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Abstract—We study spectral algorithms for the high-
dimensional Nearest Neighbor Search problem (NNS). In
particular, we consider a semi-random setting where a dataset
is chosen arbitrarily from an unknown subspace of low
dimension, and then perturbed by full-dimensional Gaussian
noise. We design spectral NNS algorithms whose query time
depends polynomially on the dimension and logarithmically
on the size of the point set. These spectral algorithms use a
repeated computation of the top PCA vector/subspace, and
are effective even when the random-noise magnitude is much
larger than the interpoint distances. Our motivation is that in
practice, a number of spectral NNS algorithms outperform the
random-projection methods that seem otherwise theoretically
optimal on worst-case datasets. In this paper we aim to provide
theoretical justification for this disparity.

The full version of this extended abstract is available on
arXiv.

I. INTRODUCTION

A fundamental tool in high-dimensional computational
geometry is the random projection method. Most notably,
the Johnson-Lindenstrass Lemma [27] says that projecting
onto a uniformly random k-dimensional subspace of Rd
approximately preserves the distance between any (fixed)
points x, y ∈ Rd (up to scaling), except with probability
exponentially small in k. This turns out to be a very powerful
approach as it effectively reduces the dimension from d
to a usually much smaller k via a computationally cheap
projection, and as such has had a tremendous impact on
algorithmic questions in high-dimensional geometry.

A classical application of random projections is to the
high-dimensional Nearest Neighbor Search (NNS) problem.
Here we are given a dataset of n points from Rd, which
we preprocess to subsequently find, given a query point q ∈
Rd, its closest point from the dataset. It is now well-known
that exact NNS admits algorithms whose running times have
good dependence on n, but exponential dependence on the
dimension d [34], [11]; however these are unsatisfactory for
moderately large d.

To deal with this “curse of dimensionality”, researchers
have studied algorithms for approximate NNS, and in the
high-dimensional regime, most (provable) algorithms rely
heavily on the random projection method., where, one
projects datapoints into a random lowe dimensional subspace
and uses the Johnson-Lindenstruass theorem [27] to argue
that distances are approximately preserved in the projection.

All known variants of the successful Locality Sensitive
Hashing approach for Euclidean spaces, including [23], [16],
[3], [4], involve random projections.1 For example, the space
partitioning algorithm of [16] can be viewed as follows.
Project the dataset onto a random k-dimensional subspace,
and impose a randomly-shifted uniform grid. For a query
point q, just look up the points in the grid cell where q falls
into. (see also [38]).

Random projections are one of the two principal methods
of reducing the dimension of data. The other method is
a “data-aware” projection given by Principal Component
Analysis (PCA) based on Singular Value Decomposition
(SVD). While random projections work well and have prov-
able guarantees, it is natural to ask whether one can provably
improve the performance by using data-aware projections
such as PCA. This question is all the more relevant since
in practice, PCA-based dimensionality reduction methods
— such as PCA tree [43], [33], [46] and its variants
(called randomized kd-tree) [42], [36], spectral hashing [48],
semantic hashing [41], and WTA hashing [50] — have
been quite successful, often outperforming algorithms based
on vanilla random projections. In contrast to the random
projection method, none of these methods have rigorous
proofs of correctness or performance guarantees.

Bridging the gap between random projections and data-
aware projections has been recognized as a big open ques-
tion in Massive Data Analysis, see e.g. a recent National
Research Council report [37, Section 5]. The challenge here
is that random projections are themselves (theoretically)
optimal not only for dimensionality reduction [2], [26], but
also for some of its algorithmic applications [25], [49],
including NNS in certain settings [5]. We are aware of only
one work addressing this question: data-dependent LSH,
which was introduced recently [4], provably improves the
query time polynomially. However, their space partitions are
very different from the aforementioned practical heuristics
(e.g., they are not spectral-based), and do not explain why
data-aware projections help at all.

In this work, we address this gap by studying data-aware
projections for the nearest neighbor search problem. As
argued above, for worst-case inputs we are unlikely to beat
the performance of random projections. Instead, we consider

1While [23] is designed for the Hamming space, their algorithm is
extended to the Euclidean space by an embedding of `2 into `1, which
itself uses random projections [28].



a semi-random model, where the dataset is formed by first
taking an arbitrary (worst-case) set of n points in a k-
dimensional subspace of Rd, and then perturbing each point
by adding to it Gaussian noise Nd(0, σ2Id). The query point
is selected using a similar process. Our algorithms are able to
find the query’s nearest neighbor as long as there is a small
gap (1 vs 1 + ε) in the distance to the nearest neighbor
versus other points in the unperturbed space — this is a
much weaker assumption than assuming the same for the
perturbed points.

Most importantly, our results hold even when the noise
magnitude is much larger than the distance to the nearest
neighbor. The noise vector has length (about) σ

√
d, and so

for σ � 1/
√
d, the noise magnitude exceeds the original

distances. In such a case, a random projection to a smaller di-
mension will not work — the error due to the projection will
lose all the information on the nearest neighbor. In contrast,
we show that data-aware projections provably guarantee
good performance in our model provided σ ∈ Ω∗(1/ 4

√
d),

alongwith some additional polynomial dependence on k and
log n which we assume much smaller than d.

A. Algorithmic Results

We propose two spectral algorithms for nearest neighbor
search, which achieve essentially the same performance as
NNS algorithms in k and O(k log k)-dimensional space,
respectively. These spectral algorithms rely on computing
a PCA subspace or vector respectively of the datapoints.
Precise results, are stated in Theorems V.1 and VI.1. We
focus here on a qualitative description.

The first algorithm performs iterative PCA. Namely, it
employs PCA to extract a subspace of dimension (at most)
k, identifies the datapoints captured well by this subspace,
and then repeats iteratively on the remaining points. The al-
gorithm performs at most O(

√
d log n) PCAs in total, and ef-

fectively reduces the original NNS problem to O(
√
d log n)

instances of NNS in k dimensions. Each of these NNS
instances can be solved by any standard low-dimensional
(1 + ε)-approximate NNS, such as [12], [9], [8], [19], [7],
[13], which can give, say, query time (1/ε)O(k) log2 n. See
Section V, and the crucial technical tool it uses in Section
IV. As a warmup, we initially introduce a simplified version
of the algorithm for a (much) simpler model in Section III.

The second algorithm is a variant of the aforementioned
PCA tree, and constructs a tree that represents a recursive
space partition. Each tree node finds the top PCA direction,
and partitions the dataset into slabs perpendicular to this
direction. We recurse on each slab until the tree reaches
depth 2k. The query algorithm searches the tree by following
a small number of children (slabs) at each node. This
algorithm also requires an additional preprocessing step that
ensures that the dataset is not overly “clumped”. The overall
query time is (k/ε)O(k) · d2. See Section VI.

While the first algorithm is randomized, the second algo-
rithm is deterministic and its failure probability comes only
from the semi-random model (randomness in the instance).

B. Related Work

There has been work on understanding how various
tree data structures adapt to a low-dimensional point set,
including [15], [46]. For example, [46] show that PCA
trees adapt to a form of “local covariance dimension”, a
spectrally-inspired notion of dimension, in the sense that
a PCA tree halves the “diameter” of the point set after a
number of levels dependent on this dimension notion (as
opposed to the ambient dimension d). Our work differs in
a few respects. First, our data sets do not have a small
local covariance dimension. Second, our algorithms have
guarantees of performance and correctness for NNS for a
worst-case query point (e.g., the true nearest neighbor can
be any dataset point). In contrast, [46] prove a guarantee
on diameter progress, which does not necessarily imply
performance guarantees for NNS, and, in fact, may only
hold for average query point (e.g., when the true nearest
neighbor is random). Indeed, for algorithms considered in
[46], it is easy to exhibit cases where NNS fails.2

For our model, it is tempting to design NNS algorithms
that find the original k-dimensional subspace and thus “de-
noise” the dataset by projecting the data onto it. This ap-
proach would require us to solve the `∞-regression problem
with high precision.3 Unfortunately, this problem is NP-
hard in general [18], and the known algorithms are quite
expensive, unless k is constant. Har-Peled and Varadara-
jan [22] present an algorithm for `∞-regression achieving
(1 + ε)-approximation in time O(ndee

O(k2)ε−2k−3

), which
may be prohibitive when k ≥ Ω(

√
log log n). In fact, there

is a constant δ > 0 such that it is Quasi-NP-hard, i.e.,
implies NP ⊆ DTIME(2(logn)

O(1)

), to even find a (log n)δ

approximation to the best fitting k-subspace when k ≥ dε

for any fixed ε > 0 [44].
We also note that the problem of finding the underlying k-

dimensional space is somewhat reminiscent of the learning
mixtures of Gaussians problem [14]; see also [6], [45], [35]
and references therein. In the latter problem, the input is n
samples generated from a mixture of k Gaussian distribu-
tions with unknown mean (called centers), and the goal is to
identify these centers (the means of the k Gaussians). Our
setting can be viewed as having n centers in a k-dimensional
subspace of Rd, and the input contains exactly one sample
from each of the n centers. Methods known from learning
mixtures of Gaussians rely crucially on obtaining multiple

2For example, if we consider the top PCA direction of a dataset and
the median threshold, we can plant a query–near-neighbor pair on the two
sides of the partition. Then, this pair, which won’t affect top PCA direction
much, will be separated in the PCA tree right from the beginning.

3As we explain later, related problems, such as `2-regression would not
be sufficient.



samples from the same center (Gaussian), and thus do not
seem applicable here.

Finally, the problem of nearest neighbor search in Eu-
clidean settings with “effective low-dimension” has received
a lot of attention in the literature, including [29], [30], [21],
[10], [13], [24] among many others. Particularly related is
also the work [20], where the authors consider the case when
the dataset is high-dimensional, but the query comes from
a (predetermined) low-dimensional subspace. These results
do not seem readily applicable in our setting because our
dataset is really high-dimensional, say in the sense that the
doubling dimension is Ω(d).

C. Techniques and Ideas

We now discuss the main technical ideas behind our two
algorithms. The first intuitive line of attack is to compute
a k-dimensional PCA space of the datapoints, project them
into this k-dimensional subspace, and solve the NNS prob-
lem there. This approach fails because the noise is too
large, and PCA only optimizes the sum of distances (i.e., an
average quantity, as opposed to the “worst case” quantity).
In particular, suppose most of the points lie along some
direction ~u and only a few points lie in the remaining
dimensions of our original subspace U (which we call sparse
directions). Then, the k-PCA of the dataset will return a top
singular vector close to ~u, but the remaining singular vectors
will be mostly determined by random noise. In particular,
the points with high component along sparse directions may
be very far away from the subspace returned by our PCA,
and hence “poorly-captured” by the PCA space. Then, the
NNS data structure on the projected points will fail for some
query points. If the difference between a query point q and
its nearest neighbor p∗ is along ~u, whereas the difference
between q and a poorly-captured point p′ is along the sparse
directions, then any such p′ will cluster around q in the k-
PCA space, at a distance much closer than ‖q − p∗‖.

Our first algorithm instead runs k-PCAs iteratively, while
pruning away points “well-captured” by the PCA (i.e., close
to the PCA subspace). In particular, this allows us to discover
the points in sparse directions in later iterations. To ensure
correctness of nearest neighbor queries in presence of large
noise in a given iteration, we need to take only those singular
vectors that are actually close to U (which may be much
fewer than k). To detect such directions, we consider only
singular vectors corresponding to singular values exceeding
some threshold value. Proving that such singular vectors are
“good” is non-trivial, starting even with the definition of
what it means to be “close” for two subspaces that have
different dimensions. For this purpose, we employ the so-
called sin θ machinery, which was developed by Davis and
Kahan [17] and by Wedin [47], to bound the perturbations of
the singular vectors of a matrix in presence of noise. Notice
the difference from the more usual theory of perturbations
of the singular values. For example, in contrast to singular

values, it is not true that the top singular vector is “stable”
when we perturb a given matrix.

The actual algorithm has one more important aspect: in
each iteration, the PCA space is computed on a sample of
the (surviving) data points. This modification allows us to
control spurious conditioning induced by earlier iterations.
In particular, if instead we compute the PCA of the full
data, once we argue that a vector p̃ “behaves nicely” in one
iteration, we might effectively condition on the direction
of its noise, potentially jeopardizing noise concentration
bounds in later iterations. (While we do not know if sam-
pling is really necessary for the algorithm to work, we note
that practically it is a very reasonable idea to speed up
preprocessing nonetheless.) This concludes the description
of our first algorithm.

The second algorithm is based on the PCA-tree, which
partitions the space recursively, according to the top PCA
direction. This can be seen as another (extreme) form of
“iterative PCA”. At each node, the algorithm extracts the
top PCA direction, which is always guaranteed to be close
to original space U . We then partition the dataset into a
few slabs along this direction, and recurse on the datapoints
captured by each slab separately. The performance of the
PCA tree depends exponentially on its depth, hence the
crux of the argument is to bound the depth. While it seems
plausibly easy to show that a partitioning direction should
never be repeated, this would give too loose of a bound,
as there could be a total of ≈ exp(k) essentially distinct
directions in a k-dimensional space. Instead, we perform a
mild form of orthonormalization as we progress down the
tree, to ensure only O(k) directions are used in total. In the
end, the query time is roughly kO(k), i.e., equivalent to a
NNS in an O(k log k)-dimensional space.

The algorithm also requires two further ideas. First, one
has to use centered PCA, i.e., PCA on the data centered
at zero: otherwise, every small error in PCA direction may
move points a lot for subsequent iterations, misleading a
non-centered PCA. Second, from time to time, we need to
do “de-clumping” of the data, which essentially means that
the data is sparsified if the points are too close to each other.
This operation also appears necessary; otherwise, a cluster of
points that are close in the original space, might mislead the
PCA due to their noise components. Furthermore, in contrast
to the first algorithm, we cannot afford ≈ d iterations to
eliminate “bad” directions one by one.

II. THE MODEL

We assume throughout the dataset is generated as fol-
lows.4 Let U be a k-dimensional subspace of Rd. Let
P = {p1, . . . , pn} be a set of n points all living in U
and having at least unit norm, and let q ∈ U be a query

4An exception is the warm-up Section III, where the noise is small
adversarial.



point. We assume that d = Ω(log n). The point set P is
perturbed to create P̃ = {p̃1, . . . , p̃n} by adding to each
point independent Gaussian noise, and the query point q is
perturbed similarly. Formally,

p̃i = pi + ti where ti ∼ Nd(0, σId), ∀pi ∈ P,
q̃ = q + tq where tq ∼ Nd(0, σId). (II.1)

Let us denote the nearest neighbor to q in P by p∗ and let
p̃∗ be its perturbed version. We shall actually consider the
near-neighbor problem, by assuming that in the unperturbed
space, there is one point p∗ ∈ P within distance 1 from the
query, and all other points are at distance at least 1+ ε from
the query, for some known 0 < ε < 1. Formally,

∃p∗ ∈ P such that ‖q − p∗‖ ≤ 1 and
∀p ∈ P \ {p∗}, ‖q − p‖ ≥ 1 + ε. (II.2)

We note that even if there is more than one such point
p∗ so that ‖q − p∗‖ ≤ 1, our algorithms will return one
of these close p∗ correctly. Also our analysis in Section V
extends trivially to show that for any x such that x ≥ 1 and
‖q− p∗‖ = x, our first algorithm the iterative PCA actually
returns a (1+ε)-approximate nearest neighbor to q. We omit
the details of this extended case for ease of exposition.

A. Preliminary Observations

For the problem to be interesting, we need that the
perturbation does not change the nearest neighbor, i.e., p̃∗

remains the closest point to q̃. We indeed show this is the
case as long as σ � ε/ 4

√
d log n. Notice that the total noise

magnitude is roughly σ
√
d, which can be much larger than

1 (the original distance to the nearest neighbor). Hence
after the noise is added, the ratio of the distance to the
nearest neighbor and to other (nearby) points becomes very
close to 1. This is the main difficulty of the problem, as,
for example, it is the case where random dimensionality
reduction would lose nearest neighbor information. We rec-
ommend to keep in mind the following parameter settings:
k = 20 and ε = 0.1 are constants, while d = log3 n and
σ = Θ(1/ log n) depend asymptotically on n = |P |. In this
case, for example, our algorithms actually withstand noise
of magnitude Θ(

√
log n)� 1.

Here and in the rest of the paper, we will repeatedly
employ concentration bounds for Gaussian noise, expressed
as tail inequalities on χ2 distribution. The following are
standard concentration of measure results, and we defer the
routine proofs to the full version.

Theorem II.1. ([32]) Let X ∼ χ2
d. For all x ≥ 0,

Pr
[
X ≥ d

(
1 + 2

√
x
d

)
+ x
]
≤ e−x, and

Pr
[
X ≤ d

(
1− 2

√
x
d

)]
≤ e−x.

Corollary II.2. For n ≥ 1, let X ∼ χ2
d. Then Pr[|X−d| ≥

d+ 4
√
d log n+ 4 log n] ≤ 2

n4 .

We also obtain that after the perturbation of P, q, the
nearest neighbor of q̃ will remain p̃∗, w.h.p.

Lemma II.3. Consider the above model II.1-II.2 for n > 1,
ε ∈ (0, 1), dimensions k < d = Ω(log n), and noise
standard deviation σ ≤ cε/ 4

√
d log n, where c > 0 is a

sufficiently small constant. Then w.h.p. the nearest neighbor
of q̃ (in P̃ ) is p̃∗.

The problem remains essentially the same if we assume
the noise has no component in the space U . Indeed, we can
absorb the noise inside U ito the “original” points (P and
q). With high probability, this changes the distance from
q to every point in P by at most O(σ

√
k log n) � ε.

Hence, in the rest of the article, we will assume the noise
is perpendicular to U .

III. WARMUP: ITERATIVE PCA UNDER SMALL
ADVERSARIAL NOISE

To illustrate the basic ideas in our “iterative PCA” ap-
proach, we first study it in an alternative, simpler model that
differs from Section II in that the noise is adversarial but of
small magnitude. The complete “iterative PCA” algorithm
for the model from Section II will appear in Section V.

In the bounded noise model, for fixed ε ∈ (0, 1), we start
with an n-point dataset P and a point q, both lying in a
k-dimensional space U ⊂ Rd, such that

∃p∗ ∈ P such that ‖q − p∗‖ ≤ 1 and
∀p ∈ P \ {p∗}, ‖q − p‖ ≥ 1 + ε

The set P̃ consists of points p̃i = pi + ti for all pi ∈ P ,
where the noise ti is arbitrary, but satisfies ‖ti‖ ≤ ε/16 for
all i. Similarly, q̃ = q + tq with ‖tq‖ ≤ ε/16.

Theorem III.1. Suppose there is a (1 + ε/4)-approximate
NNS data structure for n points in a k-dimensional Eu-
clidean space with query time Fquery, space Fspace, and
preprocessing time Fprep. Then for the above adversarial-
noise model, there is a data structure that preprocesses P̃ ,
and on query q̃ returns p̃∗. This data structure has query time
O((dk+Fquery) log n), space O(Fspace), and preprocessing
time O(n+ d3 + Fprep).

First we show that the nearest neighbor “remains” p∗ even
after the perturbations (similarly to Lemma II.3. Let α =
ε/16.

Claim III.2. The nearest neighbor of q̃ in P̃ is p̃∗.

Proof: For all i, we have ‖p̃i − pi‖ ≤ ‖ti‖ ≤ α, hence
by the triangle inequality, ‖q̃− p̃∗‖ ≤ ‖q̃− q‖+ ‖q− p∗‖+
‖p∗ − p̃∗‖ ≤ ‖q − p∗‖ + 2α. For all p 6= p∗, a similar
argument gives ‖q̃ − p̃‖ ≥ ‖q − p∗‖+ ε− 2α.



We now describe the algorithm used to prove Theorem
III.1. Our algorithm first finds a small collection U of
k-dimensional subspaces, such that every point of P̃ is
“captured well” by at least one subspace in U . We find
this collection U by iteratively applying PCA, as follows
(see Algorithm III.1). First compute the top (principal) k-
dimensional subspace of P̃ . It “captures” all points p̃ ∈ P̃
within distance

√
2α from the subspace. Then we repeat on

the remaining non-captured points, if any are left. In what
follows, let pŨ denote the projection of a point p onto Ũ ,
and define the distance between a point x and a set (possibly
a subspace) S as d(x, S) = infy∈S‖x− y‖.

Algorithm III.1 Iteratively locate subspaces

j ← 0; P̃0 ← P̃
while P̃j 6= ∅ do
Ũj ← the k-dimensional PCA subspace of P̃j
Mj ← {p̃ ∈ P̃j : d(p̃, Ũj) ≤

√
2α}

P̃j+1 ← P̃j \Mj

j ← j + 1
end while
return Ũ = {Ũ0, . . . , Ũj−1} and the associated point sets
{M0,M1, . . . ,Mj−1}.

The remainder of the preprocessing algorithm just con-
structs for each subspace Ũ ∈ U a data structure for k-
dimensional NNS, whose dataset is the points captured by
Ũ projected onto this subspace Ũ (treating Ũ as a copy of
Rk). Overall, the preprocessing phase comprises of O(log n)
PCA computations and constructing O(log n) data structures
for a k-dimensional NNS.

The query procedure works as follows. Given a query
point q̃, project q̃ onto each Ũ ∈ U to obtain q̃Ũ , and find
in the data structure corresponding to this Ũ a (1 + ε/4)-
approximate nearest neighbor point p̃Ũ to q̃Ũ . Then compute
the distance between q̃ and each p̃ (original points corre-
sponding to p̃Ũ ), and report the the closest one to q̃.

We now proceed to analyze the algorithm.

Claim III.3. Algorithm III.1 terminates within O(log n)
iterations.

Proof: Let U be the PCA subspace of P and let Ũ be
the PCA subspace of P̃ . Since Ũ minimizes (among all k-
dimensional subspaces) the sum of squared distances from
all p̃ ∈ P̃ to Ũ ,∑

p̃∈P̃

d(p̃, Ũ)2 ≤
∑
p̃∈P̃

d(p̃, U)2 ≤
∑
p̃∈P̃

‖p̃− p‖2 ≤ α2n.

Hence, at most half of the points in P̃ may have distance
to Ũ which is greater than

√
2α. The current set M will

capture the other (at least a half fraction) points, and
the algorithm then proceeds on the remaining set. Each
subsequent iteration thus decreases the number of points by

a constant factor. After O(log n) iterations all points of P̃
must be captured.

Claim III.4. The data structure for the subspace Ũ that
captures p̃∗ always reports this point as the (1 + ε/4)-
approximate nearest neighbor of q̃ (in Ũ ).

The proof is deferred to the full version, and follows from
careful application of the triangle inequality and Pythagoras’
Theorem, using the bounds on the noise-magnitude bound
α < ε/16 and on the distance to the subspace

√
2α.

We can now complete the proof of Theorem III.1. By
Claim III.4, p̃∗ is always reported by the k-dimensional data
structure it is assigned to. But this is the closest point overall,
by Claim III.2, and thus our algorithm eventually reports this
point p̃∗, which proves the correctness part of Theorem III.1.
To argue the time and space guarantees, we just note that
computing one PCA on n points takes time O(n+ d3), and
there are in total O(log n) PCAs to compute, and obviously
also k-dimensional NNS data structures to query against.

IV. STABILITY OF A TOP PCA SUBSPACE

Before continuing to the full iterative-PCA algorithm, we
need to address the challenge of controlling the stability of
the PCA subspace under random noise. In particular, we will
need to show that the PCA subspace Ũ computed from the
noisy dataset P̃ is “close” to the original subspace U .

Notation: Throughout, sj(M) denotes the j-th largest
singular value of a real matrix M , and ‖M‖ = s1(M) de-
notes its spectral norm, while ‖M‖F denotes the Frobenius
norm of M . All vector norms, i.e. ‖v‖ for v ∈ Rd, refer to
the `2-norm.

A. sin−θ Distance between subspaces.

The sin θ distance between two subspaces B and A of
Rd is defined as

sin θ(B,A) = max
x∈B,‖x‖=1

min
y∈A
‖x− y‖.

Observe that the minimum here is just the distance to a
subspace dist(x,A), and it is attained by orthogonal projec-
tion. Thus, for all x′ ∈ B (not necessarily of unit length)
dist(x′, A) = ‖x′‖ · dist

(
x′

‖x′‖ , A
)
≤ ‖x′‖ · sin θ(B,A).

Let X ∈ Rn×d be the matrix corresponding to our
original point set P (of size n ≥ d) lying in a subspace
U of dimension k ≤ d. Let T ∈ Rn×d be a perturbation
matrix (noise), and then X̃ = X + T corresponds to our
perturbed point set P̃ . Our next theorem uses ‖T‖ directly
without assuming anything about its entries, although in our
context where the entries of T are drawn from independent
Gaussians of magnitude σ, Theorem V.2 implies that w.h.p.
‖T‖ ≤ O(σ

√
n+ d). In fact, if the matrix T is random, then

m (and possibly also γ) should be interpreted as random
variables that depend on T .



Theorem IV.1. Let X̃ = X + T be defined as above, and
fix a threshold γ1 > 0. If m ≤ k is such that at least m
singular values of X̃ are at least γ1, then

sin θ(SRm(X̃), SRk(X)) ≤ ‖T‖
γ1

,

where SR`(M) denotes the span of the top ` right-singular
vectors of a matrix M .

We defer the proof of Theorem IV.1 to the full version,
but note it is a simple corollary of Wedin’s sin-θ Theorem
[47].

V. ITERATIVE PCA ALGORITHM

We now present the iterative PCA algorithm, that solves
the NNS problem for the semi-random model from Sec-
tion II. In particular, the underlying pointset lives in a k-
dimensional space, but each point is also added a Gaus-
sian noise Nd(0, σ

2Id), which has norm potentially much
larger than the distance between a query and it nearest
neighbor. The algorithm reduces the setting to a classical
k-dimensional NNS problem.

Theorem V.1. Suppose there is a (1 + ε/8)-approximate
NNS data structure for n points in a k-dimensional space
with query time Fquery, space Fspace, and preprocessing
time Fprep. Assume the Gaussian-noise model (II.1)-(II.2),
with σ(k1.5

√
log n+ 4

√
k3d log n) < cε for sufficiently small

constant c > 0.
Then there is a data structure that preprocesses P̃ , and on

query q̃ returns p̃∗ with high probability. This data structure
has query time O((dk + Fquery)

√
d log n + dO(1)), uses

space O(Fspace

√
d log n + dO(1)), and preprocessing time

O((nd2 + d3 + Fprep)
√
d log n).

A. Algorithm Description

The iterative-PCA algorithm computes a collection U
of O(

√
d log n) subspaces, such that every point in the

perturbed dataset P̃ is within squared distance Ψ = dσ2 +
0.001ε2 of some subspace in the collection U . For each such
subspace Ũsj ∈ U , we project onto Ũsj the points captured by
this subspace Ũsj , and construct on the resulting pointset a k-
dimensional NNS data structure. We consider only singular
vectors corresponding to sufficiently large singular values,
which helps ensure robustness to noise. In particular, this
threshold is δ(n) , cε

√
n
k for small constant c ≤ 0.001.

Also, the PCA space is computed on a sample of the current
pointset only.

See Algorithm V.1 for a detailed description of computing
U .

We now present the overall NNS algorithm in detail. The
preprocessing stage runs Algorithm V.1 on the pointset P̃ ,
stores its output, and constructs a k-dimensional NNS data
structure for each of the pointsets M0, . . . ,Mj−1 (here j
refers to the final value of this variable). Note that we also

Algorithm V.1 Iteratively locate subspaces.

Define Ψ , dσ2 + 0.001ε2, r , O(d9k3 logn
ε2σ2 ), and

δ(n) , cε
√

n
k for small constant c ≤ 0.001.

j ← 0, P̃0 ← P̃
while |P̃j | > r do

Sample r points from P̃j (with repetition) to form the
set/matrix P̃ sj
m← number of singular values of P̃ sj that are at least
δ(r)
Ũsj ← the subspace spanned by the m top singular
vectors of P̃ sj
Mj ← all p̃ ∈ P̃j \ P̃ sj at distance dist(p̃, Ũsj ) ≤

√
Ψ

P̃j+1 ← P̃j \ (Mj ∪ P̃ sj )
j ← j + 1

end while
return the subspaces Ũ = {Ũs0 , . . . , Ũsj−1}, their
pointsets {M0,M1, . . . ,Mj−1}, and the remaining set
R = P̃j

⋃
∪j−1l=0 P̃

s
l .

have a “left-over” set R = P̃j
⋃
∪j−1l=0 P̃

s
l , which includes the

points remaining at the end plus the sampled points used to
construct the subspaces U .

The query stage uses those j data structures to compute a
(1+ε/8)-approximates NNS of q in each of M0, . . . ,Mj−1,
and additionally finds the NNS of q inside R by exhaustive
search. It finally reports the closest point found.

We make henceforth three assumptions that hold without
loss of generality. First, we assume that ‖pi‖ ≥ 1, which
is without loss of generality as we can always move the
pointset away from the origin. Overall, this ensures that
‖P‖2F ≥ |P |.

Second, we assume that all points P̃ have norm at
most L , d3/2, which follows by applying a standard
transformation of partitioning the dataset by a randomly
shifted grid with side-length d. This transformation ensures
that the query and the nearest neighbor, at distance O(σ

√
d)

are in the same grid cell with probability at least 1 − o(1)
(see, e.g., [1]).

Third, we assume that σ � ε/
√
d, as otherwise we

can apply the algorithm from Section III directly. (The
algorithm in the current section works also for small σ, but
the exposition becomes simpler if we assume a larger σ.) In
the context of our model of Section II and Lemma II.3, this
is equivalent to asserting d� log n.

Finally, we remark that the algorithm can be changed to
not use explicitly the value of σ, by taking only the closest

O

(√
logn
d

)
points to a given space Ũsj . We omit the

details.



B. Analysis

We now present a high-level overview of the proof. First,
we characterize the space Ũsj , and in particular show that it is
close to (a subspace of) the original space U , using the sine-
theta machinery and matrix concentration bounds. Second,
we use the closeness of Ũsj to U to argue that: (a) projection
of the noise onto Ũsj is small; and (b) the projection of a
point p̃ is approximately ‖p‖, on average. Third, we use
these bounds to show that the space Ũsj captures a good
fraction of points to be put into Mj , thus allowing us to
bound the number of iterations. Fourth, we show that, for
each point p̃ = p + t that has been “captured” into Mj , its
projection into Ũsj is a faithful representations of p, in the
sense that, for such a point, the distance to the projection
of q̃ onto Ũsj is close to the original distance (before noise).
This will suffice to conclude that the k-dimensional NNS for
that set Mj shall return the right answer (should it happen
to have the nearest neighbor p∗).

Slightly abusing notation, let P represent both the pointset
and the corresponding n× d matrix, and similarly for P̃ or
a subset thereof like P̃j . Let T be the noise matrix, i.e., its
rows are the vectors ti and P̃ = P + T . We shall use the
following bounds from random matrix theory:

Theorem V.2 ([31], [40]). Let the matrix T ∈ Rn×d have
entries drawn independently at random from N(0, σ). Then
with probability approaching 1 asymptotically as n and d
increase, ‖T‖ ≤ 3σmax{

√
n,
√
d}.

Corollary V.3. With high probability, for every subset A
of the rows of T , with |A| ≥ d, the corresponding sub-
matrix TA of T , has spectral norm ‖TA‖ ≤ η(|A|) =
O(σ

√
|A| · log n).

In addition, by Corollary II.2 and the parameters of our
model in Theorem V.1, w.h.p.

∀pi ∈ P, ‖ti‖2 ≤ σ2d+ 0.0001ε2. (V.1)

We assume in the rest of the proof that these events occur.
Since both are high probability events, we may use a union
bound and assume they occur over all iterations without any
effect of conditioning on the points.

The thrust of our proof below is to analyze one iteration
of Algorithm V.1. We henceforth use j to denote an arbitrary
iteration (not its final value), and let nj = |P̃j | > r denote
the number of points at that iteration.

Define Ũsj and Ũj to be the PCA space of P̃ sj and P̃j
respectively, i.e., full current set and sampled set. Stipulate
the dimension of Ũsj and Ũj to be m ≤ k and m ≤ ` ≤ k
where m is set according to the thresholding step in Al-
gorithm V.1 and ` will be specified later. We show that
the computed PCA space Ũsj is close to U using the sine-
theta machinery established in Section III. We consider the
point sets as matrices, and concatenate the following two
observations for deriving our result:

• The PCA space of sampled noisy set (scaled) is close
to that of the full noisy set, by a standard sampling
concentration result by Rudelson and Vershynin [39].

• The PCA space of the noisy set is close to that of the
unperturbed set by using Theorem IV.1 with the bound
on the spectral norm of random matrices from Lemma
V.3.

In the full version, we use the above two items to show:

Lemma V.4.

sin θ(Ũsj , Ũj) ≤ O
(
σk1.5

√
log n

ε

)
and

sin θ(Ũj , Uj) ≤ O
(
σk1.5

√
log n

ε

)
.

Since sin θ is concave in the right regime, Lemma V.4 now
gives us as a simple corollary the following useful result:

sin θ(Ũsj , Uj) ≤ O
(
σk1.5

√
log n

ε

)
. (V.2)

1) Analysis: Noise inside the PCA space: We now show
that the noise vector ti of each point p̃i = pi+ti has a small
component inside Ũsj . We use the sin θ bound in Eqn. (V.2)
for this.

Define V ∈ Rd×k as the projection matrix onto the space
U , so e.g. tiV is the zero vector, and define analogously
Ṽ sj ∈ Rd×m to be the projection matrix onto the m-
dimensional space Ũsj . Equations (V.2) and Equation (V.1)
easily imply now:

Lemma V.5. ‖tiṼ sj ‖ ≤ ‖ti‖ · sin θ(Ũsj , U).

Corollary V.6. For every point pi and iteration j, ‖tiṼ sj ‖ ≤
O
(
1
εσ

2k1.5
√
d log n

)
.

We defer the routine proof to the full version.
We now show that the component of a data point p̃i inside

the PCA space Ũsj of some iteration j, typically recovers
most of the “signal”, i.e., the unperturbed version pi. More
precisely, we compare the length seen inside the PCA space
‖p̃iṼ sj ‖ with the original length ‖pi‖. While the upper bound
is immediate, the lower bound holds only on average. We
again refer to the full version for proofs of the following
lemmas:

Lemma V.7. W.h.p., for all p̃i ∈ P̃j , ‖p̃iṼ sj ‖2 − ‖pi‖2 ≤
dσ2 + 0.0001ε2.

Lemma V.8.
∑
p̃i∈P̃j

(‖p̃iṼ sj ‖2 − ‖pi‖2) ≥ −kδ(nj)2.

We now show that each iteration captures in Mj a
good fraction of the remaining points, thereby bounding the
number of iterations overall. In particular, we give a lower
bound on the number of indexes i such that p̃i is close to
the m dimensional PCA subspace Ũsj . Note that the square
of this distance for a point p̃i is precisely ‖p̃i‖2 − ‖p̃iṼ ‖2.



Let X and Y be quantities according to Lemmas V.7 and
V.8, such that

Xnj ≤
∑
i

(‖p̃iṼ sj ‖2 − ‖pi‖2); (V.3)

‖p̃iṼ sj ‖2 − ‖pi‖2 ≤ Y. (V.4)

Now let f be the fraction of i’s such that ‖p̃iṼ sj ‖2 −
‖pi‖2 ≤ −0.0002ε2. Then

Xnj ≤
∑
i

‖p̃iṼ sj ‖2 −
∑
i

‖pi‖2

≤ (1− f)njY − 0.0002fnjε
2.

Rearrangement of terms gives us that f ≤ Y−X
Y+0.0002ε2 .

By Lemma V.8 , we have Xnj = −kδ2 ≥ −c2ε2nj ≥
−0.00001ε2nj and so X ≥ −0.00001ε2. And by Lemma
V.7, we have Y ≤ dσ2 + 0.0001ε2. Elementary calculations
now yield

f ≤ 1− Ω

(
ε2

dσ2

)
≤ 1− Ω

(√
log n

d
.

)

Now for the rest of the (1 − f) ≥
√

logn
d fraction of

the points, the distance to the PCA subspace Ũ is, by
Pythagoras’ Theorem,

‖p̃‖2 − ‖p̃Ṽ sj ‖2 = ‖t‖2 + (‖p‖2 − ‖p̃Ṽ sj ‖2)

≤ ‖t‖2 + 0.0002ε2.

Since ‖t‖2 ≤ dσ2+0.0001ε2, we get the required inequality
that a large fraction of the points is within squared dis-
tance dσ2 + 0.001ε2 = Ψ. It follows that the fraction of
points captured by Ũsj , i.e., in a single iteration, is at least

Ω

(√
logn
d

)
, which immediately implies a bound on the

number of iterations as follows.

Lemma V.9. Algorithm V.1 will terminate in at most
O
(√

d
logn log n

)
= O(

√
d log n) iterations.

It now remains to show that the data structure that captures
the actual nearest neighbor p̃∗ will still report p̃∗ as the
nearest neighbor to q̃ in the k-dimensional data structure.
The proof is involved, so we only sketch some intuition
here and discuss the details in the full version. Essentially,
we use the randomness of the noise to show almost none of
it projects down to Ũ , and that almost all of the magnitude
of each unperturbed point is captured by Ũ . When using the
randomness, we have to be careful to show that conditioning
is not introduced by non selection of points in the same
iteration, and here we use that the PCA at each step is only
computed on a sample which is then set aside into a separate
bucket.

2) Algorithm performance: We now remark on the re-
sulting parameters of the algorithm.

Processing an iteration of the preprocessing stage takes
O(rd2 + d3 + ndk) = O(nd2) time for: computing P̃ sj , the
PCA space, and Mj respectively. Hence, over O(

√
d log n)

iterations, together with preprocessing of the k-dimensional
NNS data structures, we get preprocessing time O((nd2 +
d3 + Fprep)

√
d log n). Space requirement is essentially that

of O(
√
d log n) instances of k-dimensional NNS data struc-

ture, plus the space to store O(
√
d log n) spaces Ũsj , and the

left-over set R.
The query time is composed of: computing the projections

into O(
√
d log n) subspaces, querying the k-dimensional

NNS data structures, and computing the distances to left-
over points in R. Overall, this comes out to O(dk·

√
d log n+√

d log n · Fquery + d|R|).

VI. PCA TREE

We now present our second spectral algorithm, which is
closely related to the PCA tree [43], [46]. We first give the
algorithm and then present its analysis. Overall, we prove
the following theorem.

Theorem VI.1. Consider the Gaussian-noise model (II.1)-
(II.2), and assume that its parameters satisfy σ < κ ·
min

{
ε√

k logn
, ε√

k 4
√
d logn

}
, for sufficiently small constant

κ > 0. There exists a data structure that preprocesses P̃ ,
and then given the query q̃, returns the nearest neighbor
p̃∗ w.h.p.5 And w.h.p. the query time is (k/ε)O(k) · d2, the
space requirement is O(nd), and the preprocessing time is
O(n2d+ nd3).

The algorithm itself is deterministic.

A. Algorithm description

The algorithm constructs one-dimensional partitioning
tree hierarchically, where each tree node is associated with
a subset of the pointset P̃ . We start with the root of the tree,
associated with all n points P̃ . Now at each tree node x, we
take the pointset associated with x, termed P̃ inx . First, we
perform a process called “de-clumping”, which just discards
part of the dataset, to obtain a set P̃x ⊆ P̃ inx . We describe
this process at the end.

The main operation at a node is to take the top centered-
PCA direction of P̃x, termed vx. By centered-PCA we
mean subtracting from each vector in P̃x their average a =
1
|P̃x|

∑
p̃∈P̃x

p̃, and then taking the top PCA direction. Now,

let θ , ε
1000k3/2

and let Θ be the partition of the real line into
segments of length θ, namely Θ = {[θi, θ(i+ 1)) | i ∈ Z}.
Then we partition P̃x into parts depending on which segment
from Θ the projection of a point p̃ ∈ P̃x onto vx falls
into. Then, we orthogonalize with respect to vx, namely,
transform each point p̃ ∈ P̃x into p̃′ = p̃ − 〈p̃, vx〉vx. For

5The probability is over the randomness from the model.



each non-empty segment of Θ we produce a child of x
associated with the points that fall into that segment, and
repeat recursively on it. We stop once the current tree node
has at most d points associated with it.

During a query, we follow the tree into all the buckets
(slabs) that intersect a ball of radius 1 + ε/2 around q̃. In
each leaf, compute the exact distance from q to all points
associated to that leaf. Finally, report the closest point found.

We now describe the de-clumping procedure that is done
at each node. We compute the top centered-singular value of

P̃ inx . If this value is at least λc = λc(|P̃ inx |) , ε
16

√
|P̃ inx |/k,

then set P̃x , P̃ inx . Otherwise, find the closest pair of points
in P̃ inx , and let δ denote their squared-distance. Remove all
the pairs of points in P̃ inx that have squared-distance at most
δ+ ε2/2, to obtain P̃x. (The removal is iterative, proceeding
in arbitrary order.)

The thrust of our analysis is the following Lemma:

Lemma VI.2 (Tree Depth). The constructed PCA tree has
depth at most 2k.

At a high level, our proof of Lemma VI.2 proceeds by
showing that the top PCA direction vx at each node x is
close to U . We argue this by a careful induction over levels
of the tree, and proving that declumping filters out noisy
directions from our data. Due to our orthogonalization at
each step, and since U is only of dimension k, we cannot
discover too many “new” directions in or near U . The exact
proof is quite technical, and hence we defer the details to
the full version.

Having established an upper bound on the tree depth,
we next show that the query algorithm will indeed return
the nearest neighbor p̃∗ for the query q̃ (modelled as in
Section II). We show this in two steps: first we prove the
result, assuming the point p̃∗ was not thrown out during de-
clumping. Then we show that the de-clumping indeed does
not throw out the point p̃∗:

Lemma VI.3. The query algorithm returns the point p̃∗,
assuming it was not thrown out during the de-clumping
process.

Lemma VI.4. p∗ is never thrown out due to the de-clumping
process.

The proofs of both lemma are deferred to the full version
due to space constraints. Now the space and preprocessing
bounds follow immediately from the construction. We just
need to argue about the query time.

Claim VI.5. The query time is (k/ε)O(k)d2.

Proof: At each node of the tree, there are at most
O(1/θ) = O(k3/2/ε) child nodes that are followed. Hence,
in total, we reach O(1/θ)2k = (k/ε)O(k) leaves. The factor
of d2 comes from the fact that each leaf has at most d points
to check the distance against.
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