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1 Introduction

The edit distance (also called Levenshtein metric) be-
tween two strings is the minimum number of opera-
tions (insertions, deletions and character substitutions)
needed to transform one string into another. This dis-
tance is of key importance in computational biology,
as well as text processing and other areas. Algorithms
for problems involving this metric have been extensively
investigated. In particular, the quadratic-time dynamic
programming algorithm for computing the edit distance
between two strings is one of the most investigated and
used algorithms in computational biology.

Recently, a new approach to problems involving
edit distance has been proposed. Its basic component
is construction of a mapping f (called an embedding),
which maps any string s into a vector f(s) € R, so that
for any pair of strings s, s', the I, distance || f(s)—f(s")|lp
is approximately equal to the edit distance between s
and s'. The approximation factor is called distortion
of the embedding f. A low-distortion embedding of
edit distance into [, norm would be very useful, for the
following reasons:

e One could reduce a similarity search (e.g., nearest
neighbor computation) in large sequence databases
to an analogous problem in normed spaces; for the
latter problem many efficient solutions are known.

e If computing f(s) took subquadratic time, then
the edit distance between two strings could be
approximated in subquadratic time as well.

Unfortunately, so far essentially nothing is known
about embeddability of the edit distance into a normed
space!. If we modify the definition of the distance by
allowing to move an arbitrarily long contiguous block of
characters as a single operation, then the resulting block-
edit metric can be embedded into l; with distortion
O(logd - log" d), where d is the length of the embedded
strings (see [CPSV00, MS00, CMO02] and references
therein). This suggests that a similar result could be
achievable for the (character) edit distance as well. So
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far, however, such a result seems quite elusive. This
raises the possibility that a low-distortion embedding
might be not possible.

In this paper we present the first non-trivial lower
bound for embeddability of edit distance into [, norms.
In particular, we show that such metric cannot be
embedded into I; norm (with arbitrary dimension) with
distortion better than 3/2. In fact, we show that the
metric cannot be embedded with better distortion into
the square of ly; since any [;-metric can be embedded
isometrically into (l5)? [LLR94], this implies the former
result. We also show that for our approach, the factor
3/2 is tight, even for embeddings into the I; norm.

Although our lower bound of 3/2 is quite modest
when compared with the current best upper bound of
O(d), it should be noted that proving lower bounds for
embedding into /1 norm is a quite difficult task. In fact,
the only known technique for obtaining super-constant
lower bounds, applicable to shortest path metrics over
a graph (say G), is to show that G is an expander.
We believe that this approach might not be applicable
here, since our computational experiments for edit
metrics over small length strings suggest that the graph
underlying the edit metric is not a good expander.
Instead our approach is to identify a subgraph of the
edit metric for which the lower bound can be shown
using direct arguments. In particular, we show that
the edit metric contains the shortest path metric over
the K, graph (we call it a Ky ,-metric) as an induced
subgraph. Then we show that the latter metric cannot
be embedded into the square of I, norm with low
distortion.

2 “Hard” subsets of the edit metric

We show that the K, ,-metric is an induced subgraph
of the edit distance. If we label the vertices of K»,
with Ay, Ay, By, Bs, ..., B,, such that there are edges
only between A; and Bj, 1 <i<2,1<j <mn, then we
can make the following correspondence:

e A, corresponds to the string 101010...10, where the

2n bits
block 10 repeats exactly n times;



e A, corresponds to the string 1010...10, where the

2n—2 bits
block 10 repeats exactly n — 1 times;

e B; corresponds to the string
1010...101011010...1010, that is the string that
2n—1 bits

corresponds to A; with the ith zero bit deleted.

With these correspondences we have the following
distances between the strings. The distance between
strings corresponding to A; and A, is precisely 2: A,
is obtained by performing 2 deletions on A; string.
The distance between A; and any B; is precisely 1 by
definition of the B; strings. The distance between any
B; and A, is also 1 because A, can be obtained by
deleting the i** 1. Finally, the distance between the
strings corresponding to some B; and some B, for i # j,
is equal to 2 because these are two strings of the same
lengths that differ in at least 2 positions.

3 Analytic lower bounds

THEOREM 3.1. For any e > 0, there exists n, such that
the distortion of any embedding f of K, ,-metric into
the square of the lo norm (and therefore into the I, norm
as well) is at least 3/2 — e.

Proof: Take n = 2k, where k = [17/61 Let ¢ be the
distortion of f. We use the notation B; = A;,, for
i = —1,0. The metric over the set of points X =
f(B_1),... f(Bn) needs to satisty the following negative
type inequality [DLI7] for any sequence b_p,...b, of
integers which sum up to 0:

—1<i<j<n

Let b,1 = bo =
obtain

bibj|| £ (Bi) — f(B))l3 <0

—k,and b; = 1,71 =1...n. We

K22+ <Z> 2< k- ¢
Therefore,

k2 + (2k — 1k 1

> >3/2 — —.
e TR T

The following theorem shows that the factor 3/2 is
indeed tight.

THEOREM 3.2. There exists an embedding f of Ky -
metric into I, with distortion 3/2.

Proof: The embedding f is obtained by using a
combination of two different embeddings f; and f,. The
first embedding (into 12") is defined as follows:

e fi(41) =(0,...,0)
e fi(A))=1(1,...,1)/2"
° fl(Bz) = (bln(l)l,,bln(Z” — 1)2)/271/ where

bin(j); denotes the i-th bit of the binary represen-
tation of j.

Cram 1. The embedding fy
properties:

L |[fi(A1) — fi(A2)|h =1
2. 1f1(A) = ABI = 1/2, fori = 1,2 and j =

1,...n

satisfies the following

3. MA1(Bi) = fi(Bj)lh =1/2, for 1 <i <j<m
The second embedding fo (into ') is defined as:
o fo(A1) = fo(42) = (0,...

e f2(B;) = e;/2, where e; is a vector with 1 at the
i-th position and zeros elsewhere

70)

Cram 2. The embedding fo
properties:

L[ f2(Ar) = fo(A2)] =0
2. ||f2(Ai) — f2(Bj)llh = 1/2, for i =

1,...n

satisfies the following

1,2 and j =

3. fa(Bi) = f2(Bj)llh =1, for 1<i<j<n

Let Dy and D4 be the metrics induced by f; and fo.
The metric 2D, + D5 provides the desired distortion.

We mention that by increasing the distortion to
3/2 + € one can reduce the dimension of the host space
to only O(logn). The details are left to the full version
of this paper.

The lower bound for the square of the ls norm
can be also proved directly, without using the negative
type inequality. We attach the alternative proof in the
appendix.

4 Summary of computational experiments

As mentioned in the introduction, we have performed
several computational experiments aimed at improving
the lower bound of 3/2. Specifically, our goal was to
estimate the distortion for embedding of the edit metric
over binary strings of length up to d into Iy or square
of 15, for small values of d. In particular, we considered
the following three approaches:

1. Optimal distortion embeddings into Iy using the
cut-metric formulation of the {; norm



2. Optimal distortion embeddings into square of [,
using semi-definite programming

3. Lower bounds for distortion via expansion proper-
ties of the metric

Embedding into /;. It is known (e.g., see Proposition
4.2.2 in [DL76]) that a metric M = (X,D) can be
embedded into [; iff it can be represented as a conic
combination of cut semi-metrics, i.e., semi-metrics Dg,
S C X, such that Dgs(p,q) = |S N {p,q}| mod 2.
Finding best distortion embedding of M into Iy can be
formulated as a linear program with 2/X/=1 variables
and O(|X|?) constraints. Unfortunately, in our case
|X| = 29*! — 1, which made this approach infeasible
for d > 3. Thus, we experimented only with d = 3.
The resulting distortion was 4/3, which is less than our
earlier guarantee.

Embedding into square of /5. The optimal distortion
of an embedding of a metric M = (X,D) into the
square of [ can be computed in polynomial time using
semidefinite programming (e.g., see [Mat]). Thus, we
computed best distortion embeddings of the edit metrics
for strings of lengths up to d = 5. For this purpose,
we used Matlab-based package, called SDPpack. The
optimal distortion was roughly 1.30, which is less than
the analytic bound of 3/2 proved earlier in this paper.
Applying the embedding procedure for d = 6 turned
out to be infeasible, since (by our estimations) it would
require about 2G'B of memory.

Lower bounds via expansion. Our final attempt
to obtain computational lower bounds for embeddings
of edit distance was to show that the “edit graph”
underlying the edit metric is a “good” expander and
then use the bounds as in, e.g., [Mat]. In particular,
we considered G = Ggq-1 = (V, E), which is the edit
graph induced by strings of length d or d — 1, with a
few additional “self-loop” edges to make it regular (with
degree A = 3d — 1). It is not difficult to see that the
shortest path metric over GG is an induced subgraph of
the edit metric. Our goal was to show that there exists a
(large) constant C such that for any set A C V we have
le(A4,V —A)| > C|A||V — A|/n, where e(A, B) is the set
of edges between A and B. Then it would follow [Mat)
that the minimum distortion c is at least

C-avg(G)

5 A

where S is a constant scaling factor and avg(G) is the
average distance between pairs of nodes in G. The
expansion constant C' can be bounded from below by
the “eigenvalue gap”, i.e., the difference between the
first eigenvalue (equal to A) and the second eigenvalue
of the adjacency matrix of G. The eigenvalues of G

can be computed efficiently using power method, which
requires much less space than earlier methods (notably
SDP).

Unfortunately, the eigenvalue gap of G has refused
to be large. Specifically, it was about 2.7 for d =
4,8,12,16. For comparison, it is equal to 2 for a d-
dimensional hypercube H,which is clearly embeddable
into Iy with no distortion. Since avg(H) = d/2, A(H) =
d, it follows that S < 1. Since avg(G) < d/2 and
A(G) = 3d — 1, the resulting distortion lower bound
is weaker that 3/2.
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A Another proof for the 3/2 lower bound for
embeddings into (I)?

Proof: We first provide a natural embedding of K,
metric into the square of Iy, with distortion 3/2. Al-
though this result is implied by the earlier theorem, the
construction provides a good intuition for the proof of
the lower bound.

An embedding with distortion 3/2 can be obtained
as follows. Consider the following vectors 1, xs,...xy,
such that €r; = (Tzl,'EZQ)

V2

Tp+1 = (7;070,)
V2
Tnt2 = (—770‘07)
zij = 6(i+1,))

where 1 < i < m,j > 1 and ¢ is Kronecker’s symbol.
Then, we have for 1 <i,j < mn,i # j:

. \/j 2
2 < ||:Un+1—a:n+2||2:(2*7) =2 <3/2%2
2 < |z — x> =1+1=2 <3/2x2
1< |Zns1 —ail> =1 +1=3/2 <3/2x1
1< |Zpte —zl|> =1 +1=3/2 <3/2x1

Now we proceed with the lower bound. The proof
is by contradiction. Suppose the statement is false,
i.e., there exists an € > 0 such that for any n, Ky ,-
metric can be embedded with distortion at most 3/2 —
€. As before, we label the 2 + n vertices of K,
as Ay, Ay, By, By, ..., B, where there edges are only
between the vertices 4; and Bj, 1 <i<2,1<j<n.

Let z1,24,...,Zy, Tyt1,Tny2 be the corresponding
vectors of By, Bs,...,B, and A;, Ay, such that the
distortion is at most 3/2 — e¢. This means that

o < lzi = z;l* = [loi — 25l < (3/2 - €)o

(1)

witho =2if1<i<j<n,or{i,j}={n+1,n+2}
and o = 1 otherwise.

We can rotate the vectors z1, %o, ..., Tpn, Tnt1, Tnit2
so that x,4+1 = (a,0,0...) and 42 = (—a,0,0...). From
(1), we have that

2 < fonss - mnpel = 11(0,0,0..) — (~0,0,0..)]
— ()
=a >V?2/2

We have also

(2)

|Zni1 — x| = (a—zia)® + (|il]* — 23)

= a® - 2axy + ||zi]]?

for1<i<n,and

(—a—zn)® + (=il — 23)

a’ + 2az; + ||z

(3)

nio — x> =

for1 <i<n.

We can construct n new vectors x},z, ..., ), from
T1,T2,...,Ln, such that the new vectors still satisfy
(1), and have their first coordinates equal to zero.
Specifically, the new vectors are constructed by adding
a new 0 coordinate in front of the vectors, i.e.,

;13; = (0, Ti1,Ti2,Ti3, )

Due to (2) and (3), the new vectors still satisfy equa-
tion (1). Therefore, from now on we assume vectors
Z1,Z3, ..., T, have their first coordinate set to 0.

In this case

1
lns1 — zill® = |2nge — il” = ® + ||2]* > 5T (|42
It follows that

. 1 . .
(3/2-0) > lanss —will* > 5+ aill* = aall* < (1-€)

(4)
Consider now the distance between two vectors z;
and z; with 1 <i < j <n:
il + [l 2 — 22, -

< (1—6)+(1—6)+2$i'ﬂ?]'

[l — agl* =

From (1), we have that ||z; — z;||* > 2 for 1 <i <
J < n. Therefore, we have

2§||$i—$j||2§2—26—2$i'$j =

CUZ"ZEJ'S—E

Concluding, we have that there exists e such that
for any n, there exist n vectors z1, 2, ..., £, with norm
less than 1 such that z; - ; < —e. But this is not true,
since it is known that if n > 2/e+1, then there exist two
distinct vectors x; and z; such that z;-z; > —e. Instead
of the reference, we attach an easy proof (provided to
us by Venkat Guruswami):

0 < IIZ:L"Z-II2
= (in)-(Zwi)
- Z||mi||2+22.ri-mj
< n—62<2>



