
Simple Constant-Factor Approximation to Edit Distance

Alexandr Andoni∗

Columbia University
andoni@cs.columbia.edu

August 19, 2020

Abstract

We show a simple algorithm for estimating edit distance between two strings in strongly sub-
quadratic time, up to 3+ε approximation. The recent couple years have seen a “new generation”
of edit distance algorithms, achieving constant factor approximation, and this write-up aims to
provide the simplest point of entry illustrating the central ideas used. We note that, when the
edit distance is close to linear in the strings’ length, our algorithm matches the runtime of the
fastest such algorithm for 3 + ε approximation from the independent work of [GRS20].

1 Introduction

Edit distance is a classic distance measure between sequences that takes into account the (mis)alignment
of strings, and is defined for two strings of length n over some alphabet Σ, as the number of in-
sertions/deletions/substitutions of characters to transform one string into the other. It is of key
importance in several applied fields. Within TCS, edit distance is also an illustrious example of the
dynamic programming technique, with a classic quadratic run-time solution [WF74]. It has since
proven to be a great challenge in a central theme in TCS: to improve the run-time from polynomial
to close(r) to linear. Despite significant research over many decades, the running time has so far
been improved only slightly, to O(n2/ log2 n) [MP80], which remains the fastest algorithm known
to date. In fact a strongly sub-quadratic algorithm would disprove the Strong Exponential Time
Hypothesis (SETH) [BI15] (and even more plausible conjectures [AHWW16]).

The breakthrough result of [CDG+18] obtained a constant factor approximation in strongly sub-
quadratic time of O(n1.714) (see also the contemporary quantum algorithm [BEG+18]). This has led
to a number of follow-ups (independent of this paper1) improving the approximation–runtime trade-
off. When allowing additive approximation, [KS19, BR19] obtained near-linear runtime. [AS20]
obtained a constant factor approximation in near-linear time without further restrictions. For the
orthogonal goal of obtaining the smallest possible approximation (in truly sub-quadratic time),
[GRS20] design a Õ(n1.6) time algorithm for 3 + ε approximation. In the special regime when the
distance is Ω(n) (i.e., near-maximal additive approximation), [RSSS19] obtain a 3 − Ω(1) factor

∗Research supported in part by the Simons Foundation (#491119 to Alexandr Andoni), and NSF (CCF-1617955,
CCF-1740833).

1A more elaborate version of this write-up was first distributed privately in October 2018. See that version here
http://www.cs.columbia.edu/~andoni/papers/edit/

1

http://www.cs.columbia.edu/~andoni/papers/edit/

approximation (although there are less reasons to believe that such approximation is achievable
when the output distance is o(n)).

The goal of this paper is to present the simplest algorithm for constant approximation and
strongly subquadratic time. Besides providing an easier entry point into the recent edit distance
results, we hope the paper highlights the following concrete open question: obtain the fastest
algorithm achieving 3 + ε approximation.

Theorem 1.1 (Main theorem, Section 2). For any ε > 0, β > 1, we can estimate edit distance
between two strings of length n in time Õε(n

1.6β1.4), achieving (3+ ε)-factor and ±n/β additive ap-
proximation. When further combined with the exact O(n+(n/β)2)-time algorithm [Ukk85, Mye86],
we obtain Oε(n

1.765) time.

We remark that we can improve the runtime to Õ(n1.6β0.6) and O(n1.693) overall by using a
slightly stronger edit distance subroutine instead of the standard (exact) edit distance algorithm,
used by the above theorem on substrings of x/y (see technical overview below). In particular,
we can exploit the following version of the text searching problem: given a pattern p ∈ Σw, a
text T ∈ Σn, and a length l = O(w), compute distance from p to each substring of T of length
l. Indeed, a modification of the standard edit distance dynamic programming algorithm gives a
(1+ ε)-approximate solution to this problem, with a Õε(nw) time solution. See details in Section 3.

We also note that our runtime matches the best known runtime of Õ(n1.6), for the same ap-
proximation, from the independent work of [GRS20], when β is small. To remove the dependence
on β in their algorithm, a key ingredient is also a different subroutine substituting the standard
(exact) edit distance algorithm. That subroutine is able to, after some preprocessing, to compute
ed(x, y) in time Õ(n2/β2) when ed(x, y) ≤ n/β (and is applied to substrings of x/y).

In either case, it remains a challenge to obtain a runtime below n1.6, i.e., even for small β.

1.1 Related Past Work

Subquadratic algorithms for edit distance have been studied for over a couple decades. One can
obtain linear-time algorithm with

√
n approximation from the exact algorithm of [Ukk85, Mye86],

which runs in time O(n + (n/β)2), when edit distance is at most n/β. Focusing explicitly on
approximate algorithms in near-linear time, researchers obtained n3/7 approximation in [BJKK04],

n1/3+o(1) in [BES06], 2Õ(
√

logn) in [AO12], and finally (log n)O(1/ε) in O(n1+ε) time in [AKO10].
Sublinear-time algorithms also exist, starting with the algorithm of [BEK+03] that achieves nε

approximation when β = O(1) is large. Recent results showed how to distinguish distance k vs
Ω(k2) first in Õ(n/k + k3) time [GKS19] and most recently in Õ(n/k + k2) time [KS20].

1.2 Algorithm synopsis and notation

First, for simplicity, we index everything from zero. Hence, [n] = {0, 1, . . . n − 1}. Also x[i : j] is
the string starting at position i until position j − 1.

As with most of the approximate algorithms for the problem, the overall approach is to par-
tition the two strings into blocks of length w (think w = n0.2), and perform a modified dynamic
programming on these blocks. In particular, we partition x into b = n/w blocks of length w. De-
fine I = w · [b] to be the starting positions, and Xi = x[i : i + w] for i ∈ I. We also split y into
blocks of length w, though we need to consider overlapping blocks, especially when β � 1. For

2

∆ = max{1, εw/β}, the starting positions into y are from the set J = ∆ · [n/∆]; resulting blocks
are called Yj . For this intuituve overview, assume that β = O(1), and hence |I|, |J | = O(b).

We can now run a dynamic programming on the “blocks” by building a graph on node-set
(I ∪{n})× (J ∪{n}) with diagonal edges (i, j)→ (i+w, j+w) with cost ed(Xi, Yj) corresponding
to matching those blocks, as well as horizontal/vertical edges (corresponding to deleting contiguous
chunks from x/y). Then output is the shortest path from (0, 0) to (n, n), which corresponds to
some optimal matching i 7→ ji from the x-blocks to the y-blocks.2 A standard claim is that this
gives an approximation to ed(x, y), up to an additive n/β term (due to rounding of the j’s to J).
To compute the graph edges, we need to perform ≈ b2 = (n/w)2 ed-computations ed(Xi, Yj), each
taking O(w2) time—i.e., no time gains so far. The main goal is then to reduce the number of
ed-computations to � b2, noting that the shortest path computation takes only ≈ b2 � n2 time.

There are two central ideas to reduce the number of ed-calculations. The first one is triangle
inequality of ed(·, ·) metric (idea originally due to [BEG+18] and [CDG+18]). In our algorithm,
we sample k =

√
b y-blocks, termed “centers”, and compute the distance from the centers to all

other y-blocks. Then, for each x-block Xi, if Yπi is the closest center and di = ed(Xi, Yπi), then
we can upper bound distance the ed(Xi, Yj) to an arbitrary block Yj as di + ed(Yπi , Yj) by triangle
inequality. Computing all these estimates takes only 2bk = O((n/w)1.5) ed-calculations.

This upper bound is good enough when the distance from Xi to its matched Yji (in the optimal
edit-distance alignment on blocks) is di or more. Indeed, calling the latter ci = ed(Xi, Yji), when
ci ≥ di, our upper bound becomes ≤ di + di + ci ≤ 3ci, i.e., a 3-approximation.

Obviously the above estimate can be a gross overestimate, which leads us to the second idea
(originally due to [CDG+18]). For a fixed i, suppose that ci < di, which is usually referred to as the
“sparse” case. Given that we sample k random center, there can only be ≈ b/k y-blocks j where
ed(Xi, Yj) < di, and our new goal is to identify them. As we don’t actually know which are those
j’s without performing the ed-calculation, we still need ≈ b ed-computations for that i. However
this calculation will help other sparse indeces! Suppose we’ve computed the set Si of j’s where
ed(Xi, Yj) < di, i.e., the set containing the (unknown) optimal match ji. Now suppose that Xi+1

also happens to be sparse. Its optimal match ji+1 must be close to ji, and hence to something from
Si. Hence we now only need to check ed(Xi+1, Yj) for j in some small extension of Si, for a total
of ≈ b/k ed-computations only!

Indeed, a key lemma proves that there exists a near-optimal map i 7→ ji that is Lipshitz, namely
for any i, i′, |ji′ − ji| ≤ 1

ε |i − i
′| (Lemma 2.3). Thus, even if Xi+1 is not sparse, but only some

Xi+s for s � 1, then we need to check only Si + {0,±1, . . . ± s/ε}, for a total of Oε(s · b/k) ed-
computations. These computations can be “charged” to the s−1 indexes that were not sparse, still
averaging Oε(b/k) per index. Overall, we expect to use only extra ≈ b · b/k = b1.5 ed-calculations
per index to process the sparse indeces i.

A caveat in the above is that we don’t know which indeces i are sparse (as we don’t know the
matching ji or cost ci). Therefore, rather than “transferring” set Si to the next adjacent sparse
index, we pick indeces i in a random order. In particular, we partition I into dyadic intervals and
proceed in a top-bottom fashion in the corresponding binary tree. At the root we sample a few
“anchors” q ∈ I, and compute their distance to each Yj , and for each anchor q store a set Sq of
candidates ji (i.e., where distance is smaller than dq). In a node corresponding to a subinterval
I ′ ⊂ I, we sample a few anchors and, for each anchor q ∈ I ′ compute the set Sq as before using
the (extensions of the) sets Sq′ where q′ are the anchors of the parent node. We highlight the

2Note that the classic edit distance algorithm corresponds to the case w = 1.

3

fact that the anchors q are sampled with probability proportional to the quantity dq (intutively,
intervals with a high dq are more likely to be sparse). Even with this bias, it can happen that some
sub-interval is composed of very few sparse indexes, in which case we show that the upper bound
from the first idea is enough overall (i.e., we will not approximate well ed(Xi, Yji) for all i).

Finally, for the aforementioned near-optimal map lemma, we need to consider y-blocks of vari-
able length. Let the set of lengths be L = {0}∪ (w±∆ ·E)∩ [εw,w/ε] where E is the set of powers
of 1 + ε. The y-blocks are Yj,l = y[j : j + l] where j ∈ J and l ∈ L. Note that |L| ≤ O(log n). Let

p = |J × L| = O(n/w · β logn
ε).

2 Main algorithm and analysis

Our algorithm relies on a subroutine to compute edit distance (exactly) between strings of length
w, for which we use the standard O(w2) time algorithm. We remark that, in Section 3 we show how
to get a slight runtime improvement by using a slightly stronger primitive instead. Also, as is done
in other work, one could instead replace the exact edit distance computation by an approximate
one, in a recursive fashion. The main theorem follows from the following theorem proven below:

Theorem 2.1. For any ε > 0, β > 1, there exists a randomized algorithm to estimate edit dis-

tance in time Õε

(
(nβw)3/2 · t(w) + (nw)2β

)
, achieving multiplicative approximation 3+ε and additive

approximation n/β, where t(w) is time to compute edit distance between two strings of length w.

2.1 Algorithm description

At a high level, our algorithm constructs a graph corresponding the dynamic programming on
w-length blocks. There are two phases of adding edges to the graph. After the two steps are
completed, we perform a simple shortest distance computation in the resulting graph.

We build a grid graph on vertices Ī×J̄ (just I, J with one extra index at the end). In particular,
we have edges (i, j) to (i + w, j) of cost w, as well as edges (i, j) to (i, j + ∆) of cost ∆. Most
importantly, for each triple (i, j, l) ∈ I×J ×L, we will add an edge (i, j) to (i+w, j+ l) with some
cost which upper bounds the distance ed(Xi, Yj,l). In the first phase, the algorithm produces upper
bounds for all the triples (i, j, l). The second phase will produce a more accurate upper bound for
some of these edges, in which case we keep the lower cost.

Finally we add edges (0, 0) to (0, j) for each j ∈ S, with zero cost.

Phase 1: dense. Fix k to be the number of y-centers, tbd (think k ≈
√
b). Now pick k random

pairs π = (j, l) ∈ J × L (the centers), forming the set C ⊂ J × L. For each π ∈ C, compute the
edit distance between Yπ and every other Yτ where τ ∈ J × L, and store it as Kπ,τ .

Now for each i ∈ [b], compute the edit distance from Xi to Yπ for all π ∈ C. Let di be the
minimal distance found, and πi be the corresponding minimizing pair. Now add to the graph all
edges corresponding to (i, j, l), with cost di +Kπi,τ where τ = (j, l).

Phase 2: sparse. We build a binary tree of depth O(log b) as follows. Each node corresponds
to a sub-interval of I, where the root corresponds to the entire I. For each node, starting from
the root, we partition its interval into two and assign them to the two children. The tree has |I|
children corresponding to singletons. Now, for each node v, with the interval Uv ⊆ I, we sample

4

h = O(logn
ε) anchors at random from Uv, with probabilities proportional to dq (with repetition):

i.e., q is chosen with probability dq/
∑

q′∈Uv
dq′ . The sampled set of anchors is termed Qv.

For the ensuing computations, we introduce a definition:

Definition 2.2. Two triples (q, j, l), (q′, j′, l′) ∈ I × J × L are compatible if |j − j′| ≤ 1
ε · |q − q

′|.

For each top-level anchor q ∈ I, we compute the edit distance from Xq to each block Yπ for
π ∈ J × L. Let Sq be the set of pairs (j, l) such that the edit distance is less than dq. For each
anchor q at non-top level, whose parent r has anchors Qr ⊂ I, we compute the set S̆q ⊆ J × L to
be the set of pairs that are compatible with anything from ∪q′∈Qrq

′ × Sq′ . Then, we compute the

edit distance from Xq to each Yπ for π ∈ S̆, and store the set Sq of all pairs π where the distance
is < dq (updating the corresponding costs in the graph).

Finally, we just compute the shortest path distance in the resulting graph, from (0, 0) to (n, n).

2.2 Analysis: correctness

First, we note that, by the construction of the graph, if there exists a path of cost ζ, then there’s
an alignment between x and y with edit distance of cost at most ζ as well. Hence, our main task
is to prove that there exists a path of cost at most (3 + ε) ed(x, y).

The following lemma shows that there is path in our graph on blocks, of cost about ed(x, y).

Lemma 2.3. Fix ε > 0, as well as 1 ≤ β ≤ n, and two strings x, y of length n, divisible by w. Let
I = w · [n/w] and J = ∆ · [n/∆], where ∆ = εw/β. There’s a matching between the x-blocks and
y-blocks, described by triples (i, ji, li) for i ∈ I, such that3∑

i∈I
ed(Xi, Yji,li) + (ji − (ji−1 + li−1)) ≤ (1 +O(ε)) ed(x, y) +O(εn/β), (1)

and (ji, li) satisfy the following properties:

• (ji, li) ∈ S × L;

• they are disjoint and in order: ji + li ≤ ji+1;

• for any i < i′, the triples (i, j, l) and (i′, j′, l′) are compatible: i.e., ji′ − ji ≤ 1
ε · (i

′ − i).

We now fix the matching (i, ji, li)i∈I from the above lemma. Note that the matching corresponds
to a path in our graph, with the caveat that the edges (i, ji) → (i + w, ji + li) (corresponding to
the ed(Xi, Yji,li) terms) may have higher weights. We show below that the total cost of these
diagonal edges in our graph is upper bounded by 1 + O(ε) times

∑
i∈I ed(Xi, Yji,li). We define

ci = ed(Xi, Yji,li).
In the first stage of the algorithm, for each τ ∈ J ×L, we add edge corresponding to (i, τ), with

cost di +Kπi,τ . When τ = (ji, li), we have

Kπi,(ji,li) = ed(Yπi , Yji,li) ≤ ed(Yπi , Xi) + ed(Xi, Yji,li) = di + ci

and hence the edge (i, ji, li) has cost at most di + Kπi,(ji,li) ≤ 2di + ci (it’s “at most” because it
may be replaced by lower-cost edge in the second phase). Note that for i’s where ci ≥ di, the cost
of the edge (i, ji, li) becomes ≤ 3ci.

3By convention, j−1 = l−1 = 0.

5

The main challenge is to bound the cost of edges (i, ji, li) when ci < di, which is the purporse
of the second phase of the algorithm. Define the set Z of “sparse” blocks to be the set of i ∈ I
where ci < di. For a tree node v with sub-interval Uv ⊆ I, we call v to be successful if: 1) the set
of anchors Qv ⊂ Uv includes at least one q ∈ Z, and 2) for some q ∈ Qv ∩ Z 6= ∅, we have that
(jq, lq) ∈ Sq.

Lemma 2.4. Consider any node v, and suppose all its ancestors are successful. If
∑

i∈Uv
ci <∑

i∈Uv
(1− ε)di, then v is also successful with high probability.

Proof. We first show that Qv ∩ Z 6= ∅, for which we employ the following claim.

Claim 2.5. Consider m pairs of positive reals ci, di ≥ 0. Suppose that
∑

i ci < (1− ε)
∑

i di. Then,
if we pick q with probability dq/

∑
i di, we have that Prq[cq < dq] ≥ ε.

Proof. We have that:

1− ε >
∑

i ci∑
i di

= 1∑
i di

 ∑
i:ci≥di

ci +
∑
i:ci<di

ci

 ≥ 1∑
i di
·
∑
i:ci≥di

di = 1− Pr
q

[cq < dq],

and hence Prq[cq < dq] ≥ ε.

In particular, we apply the above claim to pairs (ci, di) for i ∈ Uv. By the assumption that∑
i∈Uv

ci <
∑

i∈Uv
(1−ε)di, we have that, by our choice of a random anchor q, Prq[q ∈ Z] = Prq[cq <

dq] > ε. Since we sample h = Ω(logn
ε) anchors from Uv, at least one these anchors will belong to Z

with high probability.
Now, for every fixed anchor q ∈ Qv ∩ Z, we prove that (jq, lq) ∈ Sq—remember that cq < dq

since q ∈ Z. We prove this by induction on the distance from the root. The base case is simple:
when the node v is the root, this follows from the definition of Sq = {(j, l) : ed(Xq, Yj,l) < dq}.

Now suppose v is not root, and all its ancestors are successful. Let r be v’s parent. Since
r is successful, there exists anchor q′ ∈ Qr ∩ Z. By inductive hypothesis, (jq′ , lq′) ∈ Sq′ . By

Lemma 2.3, the triples (q, jq, lq) and (q′, jq′ , lq′) are compatible. Hence (jq, lq) ∈ S̆q, and, since
ed(Xq, Yjq ,lq) = cq < dq, we have that (jq, lq) ∈ Sq, completing the inductive proof.

By the above lemma, the entire tree has the following structure (whp): the “top” of the tree is
composed of a set of successful nodes whose ancestors are also successful, and some of these nodes
have unsuccessful children v, for which, by the above, we must have

∑
i∈Uv

ci ≥ (1 − ε)
∑

i∈Uv
di.

Hence, we can partition the set I into set family {Uv}v∈V with the following property: each Uv,
where v ∈ V for some index set V , is either a successful singleton (leaf), or

∑
i∈Uv

ci ≥
∑

i∈Uv
(1−

ε)di. Note that in the latter case, the edges (i, ji, li), for i ∈ Uv, have cost at most di + Kπi,(ji,li)

(from the first phase). Hence, overall, the cost of edges (i, ji, li) for i ∈ I is at most:∑
v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

di +Kπi,(ji,li)

≤
∑

v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

2di + ci

≤
∑

v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

2ci
1−ε + ci

6

≤
∑
i∈I

(3 + 4ε) · ed(Xi, Yji,li).

We’ve shown that the cost of the edges (i, ji, li) is at most 3 + 4ε times the real cost. Together
with Lemma 2.3 this completes the proof of the correctness.

2.3 Analysis: run-time

Phase one of the algorithm takes time O(k · (p+ b) · t(w)) = Oε(kn/w · β · t(w)).
In phase two, the main work is computing distances between each anchor q and its set S̆q.

Hence, we need to show that the size of the sets S̆q, over all anchors q, is not too large overall. First
we argue that each Sq is small. Indeed, the following claim suffices, recalling that p = |J | · |L|:

Claim 2.6. For any i ∈ I, there are at most C · p/k blocks τ ∈ J × L such that ed(Xi, Yτ) < di,
whp for some large constant C > 0.

Proof. Consider all the y-blocks τ ∈ J×L in the increasing order of the distance from Xi. With high
probability, the set of centers C includes a block of rank at most O(p/k). In particular the closest
center πi has rank at most O(p/k) and thus there are O(p/k) blocks at a smaller distance.

The anchors from the root perform h · p ed-calculations, for a total time of hp · t(n). Now
fix a node v at level j ≥ 1 (with the convention that the root is at level 0), and anchor q ∈ Qv.
Remember that S̆q is composed of all (j, l) that are compatible with anything from ∪q′∈Qrq

′ × Sq′ ,
where r is the parent of v. Consider one of r’s anchors q′ ∈ Qr, and let (j′, l′) ∈ Sq′ . We want to
upper-bound the number of pairs (j, l) ∈ J × L such that (q, j, l) is compatible with (q′, j′, l′), i.e.,
|j − j′| ≤ 1

ε · |q − q
′|. Note that |q − q′| is upper bounded by the diameter of Uq′ (as q, q′ ∈ Uq′),

which is n · 2−j+1. Hence, by compatibility property, we must have |j − j′| ≤ 1
ε · n · 2

−j+1. Thus

the number of compatible (j, l) is at most 2|L| · 1/ε·n·2−j+1

∆ . The total number of ed-calls, for a fixed
anchor q, is at most

|Qr| · max
q′∈Qr

|Sq′ | · 2|L| · 1/ε·n·2−j+1

∆ ≤ h · Cp/k · 4|L|
ε2

nβ
w 2−j

Over all nodes v and their anchors, the runtime becomes:

hp·t(w)+

O(log b)∑
j=1

2j ·h·
(
h · Cp/k · 4|L|

ε2
nβ
w 2−j

)
·t(w) ≤ Õ(nβw ·t(w))+Õ(nβ/wk ·

nβ
w ·t(w)) ≤ Õ(n

2β2

w2k
·t(w)).

The third phase takes time Õ(|I| · |J | · |L|) = Õ(n/w · n/w · β) and w = (n/β)1.5:
Thus, overall runtime is, when choosing the optimizing k =

√
nβ/w:

Õε((k
nβ
w + n2β2

w2k
) · t(w) + n2

w2β) = Õε(
n1.5β1.5

w1.5 · t(w) + n2β
w2). = Õε(n

1.6β1.4).

2.4 Proof of Lemma on Reduction to block-matching

Proof of Lemma 2.3. To analyze some distance ed(x, y), we consider the optimal alignment A :
[n] → [n] ∪ {⊥} that certifies ed(x, y). In particular, we have that, A(i) < A(j) for any i < j ∈
[n] \A−1(⊥), and

ed(x, y) = #
{
i ∈ [n] \A−1(⊥) : x[i] 6= y[A(i)]

}
+ 2

∣∣A−1(⊥)
∣∣ .

7

Note that the starting and ending positions of the blocks in y are multiples of ∆ = max{1, ε/β ·
w}; for convenience we define ∆′ = ε/β · w. We call them mini-blocks, with starting positions
S = ∆ · [n/∆]. For each i ∈ [n/w] and corresponding block Xiw, we define si ∈ S to be the first
mini-block containing A(z) 6= ⊥ for z in the block Xiw. Similarly define ti ∈ S to be the last
such mini-block. If si, ti do not exist, we define si = ti−1 + 1 and ti = ti−1 (where t−1 = −1 by
convention). Note that we have that ti ≤ si+1 for all i.

The starting point is to match the block Xiw to string y[si : ti + ∆], i.e., to set ji = si and
li = ti − si + ∆. In that case the LHS in Eqn. (1) is upper-bounded by ed(x, y) + 2∆ · b (each
block may introduce error of ≤ 2∆ due to rounding). However, we also need to make sure that the
intervals [si : ti + ∆] satisfy the desired properties: they are disjoint, not too long, and are not too
spread out. To accomplish this, we modify ji, li in a few steps below, while controlling the incurred
error.

We ensure disjointness as follows: for each i ≥ 1, if ji−1 + li−1 = ji + ∆, we set j′i = ji + ∆
and l′i = li −∆ (and j′i = ji, l

′
i = li otherwise as they are disjoint). Note that, for some blocks i,

it may now be that l′i = 0, in which case Xi just matches to an empty block. We now have that
j′i−1 + l′i−1 ≤ j′i. The incurred error per block is ≤ ∆′.

Second, we ensure that block lengths are valid: in particular, that each block length l′i ∈ L. We
now set l′′i using l′i as follows: if l′i < w we round it up to the nearest indez in L, and otherwise take
the minimum between rounding down in L and l′′i = w/ε. Let’s analyze the incurred error. After
changing from l′i to l′′i , the LHS in Eqn. (1) increases by at most:

2 · |l′i − l′′i | = 2 · |(l′i − w)− (l′′i − w)| ≤ 2ε(1 + ε) · ed(Xiw, y[j′i : j′i + l′i]).

where we’ve used the fact that ed(Xiw, y[j′i : j′i + l′i]) ≥ |l′i − w|. Hence, we get that:∑
i

ed(Xiw, y[j′i : j′i+ l
′′
i])+(j′i−(j′i−1 + l′′i−1)) ≤ ed(x, y)+O(nw ·∆

′)+2ε(1+ε) ·(ed(x, y)+O(nw ·∆
′))

= (1 +O(ε)) ed(x, y) +O(εn/β).

We are left with the final property to ensure: that |ji − ji′ | ≤ 1
ε |i− i

′| for all i′ < i. Note that
it is enough to ensure this for i′ = i + 1 (by triangle inequality). We ensure that by constructing
j′′i from j′i, iterating i ∈ [n/w] in order. For current i, suppose j′i− j′′i−1 > w/ε. Then we simply set
j′′i = j′′i−1 + w/ε (note that j′′i − j′′i−1 = w/ε ≥ l′′i−1, so keeping the same lengths is ok), and leaving
j′′i = j′i otherwise. Note that the LHS can increase only by at most w as some characters from Xiw

may lose their matches, while
∑

i j
′′
i − (j′′i−1 + l′′i−1) remains the same overall. To account for this

increase in cost, we “charge” this cost to

(j′′i −(j′′i−1+l′′i−1)+ed(X(i−1)w, Yj′′i−1,l
′′
i−1

) = w/ε+
(

ed(X(i−1)w, Yj′′i−1,l
′′
i−1

)− l′′i−1

)
≥ w/ε−2w ≥ w/2ε.

Since
∑

i j
′′
i − (j′′i−1 + l′′i−1) remains the same overall, the extra cost is only at most factor 2ε of the

total cost when using indeces j′i, l
′′
i . Hence the the changes here increases the total cost by a factor

of at most 1 + 2ε.
The final output are the indeces (j′′i , l

′′
i).

8

3 Improving runtime with a text searching primitive

The main algorithm from the previous section uses the subroutine of computing exact edit distance
between two strings of length w. Since many of these distances are computed for overlapping y-
blocks, we can actually exploit a slightly stronger primitive, to obtain a slightly faster runtime. The
primitive is text searching: given a pattern p ∈ Σw, another text T ∈ Σn, and a length l = O(w),
compute distance from p to each substring of T of length l. When n = O(w), we call its runtime
t(w). Note that, by splitting a longer text, of length n, into n/l overlapping blocks of length 2l,
and running text search on each, we get that t(n,w) = O(n/l · t(w)).

Theorem 3.1. For any ε > 0, β > 1, we can estimate edit distance between two strings of length
n in time Õε(n

1.6β0.6), achieving (3 + ε)-factor and ±n/β additive approximation. When further
combined with the exact O(n+ (n/β)2)-time algorithm [Ukk85, Mye86], we obtain Oε(n

1.693) time.

We now discuss two aspects of this modification: 1) how to implement the new primivite, and
2) how to use it to improve the main theorem.

Implementing the text searching primitive. In [Sel80], the author modified the standard
dynamic programming solution to solve the following problem: for every end position j in T , find
a substring of T at smallest edit distance from p (together with the distance value). The standard
dynamic programming is modified by adding zero-cost edges from the start (0, 0) to each (0, s),
s ∈ [w] and then computing single-source shortest path to all (w, j). Note that, one can similarly
solve the following primitive: given a starting set S ⊂ [w], compute mins∈S ed(p, T [s : j]) for each
j ∈ [n]. This is done by adding edges only to (0, s) for s ∈ S. Call the latter problem TSS(p, T, l, S),
and note that it can output a vector dS [1 : n] of distances to (w, j)’s, together with a vector rS [1 : n]
where rS [j] is the index i such that the shortest path to (w, j) passes through (0, i).

We now design an algorithm for our suggested primitive, achieving 1 + 8ε approximation. First
of all, we can assume that l is within a factor of 1/ε of w as otherwise max{l, w} is a (1 + ε)-
factor approximation. Now, for each “scale” power of two c ∈ {1, 2, 4, . . . w/ε}, we perform the call
TSS(p, T, l, Sc) where Sc = {εck | k ∈ N} ∩ [w]. Note that each of them yields an estimate Ec(j)
for ed(p, T [j : j + l]), namely dSc [j + l− 1] +

∣∣j − rSc,i [j + l − 1]
∣∣. It’s immediate to check that the

estimate is an upper bound: it’s the sum of matching a suffix of T [j : j + l] to p together with the
cost of inserting the missed prefix.

The final estimate for ed(p, T [j : j + l]) for j ≤ n − l is the minimum of Ec(j) over all c,
which we claim is a 1 + O(ε) approximation. Indeed, let v = ed(p, T [j : j + l]). Fix c to be the
smallest power of 2 larger than 3v, and k be the integer such that s = εck is closest to j. Note
that |s − j| ≤ εc/2 < 3εv. Since rSc,i [j] = s is an option for the shortest path, Ec(j) ≤ ed(p, T [j :
j + l]) + 3εv + 3εv ≤ (1 + 6ε) · ed(p, T [j : j + l]).

The runtime is Õ(nw).

Improving main algorithm with the text searching primitive. The modification to the
algorithm from Section 2 is immediate: whenever we need to compute edit distance from some
block p (from x or y) to many blocks in y, we do so using the new primitive. Specifically, denoting
by A(p, T, l) our new primitive:

• The quantities Kπ,τ are computed using k · |L| A calls (one per y-center and length l ∈ L).

9

• For each top-level anchor q ∈ I, we compute the edit distance from Xq to each block Yπ for
π ∈ J × L using one A call for each l ∈ L.

• Finally, we use A to compute the distance from anchors Xq to Yπ for π ∈ S̆q, where we need
to be a bit careful as S̆q is not contiguous. For fixed length l ∈ L, we partition J into n/l

overlapping blocks each of size 2 |J |l , termed H l
j = [jl : jl + 2l] for j ∈ [n/l]. For each l ∈ L,

and j ∈ [n/l], we run A(Xq, y[H l
j], l) if [jl : jl+ l]∩ S̆q 6= ∅. Note that this covers all relevant

substrings encoded by S̆q.

We now analyze the new runtime, recalling that, for t(n,w) denoting the runtime ofA on pattern
of length w and text of length n, we have that t(n,w) = O(t/w · t(w)) where t(w) = t(w/ε, w).

• For phase 1, the runtime is now Õ(k · t(n,w) + bk · t(w)) = Õ(kn/w · t(w)).

• For phase 2, first note that the anchors from the root perform h calls to A, for a total time
of h · t(n,w). For computing distance to S̆q, we note that, for fixed l ∈ L, all compatible (j, l)

are covered by at most 21/ε·n·2−j+1

l blocks H, yielding an upper bound on the number of A
calls of 21/ε·n·2−j+1

εw = 4
ε2
n
w · 2

−j , each with t(w) time. The total number of A calls, for a fixed
anchor q, is at most

|Qr| · max
q′∈Qr

|Sq′ | · 4
ε2
n
w2−j · |L| ≤ h · Cp/k · 4

ε2
n
w2−j · |L|.

Over all nodes v and their anchors, the runtime becomes:

h·t(n,w)+

O(log b)∑
j=1

2j ·h·
(
h · Cp/k · 4

ε2
n
w2−j · |L|

)
·O(t(w)) ≤ Õ(t(n,w))+Õ(n/w·β/εk · nw ·t(w)) ≤ Õ(n

2β
w2k
·t(w)).

• Thus, overall runtime is, when choosing the optimizing k =
√
nβ/w and w = (nβ)0.2:

Õε((
kn
w + n2β

w2k
) · t(w) + n2

w2β) = Õε(
n
√
nβ

w1.5 · w2 + n2β
w2) = Õ(n1.6β0.6).

References

[AHWW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan Williams.
Simulating branching programs with edit distance and friends: or: a polylog shaved is a lower
bound made. In Proceedings of the forty-eighth annual ACM symposium on Theory of Comput-
ing, pages 375–388. ACM, 2016.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approximation
for edit distance and the asymmetric query complexity. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), 2010. Full version at http://arxiv.org/abs/1005.
4033.

[AO12] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time. SIAM
J. Comput. (SICOMP), 41(6):1635–1648, 2012. Previously in STOC’09.

[AS20] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a constant
factor. In Proceedings of the Symposium on Foundations of Computer Science (FOCS), 2020.

10

http://arxiv.org/abs/1005.4033
http://arxiv.org/abs/1005.4033

[BEG+18] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: Quantum and mapreduce.
In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1170–1189. SIAM, 2018.

[BEK+03] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt Rubinfeld,
and Rahul Sami. A sublinear algorithm for weakly approximating edit distance. In Proceedings
of the Symposium on Theory of Computing (STOC), pages 316–324, 2003.

[BES06] Tuğkan Batu, Funda Ergün, and Cenk Sahinalp. Oblivious string embeddings and edit distance
approximations. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 792–801, 2006.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). In Proceedings of the Symposium on Theory of Computing (STOC),
2015.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating edit
distance efficiently. In Proceedings of the Symposium on Foundations of Computer Science
(FOCS), pages 550–559, 2004.

[BR19] Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of near-linear edit
distance in near-linear time. arXiv preprint arXiv:1904.05390, 2019.

[CDG+18] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks.
Approximating edit distance within constant factor in truly sub-quadratic time. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 979–990. IEEE,
2018.

[GKS19] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms for gap edit
distance. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS),
pages 1101–1120. IEEE, 2019.

[GRS20] Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. Does preprocessing help in fast sequence
comparisons? In Proceedings of the Symposium on Theory of Computing (STOC), 2020.

[KS19] Michal Kouckỳ and Michael E Saks. Constant factor approximations to edit distance on far
input pairs in nearly linear time. arXiv preprint arXiv:1904.05459, 2019.

[KS20] Tomasz Kociumaka and Barna Saha. Sublinear-time algorithms for computing & embedding gap
edit distance. In Proceedings of the Symposium on Foundations of Computer Science (FOCS),
2020.

[MP80] William J. Masek and Mike Paterson. A faster algorithm computing string edit distances. J.
Comput. Syst. Sci., 20(1):18–31, 1980.

[Mye86] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica, 1(2):251–
266, 1986.

[RSSS19] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. Approximation algorithms
for lcs and lis with truly improved running times. In 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1121–1145. IEEE, 2019.

[Sel80] Peter H Sellers. The theory and computation of evolutionary distances: pattern recognition.
Journal of algorithms, 1(4):359–373, 1980.

[Ukk85] Esko Ukkonen. Algorithms for approximate string matching. Information and control, 64(1-
3):100–118, 1985.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168 – 173, 1974.

11

	Introduction
	Related Past Work
	Algorithm synopsis and notation

	Main algorithm and analysis
	Algorithm description
	Analysis: correctness
	Analysis: run-time
	Proof of Lemma on Reduction to block-matching

	Improving runtime with a text searching primitive

