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ABSTRACT
We present a new, simple algorithm for sketching the k >
2 frequency moment of a dynamic stream, or simply the
`k norm of a vector in the linear sketching model.

The new algorithms are based on exponentially dis-
tributed random variables, which possess a certain “max-
stability” property, similar in spirit to the “p-stability”
property used in [Indyk, JACM’06] for sketching `k
norms for k ≤ 2.

Our resulting sketching algorithm can be seen as a
“weak embedding” of an n-dimensional `k space into `∞
space of dimension m = O(n1−2/k log n): it preserves
the norm of a vector up to constant approximation, with
constant probability. We note that this dimension is op-
timal for linear embeddings (sketches) with constant ap-
proximation, as shown in [Andoni-Nguyen-Polyanskiy-
Wu, ICALP’13].

The preliminary version of this result has appeared as
a blog post in 2012, and its main idea has since been used
in other streaming algorithms.

Index Terms— sketching, dimension reduction, met-
ric embeddings, streaming

1. INTRODUCTION

An important notion in modern algorithmic design is
that of sketching. Sketching is a method for summariz-
ing complex objects into smaller ones so that the sum-
maries still capture properties relevant to the particular
algorithmic task at hand. For example, the prototypical
use of sketching is for summarizing high-dimensional
vectors into small summaries that are nonetheless useful
for distance estimation. The classic such example is the
Johnson-Lindenstrauss Lemma for dimension reduction
[1], which shows that high-dimensional vectors can be
summarized (sketched) into vectors of smaller dimen-
sion, proportional to the log of the set size. Sketching
has since found many applications, for example for the
streaming model [2], nearest neighbor search, or com-
pressive sensing, where acquisition of a signal can be
viewed as a (linear) sketching algorithm. More recently,

sketching has been used to speed up computational tasks
in areas such as numerical linear algebra [3], and dy-
namic graph algorithms [4, 5].

Most of the aforementioned applications rely on per-
haps the most classic setting for sketching: sketching the
`k norm of a vector x ∈ Rn. This problems dates back
at least to the seminal work of [6] who provided the first
such results. The formal definition of linear sketching for
`k norms is as follows:

Definition 1.1. Fix k ≥ 1 and approximation 1 + ε, as
well as dimension n ≥ 1 and sketch complexity m ≥ 1.
We say there is a sketch for `k, if there exists a distribu-
tion over linear sketching functions f : Rn → Rm, and
a reconstruction procedure R : Rm → R such that, for
any x ∈ Rn, we have that

Pr[R(f(x)) = (1± ε)‖x‖k] ≥ 2/3.

We call m to be the sketching complexity of the sketch
f . (Often times, the reconstruction procedure R is deter-
ministic.)

Note that such a linear sketch can be used for estimat-
ing distances between two vectors x, y ∈ Rn from their
sketches only due to the following identity: R(f(x) −
f(y)) = R(f(x − y)), which, by definition, approxi-
mates ‖x− y‖k.

It is hence natural that the sketching complexity of
`k has been heavily studied. When k ∈ (0, 2], the exact
best sketching complexity is now well-understood; see
[7], the references therein, as well as the book [3].

In this paper we focus on the case of k > 2, for
which the exact bound (with respect to both the di-
mension n and approximation 1 + ε) is still open, de-
spite significant efforts. The first sublinear-space algo-
rithm in this regime, due to [6], gave a space bound
n1−1/k · (log n)O(1), and further showed the first poly-
nomial lower bound for k sufficiently large. A lower
bound of Ω(n1−2/k) was shown in [8, 9], and it was
(nearly) matched in [10], who gave an algorithm using
space n1−2/k · (log n)O(1). Further research reduced the
space bound to essentially O(n1−2/k · log2 n) [11, 12].
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For the regime of constant ε, the tight bound of m =
O(n1−2/k log n) was finally shown in [13] (a nearly-tight
bound was also independently shown in [14]). A match-
ing lower bounds was proven in [15]. Later [16] im-
proved the dependence on ε for sub-constant ε, obtain-
ing m = O(n1−2/k · (ε−2 + ε−4/k log n)). This is tight
for ε < 1/(log n)O(1), matching the lower bound from
[17]. See also related work in [12], [18], and [19] (where
the authors manage to obtain a smaller space complexity
for insertion-only streams, which is a somewhat different
setting than considered here).

Main result. Here we present a new, simple algo-
rithm for linearly sketching the `k norm for k > 2. The
algorithm matches the bounds of m = O(n1−2/k log n)
for constant ε from [13, 16], and its main advantage is its
simplicity. In fact, since the announcement of this result
(in a blog post in 2012 [20]), the main idea from here has
been used in other contexts [3, 21]. The main theorem
follows.

Theorem 1.2. Let n ≥ 1, and k > 2 be a constant.
For m = cn1−2/k log n for a large enough constant c,
there exists a randomized linear map f : Rn → Rm
such that, for any x ∈ Rn, we have that the image
‖f(x)‖∞ = maxi |f(x)i| is a constant approximation to
‖x‖k = (

∑
i |xi|k)1/k with probability at least 2/3.

Note that the sketch from above is in fact a “weak
embedding” of `k into (lower dimensional) `∞: it is a
linear map into `∞, which preserves the norm (up to a
constant factor), with constant probability. We remark
that the approximation can be improved to 1 + ε.

From a technical perspective, the algorithm relies on
the approach from [13] (itself based on the ideas from
[10]), and [22]. The main idea is to use the max-stability
of exponentially distributed random variables. This can
be seen as the counterpart of the p-stability notion intro-
duced in [23] to give the first sketching algorithms for `k
norms for k ∈ (0, 2). See also Section 5 for a further
discussion.

Unlike in [13], the algorithm from here bypasses the
precision sampling lemma, although the latter can also be
simplified using the max-stability concept; see Section 4.

2. SKETCHING ALGORITHM AND ANALYSIS

We start by presenting the sketching algorithm for the
`k norm, and then proceed to analyze it, thus proving
Theorem 1.2.

2.1. Algorithm

We construct the function f : Rn → Rm as follows. Let
x ∈ Rn be the input vector. The algorithm just multiplies
x entry-wise by some scalars, and then folds the vector
into a smaller dimension m using standard hashing. For-
mally, in step one, we compute y ∈ Rn as

yi = xi/u
1/k
i

where random variable ui is drawn from an exponential
distribution e−u. In step two, we compute z ∈ Rm from
y using a random hash function h : [n]→ [m] as follows:

zj =
∑

i:h(i)=j

σi · yi

where σi are just random ±1. From now on, bucket j
denotes elements i with h(i) = j.

The output is f(x) = z. In matrix notation, f(x) =

PDx, whereD is a diagonal matrix with entries σi/u
1/k
i

and P is a sparse 0/1 “projection” matrix describing the
hash function h.

2.2. Analysis

The analysis proceeds in two steps. We first show that the
infinity norm of y is correct, namely that ‖y‖∞ ≈ ‖x‖k,
and then that the infinity norm of z is correct as well, i.e.,
‖z‖∞ ≈ ‖y‖∞ (both with constant approximation with
constant probability of success). In other words, step one
is an embedding into `∞, and step two is a dimensional-
ity reduction in `∞.

The claim about the infinity norm of y follows from
the stability property of the exponential distribution: if
u1, . . . un are exponentially distributed, and λi > 0 are
scalars, then min{u1/λ1, . . . un/λn} is distributed as
u/λ where u is also an exponential and λ =

∑
i λi.

Now, applying this stability property for λi = |xi|k
we get that ‖y‖k∞ = maxi |xi|k/ui is distributed as
‖x‖kk/u. Hence, ‖y‖∞ ∈ [ 12‖x‖k, 2‖x‖k] with probabil-
ity at least e−1/2

k − e−2k ≥ 0.75.
Note that we already obtain a weak embedding of `nk

into `n∞ (i.e., no dimensionality reduction). We proceed
to show that the dimension-reducing projection does not
hurt.

We will now analyze the max-norm of z. The main
idea is that the large entries of y will go into separate
buckets, while the rest of the “stuff” (small entries) will
give only a minor contribution to each bucket. Hence, the
biggest entry of y will stick out in z as well, and nothing
bigger will stick out, approximately preserving the max-
norm. For simplicity of notation, let M = ‖x‖k, and
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note that the largest entry of y is within a factor 2 of M
with probability at least 75% (as we argued above).

What is big? We say that “big” is an entry of y such
that |yi| ≥M/(c log n) (and “small” otherwise).

Claim 2.1. Let l ≥ 1. In expectation, there are at most
lk indices such that |yi| ≥M/l.

Proof. Pr[|yi|k ≥ Mk/lk] = Pr[lk · |xi|k/Mk ≥
ui] = 1 − e−l

k|xi|k/Mk

. Hence the expected num-
ber of big entries in y is:

∑
i Pr[|yi|k ≥ Mk/lk] ≤∑

i l
k · |xi|k/Mk = lk.

Hence, by Markov’s, there are only O(log n)k such
big entries with at least 99% probability. Furthermore,
by assumption O(log n)k � n1/2−1/k <

√
m, with 1−

o(1) probability, there are no collisions among all the big
entries, i.e., they all go into different buckets under the
hash function h : [n]→ [m].

Now, let us focus on the “extra stuff”, i.e., the con-
tribution of the small entries. Let S ⊂ [n] be the set of
small entries of y, i.e., S = {i | |yi| < M/(c log n)}. Fix
some bucket index j ∈ [m]. We would like to show that
the contribution of entries from S that fall into bucket j
is small, say, less than M/4 (half the max entry of y).

Let’s look at z′j =
∑
i∈S:h(i)=j σiyi. The expectation

of z′j is zero because σ ∈ {±1}. Also the variance is

Eh,σ
[
z′

2
j

]
= Eh

 ∑
i∈S:h(i)=j

y2i

 ≤ ‖y‖22/m.
We’d like now to relate ‖y‖2 to M = ‖x‖k. Here

comes the exponential distribution at rescue again.
Note that E{ui}i [‖y‖22] =

∑
i x

2
i · Eui [1/u

2/k
i ] =∑

i x
2
i ·O(1) = O(‖x‖22) since the expectation E[1/u2/k]

for an exponentially distributed u is constant. To-
gether with standard inter-norm inequality that ‖x‖22 ≤
n1−2/k‖x‖2k = n1−2/k · M2, we have that E[‖y‖22] ≤
O(n1−2/kM2). By Markov’s, we have that ‖y‖22 ≤
O(n1−2/kM2) with probability 99%.

Now we can complete computing the variance of z′j
to get E[z′

2
j ] ≤ O(n1−2/kM2/m) ≤ O(M2/(c log n)).

One can now apply Chebyshev’s inequality and conclude
that the “extra stuff” in a bucket j is |z′j | ≤ o(M) with
constant probability.

This is however not enough to complete the proof: we
would need the above for all buckets j at the same time,
and, in particular, we would like to have |z′j | ≤ M/4
for a fixed j with high probability (not just constant). To
achieve this, we use a stronger concentration inequality,
namely the Bernstein inequality, applied to the elements
i ∈ S, for which |yi| ≤M/c log n.

In particular, for a fixed bucket j, we analyze the
sum z′j =

∑
i∈S:h(i)=j σiyi, where each E[zj ] = 0 and

E[z′
2
j ] ≤ O(M2/(c log n)). Then, by Bernstein’s in-

equality, we have that, for α = 1/4,

Pr[|z′j | > αM ] ≤ exp

[
− (αM)2/2

E[z′2j ] + M
c logn ·

αM
3

]
≤ exp [−Θ(αc log n)] .

For c large enough, we obtain a high probability state-
ment as desired.

Concluding, we have that ‖z‖∞ ∈ [‖x‖k(1/2 −
1/4), ‖x‖k(1/2 + 1/4)] with probability at least 0.75 −
0.01 − o(1) − 0.01 − o(1) ≥ 2/3. This completes the
proof of Theorem 1.2.

3. OTHER ASPECTS OF THE SKETCH

There are two aspects of the sketch which we would like
to comment on now. First, we can in fact also obtain a
1 + ε approximation with just slightly more work. Sec-
ond, we discuss the use of randomness use (which is an
important aspect for streaming algorithms).

Achieving 1 + ε approximation. We note that it
is simple to obtain 1 + ε approximation, though the re-
sulting sketching is not a (weak) embedding into `∞
anymore. To obtain better approximation, we take
r = O(1/ε2) sketches f , each with target dimension
m = O(n1−2/k log n · ε−2). The estimation procedure
just computes the value (i.e., the `∞ norm of the m co-
ordinates) for each of the r sketches, and outputs the
median value (normalized by a factor of ln 2).

The main claim is that, in fact, for each sketch, we
have the following two statements:

Pr[‖y‖∞ > (1− ε) · ln(2) · ‖x‖k] ≤ 1/2 +O(ε),

Pr[‖y‖∞ < (1 + ε) · ln(2) · ‖x‖k] ≥ 1/2−O(ε).

Furthermore, using Bernstein’s inequality with α =
O(ε) and c = Θ(1/ε2), ‖z‖∞ is within a factor 1 + ε of
‖y‖∞ with probability at least 1−o(1). Hence, using the
arguments from [23], the median of r (independent) val-
ues gives a 1 + O(ε) approximation to M/ ln 2 (the fac-
tor ln 2 appears because the median of an exponentially-
distributed variable is ln 2).

The total dimension becomes O(n1−2/k log n · ε−4).
Randomness. As described, the sketch from Theo-

rem 1.2 requires a lot of randomness, namely O(n) ran-
dom variables. Reducing this number is especially im-
portant in the streaming applications, where the sketch-
ing function f itself has to be stored explicitly.
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There are two main uses of independent random vari-
ables: 1) n exponentially distributed random variables
ui, and 2) the hash function h : [n] → [m] together with
the variables σi. The second component is a common is-
sue and can be dealt with with standard techniques: in
particular, it is enough to take q = O(log n) wise inde-
pendent random variables (see such details in, e.g., [24],
[25], [13, Section 6], [26, Section 7]). The more tricky
issue is the use of random variables ui, for which we
conjecture O(log n)-independence also suffices. Inde-
pendently of this conjecture, it is nonetheless possible
to reduce the description complexity of f to be compara-
ble to the size of the sketch using a different technique,
namely the pseudo-random number generator of Nisan
and Zuckerman [27]. In particular, assuming that the
each dimension of f(x) is stored using B bits, the to-
tal size of sketch is mB bits. Since m is polynomially
related to n, the generator of [27] will use only O(mB)
truly random bits, from which it generates the variables
ui’s to be used by the function f . The guarantees of
the pseudo-random number generator imply that substi-
tuting the truly independent ui’s with the ones from the
Nisan–Zuckerman generator will incur a failure proba-
bility which is only a small constant.

4. PRECISION SAMPLING LEMMA VIA
MAX-STABILITY

The precursor to this work, [13], relied crucially on the
Precision Sampling Lemma (PSL), which is a generic
technique to estimate a sum

∑
ai from weak estimates

of each ai. While the algorithm from above bypassed the
PSL (for simplicity of exposition), it is also possible to
simplify PSL itself by using the exponentially-distributed
random variables. We present such a statement below.

Lemma 4.1 (Precision Sampling Lemma). Fix ai ∈
[0, 1] for i ∈ [n]. Let ui be chosen from the exponential
distribution. Now, for ε > 0, fix arbitrarily âi satisfy-
ing the condition |âi − ai| ≤ εui. Let the estimator be
Â = maxi âi/ui. Then, we have that:

• there exists a (coupled) random variable A =∑
i ai/u where u is also distributed exponentially,

such that |A− Â| ≤ ε always.

• For any p > 1, we have that E
[
1/u

1/p
i

]
= O(1).

Proof. Define A = maxi∈[n] ai/ui. First note that
|A − Â| ≤ ε. Indeed, for each i, we have that |ai/ui −
âi/ui| ≤ ε, and hence their max satisfies the same. Fur-
thermore, using the stability property of the exponential

distribution, we have that A = maxi∈[n] ai/ui is dis-
tributed as

∑
ai/u, where u is another exponentially

distributed variable.
Second bullet is a straight-forward calculation (see

also [13]):∫ ∞
u=0

1/up ·e−udu ≤
∫ 1

u=0

1/updu+1 ≤ O(1/(p−1)).

5. DISCUSSION

The use of “stability” of exponential distribution is sim-
ilar to Indyk’s use of p-stable distributions for sketch-
ing/streaming `p norms for p ∈ (0, 2] [23]. Note that p-
stable distributions do not exist for p > 2; so here the no-
tion of “stability” is slightly different. In the former, one
uses the fact that for random variables v1, . . . vn, which
are p-stable, we have that

∑
λivi is also p-stable with

a well-controlled median (of the absolute value). In the
latter case, we use the property that the max of several
“stable” distributions is another one: maxλi/ui is dis-
tributed as λ/u (i.e., 1/u is “max-stable”). Note that this
is useful for embedding into `∞. As it turns out, such a
transformation does not increase the `2 norm of the vec-
tor much, allowing us to do the dimensionality reduction
in `∞.
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