for all l ∈ [d −
L + 1], we have ed(x[kL−L+1:kL], y[l:l+L−1]) = Ω(pL) by Lemma 2.2(b), and we reach the
desired conclusion. Next, suppose that edA∗(x∗

[kL−L+1:kL], y
∗
[k∗:k∗+L−1]) < cc

4 L. Then, for

every l ∈ [d − L + 1] such that |l − k∗| ≥ L, we have that ed(x[kL−L+1:kL], y[l:l+L−1]) =
Ω(pL) by Lemma 2.2(c). If ed(x[kL−L+1:kL], y[sk:sk+L−1]) ≤ εpL, then |sk − k∗| ≤ L, and
thus, for all l ∈ [d − L + 1] s.t. |l − sk| ≥ 2L, we have ed(x[kL−L+1:kL], y[l:l+L−1]) >
Ω(pL). But if ed(x[kL−L+1:kL], y[sk:sk+L−1]) > εpL then there is nothing to prove since,
by definition, sk is the l that minimizes ed(x[kL−L+1:kL], y[l:l+L−1]). This completes the
proof of Lemma 4.6.

4.3. The Sublinear-Time Algorithm for Smoothed Instances

We now describe the sublinear algorithm for the smoothed instance Smoothp(x
∗, y∗, A∗)

and thus prove Theorem 4.1. The algorithm basically performs a reduction to a similar
problem (distance estimation) under the Ulam metric, and solves the latter using the
algorithm of [Andoni and Nguyen 2010] in a black-box fashion.

PROOF PROOF OF THEOREM 4.1. We will use the sublinear algorithm from [An-
doni and Nguyen 2010] as a black box. We call their algorithm A and note that A
makes Õ

(√
d + d/ ed(P, Q)

)

queries to P, Q and has the same running time, while suc-

ceeding with constant probability. For completeness, we note that the algorithm A
reduces the problem to several decision version problems of distance estimation, and
then solves the decision version problem. More precisely, the decision version is, for a
given threshold R ∈ [d], to decide whether the distance is ed(P, Q) ≤ R or ed(P, Q) > αR

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:23

for approximation factor α = O(1). The algorithm of [Andoni et al. 2009] for the deci-

sion version runs in time Õ
(√

d + d/R
)

.

We would like to run A on the permutations P, Q obtained from applying Lemma 4.6
to our input (x, y). Since we cannot afford to compute the entire P , our reduction will
generate on the fly (and feed them into A) two permutations that are equivalent to P
and Q, up to a relabeling of the symbols. As explained at the beginning of section 4,
the algorithm A is independent of the actual names of the symbols, hence its output is
invariant under this relabeling.

We describe below our reduction, viewing it as a data structure that has random
access to x and y, and provides a random access interface to the permutations P and
Q (modulo relabeling). This data structure will be used by the algorithm A. Let L be
defined as in Lemma 4.6, and assume that the high-probability event described in the
lemma holds.

Our reduction keeps for each of P and Q two data structures, one to keep track of the
relabeling and one to keep track of the blocks. Let P̂ store the relabeling of P , namely,
P̂ (i) for a position i ∈ [d] represents the new symbol given to P [i] by the relabeling, or

the value ⊥ if position i in P has not been queried yet. We assume P̂ is implemented
so as to support fast inverse search, i.e. given a symbol a ∈ [2d] it can report P̂−1(a).
Let TP be a trie (or another data structure implementing a dictionary) that stores the
substrings x[kL−L+1:kL] for all k ∈ [d/L] such that at least one of the positions among

[kL − L + 1 : kL] was queried in P . We define Q̂ for Q analogously to P̂ ; note that if

P [i] and Q[j] have already been queried, then P̂ (i) = Q̂(j) if and only if P [i] = Q[j] = j.
Finally, the trie TQ for Q stores:

(1) all substrings y[l:l+L−1] where at least one queried position j ∈ [d] in Q satisfies
|l − j| ≤ L; and

(2) all length L strings within edit distance εpL from such y[l:l+L−1].

The query to a position P [i] works as follows. If P̂ (i) 6= ⊥, return P̂ (i). Otherwise,
add the substring Xk = x[kL−L+1:kL], where i ∈ [kL−L+1 : kL], into the trie TP (unless
it is already present there). Then check whether Xk is present in the trie TQ; if it is

not, then assign a new symbol to P [i], update P̂ (i) accordingly, and return this symbol

P̂ (i). Suppose now that Xk is present in TQ, i.e. it matches a string at edit distance at
most εpL from a block y[l:l+L−1]. Then apply the locality algorithm from Lemma 4.6,
and compute P [i]. More precisely, compute sk, with |l − sk| ≤ 2L, that minimizes
ed(x[kL−L+1:kL], y[sk:sk+L−1]). Note that this sk indeed satisfies sk = match(x[kL−L+1:kL])
by Lemma 4.6, Locality-2 property. Applying the algorithm from Lemma 4.6, we com-
pute P [i] and store the value in P̂ . If P [i] 6∈ [d], assign a new symbol to P [i] and add

it to P̂ . Otherwise (i.e. P [i] ∈ [d] and thus P [i] = Q[j] = j for some j), check whether

the position P [i] has been queried in Q by checking whether Q̂(P [i]) 6= ⊥. If indeed

Q̂(P [i]) 6= ⊥, then update accordingly P̂ (i) = Q̂(P [i]). And if Q̂(P [i]) = ⊥, then assign a

new symbol to P [i] and update P̂ (i) accordingly. In the end, return the symbol P̂ (i).
The query to a position Q[j] is almost analogous, with the obvious modifications to

account for the asymmetry in the two tries TP and TQ. Namely, if Q̂ already holds a
symbol for Q[j], return it. Otherwise, add every substring y[l:l+L−1], where |l − j| ≤ L,
together with all the length L strings at edit distance ≤ εpL, into the trie TQ. For each
added string, check whether the string is present in TP ; if it is, i.e. the added string
matches some Xk stored in TP , then compute all of P[kL−L+1:kL] using Lemma 4.6, and

if for any of the computed position i we have P [i] = j and P̂ (i) 6= ⊥, then the new

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

0:24 A. Andoni and R. Krauthgamer

symbol for Q[j] is that symbol, i.e. set Q̂(j) = P̂ (i). If, at the end, Q̂(j) is still ⊥, then

we assign Q[j] with a new symbol, and update Q̂(j) accordingly. Either way, return the

symbol Q̂(j).
The correctness of the algorithm then follows immediately from the Locality part of

Lemma 4.6. In particular, essentially by construction, P̂ , Q̂ form a consistent relabeling
of P, Q, respectively, although a partial one in the sense that some of the values are
replaced by ⊥.

To obtain the stated bounds on query complexity and runtime, we note that the
overhead on each query to P or Q is O(L) queries to x, y and O(LO(1)dO(ε log 1/ε)) time,
where dO(ε log 1/ε) is an upper bound on the number of strings at distance ≤ εpL from
any single string (of length L). To obtain the claimed dependence on ε, we replace the
ε used in the above algorithm with ε′ = O(ε/ log 1

ε).

5. CONCLUSIONS

It seems challenging to obtain a distance estimation algorithm whose smoothed run-
ning time is quasi-linear, i.e. d · (log d)O(1), or whose approximation is independent of
the smoothing parameter p at the expense of increasing the runtime only by an O(1/p)
factor. Perhaps it is more important to extend the smoothed analysis framework to
other problems, such as nearest neighbor search (or pattern matching). One may hope
to match the O(log log d) approximation that was obtained for the Ulam metric [Andoni
et al. 2009].

Acknowledgments.. We thank Dick Karp for useful discussions at an early stage of this
research. We also thank the anonymous reviewers for their careful proofreading and
several comments that improved the presentation.

REFERENCES

ALDOUS, D. AND DIACONIS, P. 1999. Longest increasing subsequences: from patience sorting to the Baik-
Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.) 36, 4, 413–432.

ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W., AND LIPMAN, D. J. 1990. A basic local alignment
search tool. J. of Molecular Biology 215, 3, 403–410.

ANDONI, A., INDYK, P., AND KRAUTHGAMER, R. 2009. Overcoming the ℓ1 non-embeddability barrier: Al-
gorithms for product metrics. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
865–874.

ANDONI, A., JAYRAM, T., AND PǍTRAŞCU, M. 2010a. Lower bounds for edit distance and product metrics
via Poincaré-type inequalities. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.

ANDONI, A. AND KRAUTHGAMER, R. 2008. The smoothed complexity of edit distance. In 35st International
Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science. Springer,
357–369.

ANDONI, A. AND KRAUTHGAMER, R. 2010. The computational hardness of estimating edit distance. SIAM
Journal on Computing 39, 6, 2398–2429. Previously appeared in FOCS’07.

ANDONI, A., KRAUTHGAMER, R., AND ONAK, K. 2010b. Polylogarithmic approximation for edit distance
and the asymmetric query complexity. In Proceedings of the Symposium on Foundations of Computer
Science. A full version is available at http://arxiv.org/abs/1005.4033.

ANDONI, A. AND NGUYEN, H. L. 2010. Near-tight bounds for testing Ulam distance. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms.

ANDONI, A. AND ONAK, K. 2009. Approximating edit distance in near-linear time. In Proceedings of the
Symposium on Theory of Computing. 199–204.

BAR-YOSSEF, Z., JAYRAM, T. S., KRAUTHGAMER, R., AND KUMAR, R. 2004. Approximating edit distance
efficiently. In Proceedings of the Symposium on Foundations of Computer Science. 550–559.

BATU, T., ERGÜN, F., KILIAN, J., MAGEN, A., RASKHODNIKOVA, S., RUBINFELD, R., AND SAMI, R. 2003.
A sublinear algorithm for weakly approximating edit distance. In Proceedings of the Symposium on
Theory of Computing. 316–324.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

The Smoothed Complexity of Edit Distance 0:25

BATU, T., ERGÜN, F., AND SAHINALP, C. 2006. Oblivious string embeddings and edit distance approxima-
tions. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. 792–801.

BILLE, P. AND FARACH-COLTON, M. 2008. Fast and compact regular expression matching. Theoretical Com-
puter Science 409, 28, 486–496.

BLUM, A. AND SPENCER, J. 1995. Coloring random and semi-random k-colorable graphs. J. Algo-
rithms 19, 2, 204–234.

CHARIKAR, M. AND KRAUTHGAMER, R. 2006. Embedding the ulam metric into ℓ1. Theory of Comput-
ing 2, 11, 207–224.

FEIGE, U. AND KILIAN, J. 2001. Heuristics for semirandom graph problems. J. Comput. Syst. Sci. 63, 4,
639–673.

FRIEZE, A. AND MCDIARMID, C. 1997. Algorithmic theory of random graphs. Random Structures and Al-
gorithms 10, 1-2, 5–42.

GOLLAPUDI, S. AND PANIGRAHY, R. 2006. A dictionary for approximate string search and longest prefix
search. In 15th ACM international conference on Information and knowledge management. ACM, 768–
775.

KUSHILEVITZ, E. AND NISAN, N. 1997. Communication Complexity. Cambridge University Press.

KUSHILEVITZ, E., OSTROVSKY, R., AND RABANI, Y. 2000. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM J. Comput. 30, 2, 457–474.

MA, B., TROMP, J., AND LI, M. 2002. PatternHunter: faster and more sensitive homology search. Bioinfor-
matics 18, 3, 440–445.

MASEK, W. J. AND PATERSON, M. 1980. A faster algorithm computing string edit distances. J. Comput.
Syst. Sci. 20, 1, 18–31.

NAVARRO, G. 2001. A guided tour to approximate string matching. ACM Comput. Surv. 33, 1, 31–88.

NAVARRO, G., BAEZA-YATES, R., SUTINEN, E., AND TARHIO, J. 2001. Indexing methods for approximate
string matching. IEEE Data Engineering Bulletin 24, 4, 19–27. Special issue on Text and Databases.
Invited paper.

SPIELMAN, D. A. AND TENG, S.-H. 2003. Smoothed analysis: Motivation and discrete models. In WADS,
Lecture Notes in Computer Science. Springer-Verlag.

SPIELMAN, D. A. AND TENG, S.-H. 2004. Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. ACM 51, 3, 385–463.

WAGNER, R. A. AND FISCHER, M. J. 1974. The string-to-string correction problem. J. ACM 21, 1, 168–173.

ACM Transactions on Algorithms, Vol. 0, No. 0, Article 0, Publication date: 0.

