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e A. GuptaBell Labs P. IndykMIT S. RaskhodnikovaMIT1 Introdu
tionThe edit distan
e (also 
alled Levenshtein metri
) be-tween two strings is the minimum number of opera-tions (insertions, deletions and 
hara
ter substitutions)needed to transform one string into another. This dis-tan
e is of key importan
e in 
omputational biology,as well as text pro
essing and other areas. Algorithmsfor problems involving this metri
 have been extensivelyinvestigated. In parti
ular, the quadrati
-time dynami
programming algorithm for 
omputing the edit distan
ebetween two strings is one of the most investigated andused algorithms in 
omputational biology.Re
ently, a new approa
h to problems involvingedit distan
e has been proposed. Its basi
 
omponentis 
onstru
tion of a mapping f (
alled an embedding),whi
h maps any string s into a ve
tor f(s) 2 <d, so thatfor any pair of strings s; s0, the lp distan
e kf(s)�f(s0)kpis approximately equal to the edit distan
e between sand s0. The approximation fa
tor is 
alled distortionof the embedding f . A low-distortion embedding ofedit distan
e into lp norm would be very useful, for thefollowing reasons:� One 
ould redu
e a similarity sear
h (e.g., nearestneighbor 
omputation) in large sequen
e databasesto an analogous problem in normed spa
es; for thelatter problem many eÆ
ient solutions are known.� If 
omputing f(s) took subquadrati
 time, thenthe edit distan
e between two strings 
ould beapproximated in subquadrati
 time as well.Unfortunately, so far essentially nothing is knownabout embeddability of the edit distan
e into a normedspa
e1. If we modify the de�nition of the distan
e byallowing to move an arbitrarily long 
ontiguous blo
k of
hara
ters as a single operation, then the resulting blo
k-edit metri
 
an be embedded into l1 with distortionO(log d � log� d), where d is the length of the embeddedstrings (see [CPSV00, MS00, CM02℄ and referen
estherein). This suggests that a similar result 
ould bea
hievable for the (
hara
ter) edit distan
e as well. So1Ex
ept for generi
 embeddability results for arbitrary metri
spa
es, whi
h do not seem to provide any interesting bounds.

far, however, su
h a result seems quite elusive. Thisraises the possibility that a low-distortion embeddingmight be not possible.In this paper we present the �rst non-trivial lowerbound for embeddability of edit distan
e into lp norms.In parti
ular, we show that su
h metri
 
annot beembedded into l1 norm (with arbitrary dimension) withdistortion better than 3=2. In fa
t, we show that themetri
 
annot be embedded with better distortion intothe square of l2; sin
e any l1-metri
 
an be embeddedisometri
ally into (l2)2 [LLR94℄, this implies the formerresult. We also show that for our approa
h, the fa
tor3=2 is tight, even for embeddings into the l1 norm.Although our lower bound of 3=2 is quite modestwhen 
ompared with the 
urrent best upper bound ofO(d), it should be noted that proving lower bounds forembedding into l1 norm is a quite diÆ
ult task. In fa
t,the only known te
hnique for obtaining super-
onstantlower bounds, appli
able to shortest path metri
s overa graph (say G), is to show that G is an expander.We believe that this approa
h might not be appli
ablehere, sin
e our 
omputational experiments for editmetri
s over small length strings suggest that the graphunderlying the edit metri
 is not a good expander.Instead our approa
h is to identify a subgraph of theedit metri
 for whi
h the lower bound 
an be shownusing dire
t arguments. In parti
ular, we show thatthe edit metri
 
ontains the shortest path metri
 overthe K2;n graph (we 
all it a K2;n-metri
) as an indu
edsubgraph. Then we show that the latter metri
 
annotbe embedded into the square of l2 norm with lowdistortion.2 \Hard" subsets of the edit metri
We show that the K2;n-metri
 is an indu
ed subgraphof the edit distan
e. If we label the verti
es of K2;nwith A1; A2; B1; B2; :::; Bn, su
h that there are edgesonly between Ai and Bj , 1 � i � 2; 1 � j � n, then we
an make the following 
orresponden
e:� A1 
orresponds to the string 101010:::10| {z }2n bits , where theblo
k 10 repeats exa
tly n times;



� A2 
orresponds to the string 1010:::10| {z }2n�2 bits, where theblo
k 10 repeats exa
tly n� 1 times;� Bi 
orresponds to the string1010:::101011010:::1010| {z }2n�1 bits , that is the string that
orresponds to A1 with the ith zero bit deleted.With these 
orresponden
es we have the followingdistan
es between the strings. The distan
e betweenstrings 
orresponding to A1 and A2 is pre
isely 2: A2is obtained by performing 2 deletions on A1 string.The distan
e between A1 and any Bi is pre
isely 1 byde�nition of the Bi strings. The distan
e between anyBi and A2 is also 1 be
ause A2 
an be obtained bydeleting the ith 1. Finally, the distan
e between thestrings 
orresponding to someBi and someBj , for i 6= j,is equal to 2 be
ause these are two strings of the samelengths that di�er in at least 2 positions.3 Analyti
 lower boundsTheorem 3.1. For any � > 0, there exists n, su
h thatthe distortion of any embedding f of K2;n-metri
 intothe square of the l2 norm (and therefore into the l1 normas well) is at least 3=2� �.Proof: Take n = 2k, where k = d 1=�2 e. Let 
 be thedistortion of f . We use the notation Bi = Ai+2, fori = �1; 0. The metri
 over the set of points X =f(B�1); : : : f(Bn) needs to satisfy the following negativetype inequality [DL97℄ for any sequen
e b�1; : : : bn ofintegers whi
h sum up to 0:X�1�i<j�n bibjkf(Bi)� f(Bj)k22 � 0Let b�1 = b0 = �k, and bi = 1, i = 1 : : : n. Weobtain k2 � 2 +�n2� � 2 � 2nk � 
Therefore,
 � k2 + (2k � 1)k(2k)k � 3=2� 12k :The following theorem shows that the fa
tor 3=2 isindeed tight.Theorem 3.2. There exists an embedding f of K2;n-metri
 into l1 with distortion 3=2.Proof: The embedding f is obtained by using a
ombination of two di�erent embeddings f1 and f2. The�rst embedding (into l2n1 ) is de�ned as follows:

� f1(A1) = (0; : : : ; 0)� f1(A2) = (1; : : : ; 1)=2n� f1(Bi) = (bin(1)i; : : : ; bin(2n � 1)i)=2n, wherebin(j)i denotes the i-th bit of the binary represen-tation of j.Claim 1. The embedding f1 satis�es the followingproperties:1. kf1(A1)� f1(A2)k1 = 12. kf1(Ai) � f1(Bj)k1 = 1=2, for i = 1; 2 and j =1; : : : n3. kf1(Bi)� f1(Bj)k1 = 1=2, for 1 � i < j � nThe se
ond embedding f2 (into ln1 ) is de�ned as:� f2(A1) = f2(A2) = (0; : : : ; 0)� f2(Bi) = ei=2, where ei is a ve
tor with 1 at thei-th position and zeros elsewhereClaim 2. The embedding f2 satis�es the followingproperties:1. kf2(A1)� f2(A2)k1 = 02. kf2(Ai) � f2(Bj)k1 = 1=2, for i = 1; 2 and j =1; : : : n3. kf2(Bi)� f2(Bj)k1 = 1, for 1 � i < j � nLet D1 and D2 be the metri
s indu
ed by f1 and f2.The metri
 2D1 +D2 provides the desired distortion.We mention that by in
reasing the distortion to3=2+ � one 
an redu
e the dimension of the host spa
eto only O(logn). The details are left to the full versionof this paper.The lower bound for the square of the l2 norm
an be also proved dire
tly, without using the negativetype inequality. We atta
h the alternative proof in theappendix.4 Summary of 
omputational experimentsAs mentioned in the introdu
tion, we have performedseveral 
omputational experiments aimed at improvingthe lower bound of 3=2. Spe
i�
ally, our goal was toestimate the distortion for embedding of the edit metri
over binary strings of length up to d into l1 or squareof l2, for small values of d. In parti
ular, we 
onsideredthe following three approa
hes:1. Optimal distortion embeddings into l1 using the
ut-metri
 formulation of the l1 norm



2. Optimal distortion embeddings into square of l2using semi-de�nite programming3. Lower bounds for distortion via expansion proper-ties of the metri
Embedding into l1. It is known (e.g., see Proposition4.2.2 in [DL76℄) that a metri
 M = (X;D) 
an beembedded into l1 i� it 
an be represented as a 
oni

ombination of 
ut semi-metri
s, i.e., semi-metri
s DS ,S � X , su
h that DS(p; q) = jS \ fp; qgj mod 2.Finding best distortion embedding of M into l1 
an beformulated as a linear program with 2jXj�1 variablesand O(jX j2) 
onstraints. Unfortunately, in our 
asejX j = 2d+1 � 1, whi
h made this approa
h infeasiblefor d > 3. Thus, we experimented only with d = 3.The resulting distortion was 4=3, whi
h is less than ourearlier guarantee.Embedding into square of l2. The optimal distortionof an embedding of a metri
 M = (X;D) into thesquare of l2 
an be 
omputed in polynomial time usingsemide�nite programming (e.g., see [Mat℄). Thus, we
omputed best distortion embeddings of the edit metri
sfor strings of lengths up to d = 5. For this purpose,we used Matlab-based pa
kage, 
alled SDPpa
k. Theoptimal distortion was roughly 1:30, whi
h is less thanthe analyti
 bound of 3=2 proved earlier in this paper.Applying the embedding pro
edure for d = 6 turnedout to be infeasible, sin
e (by our estimations) it wouldrequire about 2GB of memory.Lower bounds via expansion. Our �nal attemptto obtain 
omputational lower bounds for embeddingsof edit distan
e was to show that the \edit graph"underlying the edit metri
 is a \good" expander andthen use the bounds as in, e.g., [Mat℄. In parti
ular,we 
onsidered G = Gd;d�1 = (V;E), whi
h is the editgraph indu
ed by strings of length d or d � 1, with afew additional \self-loop" edges to make it regular (withdegree � = 3d � 1). It is not diÆ
ult to see that theshortest path metri
 over G is an indu
ed subgraph ofthe edit metri
. Our goal was to show that there exists a(large) 
onstant C su
h that for any set A � V we haveje(A; V �A)j � CjAjjV �Aj=n, where e(A;B) is the setof edges between A and B. Then it would follow [Mat℄that the minimum distortion 
 is at leastS � C � avg(G)�where S is a 
onstant s
aling fa
tor and avg(G) is theaverage distan
e between pairs of nodes in G. Theexpansion 
onstant C 
an be bounded from below bythe \eigenvalue gap", i.e., the di�eren
e between the�rst eigenvalue (equal to �) and the se
ond eigenvalueof the adja
en
y matrix of G. The eigenvalues of G


an be 
omputed eÆ
iently using power method, whi
hrequires mu
h less spa
e than earlier methods (notablySDP).Unfortunately, the eigenvalue gap of G has refusedto be large. Spe
i�
ally, it was about 2:7 for d =4; 8; 12; 16. For 
omparison, it is equal to 2 for a d-dimensional hyper
ube H ,whi
h is 
learly embeddableinto l1 with no distortion. Sin
e avg(H) = d=2, �(H) =d, it follows that S � 1. Sin
e avg(G) � d=2 and�(G) = 3d � 1, the resulting distortion lower boundis weaker that 3=2.Referen
es[CM02℄ G. Cormode and S. Muthukrishnan. The string editdistan
e mat
hing problem with moves. Pro
eedingsof the ACM-SIAM Symposium on Dis
rete Algorithms,2002.[CPSV00℄ G. Cormode, M. Paterson, C. Sahinalp, andU. Vishkin. Communi
ation 
omplexity of do
umentex
hange. Pro
eedings of the ACM-SIAM Symposiumon Dis
rete Algorithms, 2000.[DL76℄ D. Dobkin and R. Lipton. Multidimensional sear
hproblems. SIAM Journal on Computing, 5:181{186,1976.[DL97℄ M. M. Deza and M. Laurent. Geometry of Cuts andMetri
s. Algorithms and Combinatori
s 15. Springer-Verlag, Berlin et
., 1997.[LLR94℄ N. Linial, E. London, and Y. Rabinovi
h. The ge-ometry of graphs and some of its algorithmi
 appli
a-tions. Pro
eedings of 35th Annual IEEE Symposiumon Foundations of Computer S
ien
e, pages 577{591,1994.[Mat℄ J. Matou�sek. Le
tures on dis
rete geometry.Springer, in press.[MS00℄ S. Muthukrishnan and C. Sahinalp. Approximatenearest neighbors and sequen
e 
omparison with blo
koperations. Pro
eedings of the Symposium on Theoryof Computing, 2000.



A Another proof for the 3=2 lower bound forembeddings into (l2)2Proof: We �rst provide a natural embedding of K2;nmetri
 into the square of l2, with distortion 3=2. Al-though this result is implied by the earlier theorem, the
onstru
tion provides a good intuition for the proof ofthe lower bound.An embedding with distortion 3=2 
an be obtainedas follows. Consider the following ve
tors x1; x2; :::xn,su
h that xi = (xi1; xi2:::).xn+1 = (p22 ; 0; 0; :::)xn+2 = (�p22 ; 0; 0; :::)xij = Æ(i+ 1; j)where 1 � i � n; j � 1 and Æ is Krone
ker's symbol.Then, we have for 1 � i; j � n; i 6= j:2 � kxn+1 � xn+2k2 = �2 � p22 �2 = 2 � 3=2 � 22 � kxi � xjk2 = 1 + 1 = 2 � 3=2 � 21 � kxn+1 � xik2 = 12 + 1 = 3=2 � 3=2 � 11 � kxn+2 � xik2 = 12 + 1 = 3=2 � 3=2 � 1Now we pro
eed with the lower bound. The proofis by 
ontradi
tion. Suppose the statement is false,i.e., there exists an � > 0 su
h that for any n, K2;n-metri
 
an be embedded with distortion at most 3=2��. As before, we label the 2 + n verti
es of K2;nas A1; A2; B1; B2; :::; Bn, where there edges are onlybetween the verti
es Ai and Bj , 1 � i � 2; 1 � j � n.Let x1; x2; :::; xn; xn+1; xn+2 be the 
orrespondingve
tors of B1; B2; :::; Bn and A1; A2, su
h that thedistortion is at most 3=2� �. This means that� � kxi � xjk2 = kxi � xjk2 � (3=2� �)� (1)with � = 2 if 1 � i < j � n, or fi; jg = fn+ 1; n+ 2gand � = 1 otherwise.We 
an rotate the ve
tors x1; x2; :::; xn; xn+1; xn+2so that xn+1 = (a; 0; 0:::) and xn+2 = (�a; 0; 0:::). From(1), we have that2 � kxn+1 � xn+2k2 = k(a; 0; 0:::)� (�a; 0; 0:::)k2= (2a)2) a � p2=2We have alsokxn+1 � xik2 = (a� xi1)2 + (kxik2 � x2i1) (2)= a2 � 2axi1 + kxik2

for 1 � i � n , andkxn+2 � xik2 = (�a� xi1)2 + (kxik2 � x2i1) (3)= a2 + 2axi1 + kxik2for 1 � i � n.We 
an 
onstru
t n new ve
tors x01; x02; :::; x0n fromx1; x2; :::; xn, su
h that the new ve
tors still satisfy(1), and have their �rst 
oordinates equal to zero.Spe
i�
ally, the new ve
tors are 
onstru
ted by addinga new 0 
oordinate in front of the ve
tors, i.e.,x0i = (0; xi1; xi2; xi3; :::)Due to (2) and (3), the new ve
tors still satisfy equa-tion (1). Therefore, from now on we assume ve
torsx1; x2; :::; xn have their �rst 
oordinate set to 0.In this 
asekxn+1 � xik2 = kxn+2 � xik2 = a2 + kxik2 � 12 + kxik2It follows that(3=2� �) � kxn+1�xik2 � 12 +kxik2 ) kxik2 � (1� �)(4)Consider now the distan
e between two ve
tors xiand xj with 1 � i < j � n:kxi � xjk2 = kxik2 + kxjk2 � 2xi � xj� (1� �) + (1� �) + 2xi � xjFrom (1), we have that kxi � xjk2 � 2 for 1 � i <j � n. Therefore, we have2 � kxi � xjk2 � 2� 2�� 2xi � xj )xi � xj � ��Con
luding, we have that there exists � su
h thatfor any n, there exist n ve
tors x1; x2; :::; xn with normless than 1 su
h that xi � xj � ��. But this is not true,sin
e it is known that if n � 2=�+1, then there exist twodistin
t ve
tors xi and xj su
h that xi �xj > ��. Insteadof the referen
e, we atta
h an easy proof (provided tous by Venkat Guruswami):0 � kXi xik2= (Xi xi) � (Xi xi)= Xi kxik2 + 2Xi<j xi � xj� n� �2�n2�


