
Simpler Constant-Factor Approximation to Edit Distance Problems

Alex Andoni

October 6, 2018

1 Introduction

Computing edit distance between two strings of length n is a classic dynamic programming prob-
lem, with a quadratic run-time solution. It has proven to be a great challenge to one of the central
themes in TCS: to improve the run-time from polynomial to something closer to linear. Despite
significant research over many decades, the running time has so far been improved only slightly,
to O(n2/ log2 n) [MP80], which remains the fastest algorithm known to date. See also the sur-
veys of [Nav01] and [Sah08]. With the emergence of the fine-grained complexity field, researchers
crystallized the reason why beating quadratic-time is hard by connecting to the SETH conjecture
[BI15] (and even more plausible conjectures [AHVW16]).

Even before the above hardness results, researchers started considering faster algorithms that
approximate edit distance. A linear-time

√
n-approximation algorithm immediately follows from

the exact algorithm of [Ukk85, Mye86], which runs in time O(n+ d2), where d is the edit distance
between the input strings. Subsequent research improved the approximation factor, first to n3/7

[BJKK04], then to n1/3+o(1) [BES06], and to 2Õ(
√

logn) [AO12]. In the regime of O(n1+ε)-time
algorithms, the best approximation is (log n)O(ε) [AKO10]. Predating some of this work was the
sublinear-time algorithm of [BEK+03] achieving nε approximation when d is large.

In a recent breakthrough, [DGKS18] showed that one can obtain constant approximation in time
O(n1.618). The authors suggested that their techniques may be improved to get 5+ε approximation
in O(n2−2/7) time, as well as constant approximation in time close to n3/2.

Here we provide an alternative implementation of the core idea from [DGKS18] with the main
goal of developing a simpler constant-factor approximation algorithm with sub-quadratic run-time,
while achieving the best possible bounds. To obtain our results, we need to generalize the problem
to the well-known text searching problem (in fact, a further generalization of it, discussed later).

Definition 1.1. Fix n ≥ m, some length λ ≥ 1, and approximation α > 1. For x ∈ Σm and
y ∈ Σn, the problem TextSearchα(x, y, λ) is to α-approximate the edit distance between x and every
substring of y of length λ.

The main results are summarized by the following two theorems.

Theorem 1.2 (Main, n3/2+δ time). For any x ∈ Σm and y ∈ Σn, and δ > 0, we can solve the
TextSearchα problem in time O(nm1/2+δ) for approximation α that depends on 1/δ only.

Theorem 1.3 (Main 3 + ε approximation). For any x, y ∈ Σn, and ε > 0, we can estimate the
edit distance up to 3 + ε factor approximation and an O(m/β) additive error, for β ∈ [m], in time
Õε(n

1.6β0.6). When combined with O(n+ d2)-time algorithm [Ukk85, Mye86], edit distance may be
(3 + ε)-factor approximated in Oε(n

1.693) time.

1

To obtain Theorem 1.2, we generalize the text searching problem a bit further, to multi-string
text searching. We describe this problem, and its connection to our main theorems on text searching
in the next section. In Section 3, we describe and analyze our algorithm for the multi-string text
searching.

2 Multi-String Text Searching

For simplicity, we index everything from zero. Hence, [n] = {0, 1, . . . n − 1}. Also x[i : j] is the
string starting at position i until position j − 1. For index i and set S, we use i+ S to denote the
set {i+ s : s ∈ S}.

Definition 2.1. Fix n ≥ m, and approximation α > 1. For x ∈ Σm, y ∈ Σn, and a “start-set”
Sy ⊂ [n], the problem TextSearchStartα(x, y, Sy) is to output, for every t ∈ [n], an α-approximation
to mins∈Sy ed(x, y[s : t]).

Lemma 2.2 (Reduction from TextSearchStart to TextSearch). We can reduce the problem TextSearch3α

to the problem TextSearchStartα, up to an extra time of O(n).

Proof. To solve TextSearch3α(x, y, λ), run the TextSearchStartα(x, y, S) instance with the set S =
[n]. For ct the output for index t ∈ [n], we output ct as the approximation to ed(x, y[t− λ : t]).

Note that ct ≤ α ed(x, y[t − l : t]). Suppose s ∈ [n] is such that ed(x, y[s : t]) ≤ ct. Then
ed(x, y[t− l : t]) ≤ |m− l|+ ed(x, y[t−m : t]) ≤ |m− l|+ |m− s|+ ed(x, y[s : t]) ≤ |m− l|+ 2ct.
Since |m − l| ≥ ed(x, y[t − l : t]), we have that |m − l| + 2ct ≤ 3α · ed(x, y[t − l]) and hence a 3α
approximation.

Definition 2.3. Fix n ≥ m, some lengths λx, λy ≥ 1, start positions into x termed Sx, and
approximation α > 1. For x ∈ Σm and y ∈ Σn, the problem MultiTextSearchα(x, y, Sx, λx, λy) is
to solve the problem TextSearchα(x[s : s+ λx], y, λy) for all s ∈ Sx (i.e., compute the edit distance
between every substring of x of length λx starting at s ∈ Sx, and every substring of y of length λy).

Similarly, define MultiTextSearchStartα(x, y, Sx, λx, Sy) to be solving all the problems TextSearchStartα(x[s :
s+ λx], y, Sy) for s ∈ Sx.

Note that the above reduction also holds for reducing MultiTextSearch to MultiTextSearchStart.

2.1 Main technical contributions

The main technical statement is the following theorem, which shows how to solve MultiTextSearchStart
problem using an algorithm for MultiTextSearch on smaller strings. We then state how it implies
the main theorems.

Theorem 2.4. Fix n ≥ m ≥ w, λx, λy ≥ 1. Suppose there’s an algorithm A to solve
MultiTextSearchα(·, ·, Sx, O(w), O(w)), for strings of length O(w) in time t(w, |Sx|). We assume
that t(w, |Sx|) is monotonic, t(cw, |Sx|) ∈ [c, c2] · t(w, |Sx|) for any c ≥ 1/w, and

∑k
i=1 t(w, si) ≤

O(k · t(w, 1) + t(w,
∑
si)) for any si ≥ 1.

Then, for any ε > 0, there exists a randomized algorithm to solve MultiTextSearchStartα′(x, y, Sx, λx, λy),
for x ∈ Σn, y ∈ Σm, in time

O(n
√
m

w1.5 · t(w, 1) + n
w · t(w,

m
w) + s(nw · t(w, 1) + n · m2

w2)) · (logn
ε)O(1).

where the approximation is α′ = (1 + ε)(2α+ α2).

2

Corollary 2.5. Fix δ ∈ (0, 1/5). Then, for any i ≥ 1, we can solve MultiTextSearchα(x, y, Sx, λx, λy),
where |x|, |y|, λx, λy ≤ n, and s = |Sx|, in time:

ti(n, s) ≤ (log n)O(i) · n1.5 · nf(i) · (1 + s
nδ/2

),

where f(i) ≤ c(1− δ)i + δ(1− (1− δ)i) for a constant c > 0, and approximation α only dependent
on i.

Proof. First of all, the algorithm is the obvious recursive one: we use Theorem 2.4 recursively
to solve MultiTextSearchStart with extra approximation factor 3 + ε ≤ 4, and use reduction from
Lemma 2.2 to reduce to solve MultiTextSearch with an extra factor 3. After i iterations, the
approximation is only a funtion of i (specifically, double-exponential in i).

We now prove the runtime. Base case: for i = 0, the standard dynamic programming for the
exact problem would run in time O(sn2), and hence the statement is true for high enough c > 0.

Next, we prove the inductive step. We use Theorem 2.4 with n = m, β, λx, λy ≤ n, and
w = n1−δ. For ti(n, s) denoting the runtime after i recursive steps, the inductive hypothesis can be
written as:

ti(w,s)
w
√
w
≤ (logw)O(i) · wf(i) · (1 + s/wδ/2).

Plugging this into the theorem, we obtain:

ti+1(n,s)
n
√
n
≤ (log n)O(i+1) ·

(
wf(i) + n−δ/2 · wf(i) · (1 + nδ/wδ/2) + s · (n−δ/2 · wf(i) + n1+2δ

n
√
n

)
)

≤ (log n)O(i+1) ·
(

2n(1−δ)·f(i) + n−δ/2 · n(1−δ)f(i) · nδ/n−(1−δ)δ/2 + s · (n−δ/2 · n(1−δ)f(i) + n2δ−1/2)
)

≤ (log n)O(i+1) · n(1−δ)f(i) ·
(

1 + nδ
2/2 + s/n−δ/2

)
.

Comparing above versus the hypothesis for i + 1, it only remains to prove that f(i + 1) ≤ (1 −
δ)f(i) + δ2/2. Indeed, we have that:

f(i+ 1) = c(1− δ)i+1 + δ(1− δ)(1− (1− δ)i) + δ2/2 ≤ c(1− δ)i+1 + δ(1− (1− δ)i+1).

The above corollary immediately implies Theorem 1.2 by using δ ← δ/2 and i = O(1/δ ·log 1/δ).
The Theorem 1.3 also follows from Theorem 2.4 when using the exact algorithm for TextSearch

as a primitive [LV89]. While Theorem 1.3 statement does not include the dependence on β (of the
statement of Theorem 1.3), the proof does. See Remark 3.6, and set w = (mβ)1/5.

3 Main algorithm for MultiTextSearchStart: proof of Theorem 2.4

We setup some further notation. Assume that n,m are divisible by w, as otherwise we can
extend x, y so that their lengths are multiple of w. Also suppose we settle for an additive
m/β approximation, for β ≤ m.1 Let E ∈ [n] be the set of the powers of 1 + ε, namely
E = {b(1 + ε)ic | i = 0, . . . log1+ε n}.

1For simplicity, the reader can just assume that β = m—this parameter merely allows for possible extensions.

3

We partition x into b = m/w blocks of length w with starting positions in the set I = w · [m/w],
termed Xi = x[i : i+w] for i ∈ I. We consider two types of blocks of y. Let Jw = w · [n/w] ⊂ J to
be the start of w-length non-overlapping blocks of y, and J = ∆ · [n/∆], where ∆ = max{1, εw/β},
be the starting positions of possibly overlapping blocks. Let L = (w ±∆ · E) ∩ [w/ε] be the set of
lengths. Note that |L| ≤ O(logn

ε). We denote y-blocks as Yj,l = y[j : j + l] where j ∈ J and l > 0.
By assumption, there exists an algorithm A for solving MultiTextSearchα(x, y, S, λx, λy) for

x, y ∈ ΣO(w/ε), and λx, λy ≤ O(w/ε), in time O(1/ε2) · t(w, |Sx|). Note that, when the length
of y is n > w, we can solve MultiTextSearchα(x, y, S, λx, λy) in time O(n/w · t(w, |Sx|)) by the
standard reduction — just partition y into 2n/w = O(n/w) overlapping blocks of length 2w and
solve MultiTextSearch for each block of y separately.

Note that we can use A to solve TextSearch(x, y, λ) (using λx = |x| and Sx = {0}), as well as
to estimate ed(x, y)—for clarity, we call the algorithms ATS and Aed. Both runtimes are t(w, 1).
For simplicity, we denote t(w) = t(w, 1). While the algorithms A,ATS ,Aed may be randomized,
we assume that, when run on the same input, it will produce the exact same output (by, say,
memoization). Specifically, we often use Aed(Xi, Yj+j′,l), for j ∈ Jw, j

′ ∈ ∆Z ∩ [w], which are
extracted from running ATS(Xi, Yj,w+l, l) and hence considered to be a deterministic quantity.

3.1 Algorithm description

At the high level, the algorithm constructs a graph corresponding the dynamic programming table
in two phases, and then runs the relevant shortest path computations in the third phase.

We build a grid graph on vertices Ī × J̄ , which are just respectively I, J with one extra index
at the end. We have edges (i, j) to (i+w, j) of cost w, as well as edges (i, j) to (i, j+ ∆) of cost ∆.
Most importantly, for each triple (i, j, l) ∈ I×J×L, we will add the edge2 (i, j)→ (i+w, j+ l) with
some cost which upper bounds the distance ed(Xi, Yj,l). In the first phase, the algorithm produces
upper bounds for all the triples (i, j, l). The second phase will update some of these edges with a
more accurate upper bound on the cost.

In the third, estimation phase, we compute the shortest path in the graph for each required
substring of x.

Phase 1: dense blocks. Fix k = Θ(
√
b) to be the number of y-centers. Pick k random indeces

j ∈ Jw (the centers), forming the set C ⊂ Jw.
For each i ∈ [b] and (j, l) ∈ C×L, solve the problem TextSearch(Xi, Yj,w+l, l) using ATS . Define

di be the minimal distance found over all considered substrings of y: in particular (α-approximation
of) minj∈C,l∈L,j′∈∆Z∩[w] ed(Xi, Yj+j′,l), and πi be the corresponding minimizing pair (j + j′, l). At
the same time, form the sets Sj,l, where j ∈ C, l ∈ L, by adding to Sj,l the index j′ ∈ ∆Z∩ [w] each
time we have πi = (j + j′, l). Note that

∑
j,l |Sj,l| ≤ b.

For each (j, l) ∈ C × L, solve MultiTextSearch(Yj,w+l, y, Sj,l, l, l
′) for all l′ ∈ L. We store the

result for fixed (j, l) as a (sparse) table Kπ,τ where π ∈ (j + Sj,l, l) and τ ∈ J × L.
Finally, add to the graph all edges corresponding to (i, j, l), where i ∈ [b], j ∈ J, l ∈ L, with cost

di +Kπi,(j,l).

Phase 2: sparse blocks. We build a binary tree of depth O(log b) as follows. Each node
corresponds to a sub-interval of I, where the root corresponds to the entire I. For each node,

2Some indeces go out of bounds — in the description below, we will just ignore such edges as being irrelevant.

4

starting from the root, we partition its interval into two and assign them to the two children. The
tree has |I| leafs corresponding to singletons. Now, for each node v, with the interval Uv ⊆ I,
we sample h = O(logn

ε) anchors at random from Uv, with probabilities proportional to dq (say,
we sample with repetition): i.e., q is chosen with probability dq/

∑
q′∈Uv dq′ . The resulting set of

anchors is termed Qv.
For the ensuing computations, we introduce a definition:

Definition 3.1. Consider two triples (q, j, l), (q′, j′, l′) ∈ I×J ×L, where q < q′. Then (q, j, l) and
(q′, j′, l′) are compatible if j ≤ j′ and j′ − j ≤ 1

ε · (q
′ − q).

For each top-level anchor q ∈ I, we estimate the distance from Xq to each block Yπ for π ∈ J×L,
by solving TextSearch(Xq, y, l) using ATS for each l ∈ L separately. Let Sq be the set of pairs (j, l)
such that the estimated distance is less than dq. For each anchor q at non-top level, whose parent r
has anchors Qr ⊂ I, we compute the set S̆q ⊆ J × L to be the set of pairs (j, l) such that (i, j, l) is
compatible with at least one triple from ∪q′∈Qrq′ × Sq′ . Then, we estimate the distance from Xq to

each Yπ for π ∈ S̆q, and store the set Sq of all pairs where the estimated distance is < dq (updating
the corresponding costs in the graph).

We now estimate the distance from Xq to Yπ for π ∈ S̆q by running TextSearch on relevant blocks
of y. We decompose [n] into blocks with starting positions that are multiplies of w and consider
only blocks where S̆ is non-empty. Specifically, for each j ∈ Jw and l ∈ L, if there’s j′ ∈ [j : j +w]
with (j′, l) ∈ Sq, then we run TextSearch(Xq, Yj,w+l, l). Note that this covers all relevant substrings

encoded by S̆q.

Phase 3: Shortest paths in the graph. Now consider each starting position s ∈ Sx into x
(from the problem input). Let t = s + λx be the ending position. If s, t ∈ Ī, then we simply run
the shortest path algorithm from the set of vertices (s, Sy) to each of terminal vertices (t, J̄). Then
for each z ∈ [n], output the distance from the source to the node (t, j) where j is the closest j ∈ J
to z (note that this introduces additive error only ∆ ≤ ελx/β.

Now suppose s 6∈ I or t 6∈ Ī. Let s′ ∈ I be the smallest s′ ≥ s and similarly t′ ∈ Ī be the
largest t′ ≤ t. If it happens that s′ > t′ (s, t are between same two indeces in I), we just run
TextSearchStart(x[s : t], y, [n]). Otherwise, we solve the problem TextSearchStart(x[s : s′], y, [n]),
recording the results as Qi for i ∈ [n]. We also solve the problem TextSearch(x[t′ : t], y, l), for

all l ∈ E · |t−t
′|

ε . We record these results as Wi,l. Finally, we compute the shortest paths in the
following graph:

• the source node has an edge to each node (s′, j), for j ∈ J̄ , with cost Qj ;

• create a terminal node (t, z) for each z ∈ [n], and for each (t′, j, l), j ∈ J̄ , l ∈ L, add edge
from (t′, j) to (t, j + l) with cost Wj+l,l;

• finally run the shortest path algorithm from the source to all the terminal nodes. For each
z ∈ [n], output the distance to the node (t, z).

3.2 Analysis: correctness

First, we note that, by the construction of the graph, for any path of cost ζ from (sx, sy) ∈ I × J
to (tx, ty) ∈ Ī × J̄ , then there’s an edit distance matching of cost at most ζ: in particular, if edge

5

(i, j) → (i′, j′) has cost c, then we can align x[i : i′] to y[j : j′] with edit distance cost at most c.
Hence, our main task is to prove that there exists a path of cost at most O(ed(x, y)).

We use the following lemma to characterize a path in our graph, of cost close to ed(x, y).

Lemma 3.2. Fix ε > 0, as well as 1 ≤ β ≤ w ≤ m and n ≥ 1, and two strings x, y of lengths m,n,
divisible by w. Let I = wZ ∩ [m] and J = ∆Z ∩ [n], where ∆ = εw/β. There’s a matching between
the x-blocks and y-blocks, (i, ji, li) where i ∈ I, such that3∑

i∈I
ed(Xi, Yji,li) + (ji − (ji−1 + li−1)) ≤ (1 +O(ε)) ed(x, y) +O(εn/β), (1)

and (ji, li) satisfy the following properties:

• (ji, li) ∈ J × L;

• they are disjoint and in order: ji + li ≤ ji+1;

• for any i < i′, the triples (i, j, l) and (i′, j′, l′) are compatible: i.e., ji′ − ji ≤ 1
ε · (i

′ − i).

Now consider a shortest path corresponding to the substring x[s : s+λx]. For simplicity, assume
that s, s + λx ∈ I. Then we can apply the above lemma on x[s : s + λx] and any substring of y
with start and end position from J , with the same parameters β and w. When s or s+ λx 6∈ I, we
can repeat the same argument assuming we extend the substring of x and y correspondingly.

We fix the matching (i, ji, li)i∈I from the above lemma. It now remains to show that the
corresponding path in graph is not too large. While for some edges (i, ji, li), its cost is close to the
real cost of ed(Xi, Yji,li), sometimes the cost may be gross over-estimate. Nonetheless, we show
that the overall cost is close to the one from Eqn. (1). For the rest, define ci to be the result of
running Aed to estimate ed(Xi, Yli,ji): i.e., ed(Xi, Yli,ji) ≤ ci ≤ α ed(Xi, Yli,ji).

First note that, in the first stage of the algorithm, for each (j, l) ∈ J × L, we add edge corre-
sponding to (i, j, l), with cost di +Kπi,(j,l). In particular for (j, l) = (ji, li), we have

Kπi,(ji,li) ≤ α · ed(Yπi , Yji,li) ≤ α ed(Yπi , Xi) + α ed(Xi, Yji,li)

and hence the edge (i, ji, li) has cost at most di + Kπi,(ji,li) ≤ di + α ed(Yπi , Xi) + α ed(Xi, Yji,li)
(it’s “at most” because it may be replaced by lower-cost edge later on). Note that for i’s where
ci ≥ di, the cost of the edge (i, ji, li) is in fact a good approximation: ≤ ci +αci +α ed(Xi, Yji,li) ≤
(2α+ α2) ed(Xi, Yji,li).

The main challenge is to bound the cost of edges (i, ji, li) when ci < di, which is the purporse of
the second phase of the algorithm. Define the set Z of “sparse” blocks to be the set of i ∈ I where
ci < di. For a node v with sub-interval Uv ⊆ I, we call v to be successful if: 1) if the set of anchors
Qv ⊂ Uv includes at least one q ∈ Z, and 2) for some q ∈ Qv ∩ Z 6= ∅, we have that (jq, lq) ∈ Sq.

Lemma 3.3. Consider any node v, and suppose all its ancestors are successful. If
∑

i∈Uv ci ≤∑
i∈Uv(1− ε)di, then v is also successful with high probability.

Proof. We first show that Qv ∩ Z 6= ∅, using the following claim.

Claim 3.4. Consider p pairs of reals ci, di ≥ 0, such that
∑

i ci < (1 − ε)
∑

i di. Then, if we pick
i ∈ [p] with probability di/

∑
i di, we have that Pri[ci < di] ≥ ε.

3By convention, j−1 = l−1 = 0.

6

Proof. We have that:

1− ε >
∑
i ci∑
i di

= 1∑
i di

 ∑
i:ci≥di

ci +
∑
i:ci<di

ci

 ≥ 1∑
i di
·
∑
i:ci≥di

di = 1− Pr
i

[ci < di],

and hence Pri[ci < di] ≥ ε.

In particular, we apply the above claim to pairs (ci, di) for i ∈ Uv. By the assumption that∑
i∈Uv ci ≤

∑
i∈Uv(1− ε)di, we have that, by our choice of a random anchor i, Pri[i ∈ Z] = Pri[ci <

di] ≥ ε. Hence, if we sample h = Ω(logn
ε) anchors, we will sample at least one anchor from the set

Uv ∩ Z with high probability.
Now, for an anchor q ∈ Qv ∩Z, we want to prove that (jq, lq) ∈ Sq. We prove this by induction

on the distance from the root. The base case is simple: when the node v is the root, then follows
from the definition of Sq = {π : Aed(Xq, Yπ) < dq}.

Suppose v is not root, and all its ancestors are successful. Let r be v’s parent. Since r is
successful, there exists anchor q′ ∈ Qr ∩Z. By inductive hypothesis, (jq′ , lq′) ∈ Sq′ . By Lemma 3.2,

the triples (q, jq, lq) and (q′, jq′ , lq′) are compatible. Hence (jq, lq) ∈ S̆q, and, since Aed(Xq, Yjq ,lq) =
cq < di, we have that (jq, lq) ∈ Sq, completing the inductive proof.

By the above lemma, the entire tree has the following structure (whp): a “top section” of the tree
is composed of a set of successful nodes whose ancestors are also successful, and some of these nodes
have unsuccessful children v, for which, by the above, we must have

∑
i∈Uv ci ≥ (1 − ε)

∑
i∈Uv di.

Hence, we can partition the set I into {Uv}v∈V with the following property: each Uv, where v ∈ V
for some index set V , is either a successful singleton (leaf), or

∑
i∈Uv ci ≥

∑
i∈Uv(1 − ε)di. Note

that in the latter case, the edges (i, ji, li), for i ∈ Uv, have cost at most di + Kπi,(ji,li) (from the
first phase). Hence, overall, the cost of edges (i, ji, li) for i ∈ U is at most:∑

v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

di +Kπi,(ji,li)

≤
∑

v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

di + α(ed(Xi, Yπi) + ed(Xi, Yji,li))

≤
∑

v∈V successful

∑
i∈Uv

ci +
∑

v∈V not successful

∑
i∈Uv

(1+α)ci
1−ε + α · ed(Xi, Yji,li)

≤
∑
i∈I

(2α+ α2)(1 + 2ε) · ed(Xi, Yji,li).

We’ve shown that the cost of the edges (i, ji, li) is at most (2α+α2)(1 + 2ε) times the real cost.
Together with Lemma 3.2 this completes the proof of the correctness.

3.3 Analysis: run-time

Phase one of the algorithm takes the following times:

• To run the initial TextSearch x-vs-y calls: O(b · |L| · k · t(w));

• To run the MultiTextSearch y-vs-y calls: O(|L|2 ·
∑

j∈C n/w · t(w, sj)), where sj =
∑

l∈L |Sj,l|;

7

• To add edges in the graph: O(bk|L|).

In phase two, the main work is to estimate distances between q and S̆q over all anchors. Hence,
we need to show that the size of the sets S̆q, over all anchors q, is not too large overall. First we
argue that the sets Sq are small, using the following claim:

Claim 3.5. There are at most c · |Jw|/k indeces j ∈ Jw such that there exists j′ ∈ ∆Z ∩ [w], l ∈ L
with Aed(Xi, Yj+j′,l) < di, with 99% probability, for some large constant c > 0.

Proof. Consider all starting positions j ∈ Jw, and sort them according to the value of minj′,lAed(Xi, Yj+j′,l)
where j′ ∈ ∆Z ∩ [w] and l ∈ L. With at least 99% probability, the set C includes a j ∈ Jw of rank
at most O(|Jw|/k) in that sorting. This implies the statement.

The anchors from the root perform h calls to TextSearch, for a total time of h · O(n/w · t(w)).
Now fix a node v at level j ≥ 1 (with the convention that the root is at level 0), one of its anchors
q ∈ Qv, and let r be the parent of v. Recall that S̆q consists of all (j, l) that are compatible with
anything from ∪q′∈Qrq′ × Sq′ . Consider one of r’s anchors q′ ∈ Qr, and let (j′, l′) ∈ Sq′ . We want
to upper-bound the number of pairs (j, l) ∈ J × L such that (q, j, l) is compatible with (q′, j′, l′),
i.e., |j− j′| ≤ 1

ε · |q− q
′|. Note that |q− q′| is upper bounded by the diameter of Uq′ (as q, q′ ∈ Uq′),

which is m · 2−j+1. Hence we must have |j − j′| ≤ 1
ε · m · 2

−j+1. Thus all compatible (j, l) are

covered by at most 21/ε·m·2−j+1

w blocks [j : j +w] where j ∈ Jw, yielding the same upper bound on
the number of TextSearch calls (for each fixed length l ∈ L). Each such call takes time O(1

ε2
t(w)).

The total number of such TextSearch calls for a fixed anchor q is at most

|Qr| · max
q′∈Qr

|Sq′ | · 4m
εw 2−j · |L| ≤ h · cn/wk ·

4
ε
m
w 2−j · |L|.

Over all vertices v and their anchors, the runtime to run all the TextSearch calls becomes:

O(h · n/w · t(w)) +

O(log b)∑
j=1

2j · h ·
(
h · cn/wk ·

4m
εw 2−j · |L|

)
·O(1

ε2
t(w))

≤ (logn
ε)O(1) ·

(
n
w · t(w) + n

wk ·
m
w · t(w)

)
≤ (logn

ε)O(1) ·O(nm
w2k
· t(w)).

The third phase takes time |Sx| · Õ(n/w · t(w) + |I| · |J | · |L|+n) = Õ(|Sx| · (n/w · t(w) + nmβ
w2)).

Thus, the overall runtime is, for k =
√
m/w, s = |Sx|, and

∑
j∈C sj ≤ b, up to (logn

ε)O(1) factor:

km
w ·t(w)+ n

w

∑
j∈C

t(w, sj)+ nm
w2k

t(w)+s(nw ·t(w)+ nmβ
w2) = n

√
m

w1.5 ·t(w)+ n
w ·t(w,

m
w)+s(nw ·t(w)+ nmβ

w2).

Remark 3.6. It is possible to adapt the algorithm to use a primitive ATS for TextSearch only. As-
suming that TextSearch on strings of lenth O(w) runs in time t(w), the algorithm runtime becomes:

(n
√
mβ

w1.5 · t(w) + nmβ
w2) · (logn

ε)O(1).

For this, the phase 1 of the algorithm would pick C randomly from J , compute the distance
between all Yj,l, j ∈ C, and substrings of y using TextSearch primitive.

8

3.4 Proof of Block-matching Lemma

Proof of Lemma 3.2. To analyze ed(x, y), we considering the optimal alignment A : [m]→ [n]∪{⊥}
that certifies ed(x, y). In particular, we have that, A(i) < A(j) for any i < j ∈ [m] \A−1(⊥), and

ed(x, y) = #
{
i ∈ [m] \A−1(⊥) : x[i] 6= y[A(i)]

}
+ 2

∣∣A−1(⊥)
∣∣ .

Note that the starting and ending positions of the blocks in y are always multiples of ∆ ≤
ε/β · w. We call mini-blocks to be length-∆ blocks starting at positions ∆Z in y. For each block
Xi = x[i : i + w], we define si to be starting point of the first mini-block containing A(z) 6= ⊥ for
z ∈ [i : i+w]. Similarly define ti ∈ S to be the last such mini-block. If si, ti do not exist, we define
si = ti−1 + ∆ and ti = ti−1 (where t−1 = −∆ by convention). Note that ti−1 ≤ si for all i.

The starting point is match the block Xi to string y[si : ti + ∆], i.e., to set ji = si and
li = ti − si + ∆. In that case the LHS in Eqn. (1) is upper-bounded by ed(x, y) + 2∆ · b (each
block may introduce error of ≤ 2∆ due to rounding). However, we also need to make sure that the
intervals [ji : ji + li] satisfy the desired properties: they are disjoint, not too long, and are not too
spread out. For this purpose, we modify ji, li in a few steps below, controlling the incurred error.

We ensure disjointness as follows: if ji−1 + li−1 = ji + ∆, we set j′i = ji + ∆ and l′i = li − ∆
(and j′i = ji, l

′
i = li is otherwise). Note that, for some blocks i, it may now be that l′i = 0, in which

case Xi just matches to an empty block. We now have that j′i−1 + l′i−1 ≤ j′i. The incurred error
per block is ∆.

Second, we ensure that the block lengths are valid: in particular, that each block length l′i ∈
w ± ∆E ∩ [w/ε]. We now set l′′i using l′i as follows: if l′i < w we round it up to nearest index in
w+ ∆ ·E, and otherwise take the minimum between rounding down in w+ ∆ ·E or l′′i = w/ε. Let’s
analyze the incurred error. After changing from l′i to l′′i , the LHS in Eqn. (1) increases by at most:

2 · |l′i − l′′i | = 2 · |(l′i − w)− (l′′i − w)| ≤ 2ε(1 + ε) · |l′i − w| ≤ 2ε(1 + ε) · ed(Xi, y[s′i : ti + ∆]),

where we’ve used the fact that ed(Xi, y[j′i : j′i + l′i]) ≥ |l′i − w|. Hence, we get that:∑
i

ed(Xi, y[j′i : j′i + l′′i]) + (j′i − (j′i−1 + l′′i−1)) ≤ ed(x, y) +O(∆ · b) + 2ε(1 + ε) · (ed(x, y) +O(∆ · b))

= (1 +O(ε)) ed(x, y) +O(εn/β).

We are left with the final property to ensure: that |ji′ − ji| ≤ 1
ε |i
′− i| for all i < i′. Note that it

is enough to ensure this for i′ = i+1 (by triangle inequality). We ensure that by constructing j′′i by
adjusting j′i as necessary, iterating over i ∈ I in order. For current i, suppose j′i− j′′i−1 > w/ε. Then
we simply set j′′i = j′′i−1 +w/ε (note that j′′i+1 − j′′i = w/ε ≥ l′′i , so keeping the same lengths is ok),
and leave j′′i = j′i otherwise. Note that the LHS can increase only by at most w as some characters
from Xi may lose their matches altogether. To account for this increase in cost, we “charge” this
cost to

(j′′i − j′′i−1 − l′′i−1) + ed(Xi−1, Yj′i−1,l
′′
i−1

) = w/ε+ (ed(Xi−1, Y
′′
j′i−1,li−1

)− l′′i−1) ≥ w
ε − w ≥

w
2ε .

Since
∑

i j
′′
i − (j′′i−1 + l′′i−1) remains the same overall, , the extra cost is only at most a factor of 2ε

of the total cost when using indeces j′i, l
′′
i . Hence the total cost of the changes here increases the

cost by at most a factor of 1 + 2ε.
The final output indeces are (j′′i , l

′′
i).

9

References

[AHVW16] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and Ryan
Williams. Simulating branching programs with edit distance and friends: or: a poly-
log shaved is a lower bound made. In Proceedings of the Symposium on Theory of
Computing (STOC), 2016.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approx-
imation for edit distance and the asymmetric query complexity. In Proceedings of the
Symposium on Foundations of Computer Science (FOCS), 2010.

[AO12] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear
time. SIAM J. Comput., 41(6):1635–1648, 2012.

[BEK+03] Tuğkan Batu, Funda Ergün, Joe Kilian, Avner Magen, Sofya Raskhodnikova, Ronitt
Rubinfeld, and Rahul Sami. A sublinear algorithm for weakly approximating edit
distance. In Proceedings of the Symposium on Theory of Computing (STOC), 2003.

[BES06] Tuğkan Batu, Funda Ergün, and Cenk Sahinalp. Oblivious string embeddings and edit
distance approximations. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 792–801, 2006.

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proceedings of the Symposium on Theory of
Computing (STOC), 2015.

[BJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating
edit distance efficiently. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 550–559, 2004.

[DGKS18] Debarati Das, Elazar Goldenberg, Michal Koucky, and Michael Saks. Approximating
edit distance within constant factor in truly sub-quadratic time. In Proceedings of the
Symposium on Foundations of Computer Science (FOCS), 2018.

[LV89] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching. J.
Algor. 10, pages 157–169, 1989. Preliminary version in ACM STOC’86.

[MP80] William J. Masek and Mike Paterson. A faster algorithm computing string edit dis-
tances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[Mye86] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986.

[Nav01] Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001.

[Sah08] Süleyman Cenk Sahinalp. Edit distance under block operations. In Ming-Yang Kao,
editor, Encyclopedia of Algorithms. Springer, 2008.

[Ukk85] E. Ukkonen. Algorithms for approximate string matching. Information and Control
64, 100–118, 1985.

10

	Introduction
	Multi-String Text Searching
	Main technical contributions

	Main algorithm for `39`42`"613A``45`47`"603AMultiTextSearchStart: proof of Theorem 2.4
	Algorithm description
	Analysis: correctness
	Analysis: run-time
	Proof of Block-matching Lemma

