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Abstract

Many algorithms involving metric spaces rely on a basic primitive that estimates the distance
between points x, y in a metric space M . A common framework for this task is provided by
communication complexity: Alice and Bob receive points x and y respectively as private inputs,
and they wish to decide whether the distance d(x, y) is “small” or “large” using only a small
amount of communication. The precise model may depend on the intended application, e.g.
sketching and one-way protocols pose further limits on the number of rounds, but are very
useful for near neighbor searching and for streaming algorithms.

So far, the extensive work devoted to distance estimation protocols focused on particular
metrics, such as Lp or edit distance. Seeking a broader perspective, the following meta-question
has recently emerged (cf. [McG06, Question #5]): “Characterize which metric spaces
admit efficient communication protocols?”

We address this meta-question by studying general metric spaces, seeking to understand the
extreme cases and how they are affected by metric (or topological) structure. At one extreme, we
show that expanders have the largest possible communication complexity. This is proved for ev-
ery approximation factor, and thus provides a strict generalization of known non-embeddability
results for expanders. At the other extreme we have various metrics that admit very efficient pro-
tocols (even more efficient than say L1) achieving arbitrarily good approximation. Our results
determine, for example, whether R3 is easier or harder than a tree metric.

We also compare the power of sketching protocols and that of embeddings, offering a partial
converse to the well-known fact that sketching generalizes the “embeddings approach”.

∗Most of the work was done while the author was visiting IBM Almaden Research Center.



1 Introduction

Many algorithms involving metric spaces rely on a basic primitive that estimates the distance
between points x, y in a metric space M. A common framework for this task is provided by
communication complexity: Alice and Bob receive points x and y respectively as private inputs,
and they wish to decide whether the distance dM(x, y) is ≤ R or > αR, for predetermined threshold
R > 0 (this is merely the decision version of approximation within factor α ≥ 1). The precise model
may depend on the intended application, although we always allow the use of public randomness.
In fact, we shall concentrate on sketching and one-way protocols, which pose further limits on the
number of rounds (see precise definitions below), but are extremely useful e.g. for near neighbor
searching and for streaming algorithms.

The recent years have seen increased motivation for studying the communication complexity of
metric spaces — see Section 1.2 for known motivations and new potential applications. So far, the
extensive work devoted to this focused on a few metric spaces of key importance, such as `p spaces,
for which we now know near-complete answers for all p ∈ [1,∞] [IM98, KOR00, SS02, BJKS04,
Woo04], and more recently Earthmover distance [AIK08] and edit distance [BYJKK04, AK07]. It is
thus timely to seek a broader perspective, and the following meta-question emerges quite naturally:

Meta-question: Characterize which metric spaces admit efficient communication protocols.

This question was raised, in a slightly different form, in the open problems collection [McG06,
Question #5]. We are aware of only one result in this direction, due to [GIM07], which addresses
a family that includes all Bregman divergences between distributions.

The present work is geared towards the above meta-question. First, we seek to understand
whether the extreme cases correspond to metric (or topological) structure. We thus study metrics
with the largest possible communication complexity, finding along the way a strict generalization
of known non-embeddability results. At the other extreme, we study metrics with very efficient
protocols, even lower complexity than L1. We also compare the power of communication protocols
and that of embeddings, offering a partial converse to the well-known fact that sketching generalizes
the “embeddings approach”. Before going into more details, we set up terminology and review basic
facts regarding these concepts.

A Hierarchy of Protocols. We use standard communication complexity models, which date
back to [Yao82]. Restrictions on the order of messages give rise to different types of protocols:

Two-way: Alice and Bob exchange messages in any order.

One-way: Alice sends just one message to Bob, who is to decide on the output.

Simultaneous (aka sketching): Alice and Bob each sends a message to a third party, the referee,
who is to decide on the output, based only on the two messages and the public randomness.

In all three cases, the communication complexity (or size) is defined to be the minimum number
of communication bits needed by a protocol that (on every input x, y) succeeds with probability
at least 2/3. The three protocol types are progressively more restricted, meaning that a two-way
protocols can simulate one-way protocol with no additional communication, and similarly one-way
protocols can simulate simultaneous protocols.

The Embeddings Prism. Communication protocols for distance estimation are often related
to the following notion. An embedding of a metric M into a host metric, such as `1, is a map
ϕ : M 7→ `1 with the property that for all x, y ∈ M, the quantity ‖ϕ(x) − ϕ(y)‖1 approximates
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dM(x, y) within approximation α, which is often called the distortion of ϕ. (See e.g. [IM03] and the
references therein.) The embedding can be viewed as a communication protocol (even a sketching
one), where Alice and Bob send ϕ(x) and ϕ(y), respectively, and their message determine the
estimate ‖ϕ(x)−ϕ(y)‖1. As stated, this model is incomparable to the sketching model; on the one
hand, a full representation of ϕ(x) might be rather lengthy to communicate; on the other hand the
protocol’s structure is very restricted, e.g. to using only an `1 difference. Nevertheless, sketching
protocols do generalize the embeddings model, if we accept a small increase in the approximation
by a factor of 1+ ε. This claim follows from [KOR00], who prove that `1 metrics admit a sketching
protocol achieving 1 + ε approximation with O(1/ε2) communication.

Obtaining tight (non)embeddability results for some notorious metrics is a key open problem,
see e.g. the list [Mat07, Problems 2.18 and 2.20]. Recalling that sketching generalizes embeddings,
we know by the contrapositive that lower bounds for sketching imply lower bounds for embedding.
Indeed this indirect approach was recently employed for the edit distance and Ulam metric [AK07],
yielding non-embeddability results that were not known earlier (i.e. before studying sketching).

A Computational Perspective. We advocate viewing the communication complexity of (esti-
mating distances in) a metric space M as a “measure” of complexity for M, especially with regard
to different computational tasks involving this metric. Such “measures” of complexity are instruc-
tive in explaining or predicting the tractability of different computational problems. For example,
the doubling dimension was suggested in [GKL03] as a proxy for a metric’s low complexity, and a
sequence of subsequent papers showed that this notion is indeed a useful parameter for a diverse
set of problems, such as Nearest Neighbor Search (NNS), the Traveling Salesman Problem (TSP),
and low-stretch routing. This proxy is often useful when the metric M can only be accessed in a
black-box manner by querying the distance function. Another proxy is provided by embedding into
`1, which is indeed more useful in several cases, but we feel that communication complexity offers
an even better alternative, and may generalize or outperform these other two in many contexts.

1.1 Our Results

First, we study the two ends of the spectrum of communicaton complexity, namely metrics of very
large and very small communication complexity. For every n-point metric, a sketch of size O(logn)
clearly suffices for exact distance estimation (α = 1). Two fundamental questions that immediately
arise are (i) is this upper bound tight? and (ii) does approximation help, and if so, by how much? To
answer question (ii), we show that for every desired approximation 1 ≤ α ≤ O(log n) there is a one-
way protocol of complexity O( log n

α ). This bound offers a smooth tradeoff between approximation
and communication; the only values previously known were α = 1 and α = O(log n) (the latter
follows by, e.g., embedding into `1 [Bou85] then using protocol for `1 [KOR00]). Furthermore, we
prove that this communication upper bound is tight, for all α, thus answering question (i) more
generally (not only for α = 1).1 Our matching lower bound is proved for expander graphs, thus
offering a generalization to the known non-embeddability results for expanders; indeed, the case
α = O(log n) in our lower bound implies (but does not follow from) non-embeddability of expanders
[LLR95, LM00]. These results appear in Section 2.

1A simple counting argument over unweighted graphs is inapplicable because the protocol may depend on the
metric, but here is a simple alternative: every symmetric function f : [n] × [n] → {0, 1} corresponds to an un-
weighted graph, in which we can take the shortest-path metric, hence the distance d(x, y) is 1 whenever f(x, y) = 1
(and ≥ 2 otherwise). Known functions f (e.g. a random one) require Ω(log n) communication, implying the same
communication lower bound for factor 2 distance estimation.
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At the other extreme we focus on metrics with very efficient sketching protocols — even lower
communication complexity than L1, which admits sketching with 1+ε approximation using sketch-
size O(1/ε2) (for any desired ε > 0). Specifically, we give near-tight bounds for paths, trees, and
low-dimensional Rk under `1 norm (and easily extends to `p for every fixed p ≥ 1). We give a fuller
account in Table 1. It is interesting to note that there is an exponential gap between, say, R3 and tree
metrics (even though both embed in `1 isometrically, i.e. with distortion 1). Previously, no bounds
were known for all these metrics. Our bound for Rk follows from a more general result for sum-
product spaces. For a metric M with distance dM, define the sum-product metric

⊕kM to be the
set of all tuples 〈x1, . . . , xk〉 ∈ Mk endowed with distance function d`1,M(〈x1, . . . , xk〉, 〈y1, . . . yk〉) =∑k

i=1 dM(xi, yi). For example, the k-dimensional `1 space is simply
⊕k R, and the real hyperbolic

space Hk embeds (roughly) into the product of k trees [BS05, BDS07]. We note that many other
metrics, such as edit distance, Earthmover distance, and squared-`2, are closed under the sum-
product operator. These results appear in Section 3.

Metric Approx. Communication UB/LB Protocol Types/Qualifications

h
er

e arbitrary α O( log n
α ) Ω( log n

α ) 1-way. LB: expanders
`1 on Rk 1 + ε k · Õ(log 1

ε ) k · Ω̃(log(2 + 1
kε)) UB: all protocols. LB: 1-way. k ≤ 1

ε2⊕k trees 1 + ε Õ(k/ε) Ω̃(1/ε) UB: all protocols. LB: 1-way.

k
n
ow

n L1, L2 1 + ε O(1/ε2) Ω(1/ε2) UB: all protocols. LB: 1-way.
(any dim.) [KOR00, Woo04]
`p on [m]k, α Õ(k1−2/p/α2) Ω(k1−2/p/α2) for all protocols
p ∈ (2,∞] [SS02, BJKS04]

Table 1: Our results and some known bounds. For each metric, we present approximation factor,
communication upper bound (UB) and lower bound (LB).

A natural approach to answer our meta-question is to relate the communication complexity of
a metric M, say for sketching protocols, to embedding of M into, say, squared-`2. As mentioned
previously, sketching generalizes the “embeddings approach”. An immediate question is whether
there is a converse statement, i.e., does efficient sketching imply low-distortion embeddings? After
delineating the precise statement based on a few examples, we offer such a partial converse that
requires some technical conditions, most notably that M has low aspect ratio. See Section 4 for
details.

We conclude with a discussion of some concrete problems that emerge from our results and may
bring us closer to a resolution of the meta-question. Due to lack of space, this part is relegated to
Appendix A.

1.2 Applications of Distance Estimation Protocols

To put the communication complexity approach in a larger context, we discuss some known and po-
tential scenarios where distance estimation protocols play a key role in either designing algorithms,
or proving tight lower bounds for such algorithms. We remind that one such strong connection —
to embeddings — was discussed above.

Linear-time Distance Estimation. In its simplest form, the distance estimation (DE) problem
just asks to compute (exactly or approximately) the distance dM(x, y) between inputs x, y ∈M, say
on a RAM machine. Sometimes, it turns out that casting the DE problem in a restricted setting,
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such as a communication protocol, helps in designing new algorithms. Attacking a problem by
restricting the computational model might seem counter-intuitive, but this approach actually helped
for obtaining near-linear time DE algorithms for several metrics such as variants of edit distance
and Earthmover distance, e.g. by embedding them into L1 [CPSV00, MS00, CM02, Cha02, IT03,
AIK08].

Nearest Neighbor Search (NNS). This problem asks to construct a data structure on a dataset
of n points from a metric M, so as to support queries of the form: given as query a point q ∈ M,
report the data point closest to q. This is a central problem in many areas and thus was studied
extensively; see [Ind03] and references therein for details.

It can be seen, using ideas from previous work, that low-complexity distance estimation protocols
imply a host of NNS algorithms. For example, a one-way protocol of size s can be used to design
an NNS scheme with polynomial space and fast queries (nO(s) space and O(s log n) query time).
Alternatively, such a protocol implies an NNS scheme with near-linear space and sublinear queries
(roughly, n1+O(ε) space and O(n1−ε/s) query time for any desired ε > 0). We provide the details
in Appendix D.1, for completeness, since we are not aware of an explicit proofs of these statements
in the literature. The two schemes mentioned above are proved via a unified approach, which is
a generalization of the hashing techniques that were devised in [KOR00, IM98] for NNS in `1.
Additionally, a sketching protocol of size s can be used in NNS algorithms based on a linear-scan,
as a fast filtering mechanism. While these algorithms take a time linear in n, the running time per
point may be only O(s log n), independent of the size (dimension) of a point. (In particular, this
algorithm may significantly reduce the number of exact distance evaluations.)

Distance labeling. Several concepts were proposed in the literature to address the broad goal
of representing a metric space in a more succinct yet easily accessible method than simply storing
the entire matrix of distances. Depending on the precise formulation of efficiency, these concepts
including spanners [PS89], distance labeling schemes [Pel00], distance oracles [TZ04], and network
triangulation [KSW04]. Among these, the closest to distance estimation is distance labeling, though
the two are generally incomparable because (a) distance labeling applies to a family of finite met-
rics, while distance estimation operates on one fixed (possibly infinite) metric; and (b) distance
labeling is deterministic and solves the “search” version, while distance estimation is randomized
and solves the decision version. In many scenarios (e.g. networking) a sketching algorithm can be
more advantageous, potentially leading to smaller storage per point, due to the above differences.
Another potential advantage is that the sketch (label) of each point is often computed locally and
independently of the number of relevant points (e.g. if the metric is infinite). However, a protocol
may sometimes depend on the metric space in an undesirable way (e.g. scan all n points in search
of some event).

We observe (Appendix D.2) that a low-complexity one-way protocol for an infinite metric M
implies an approximate distance labeling scheme with small labels for the family of all finite sub-
metrics of M. To see one example, observe that an infinite n-ary tree contains as a submetric
every tree of size n with integer edge weights. This example demonstrates also the aforementioned
differences in efficiency, e.g. sketching offers some guarantees even with only O(1) bits per point.

Streaming algorithms. In the data-stream model, the input is a sequence of elements arriving in a
sequential fashion, without providing access to earlier elements. The main complexity measure of an
algorithm in this model is its use of space (storage). Quite often, although sometimes implicitly, the
data stream contains a description of x followed by that of y, and we wish to estimate some distance
dM(x, y). As observed in [AMS96], a lower bound on the one-way communication complexity of
M immediately implies a lower bound on the space requirement of a streaming algorithm for
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this purpose. This method of proving space lower bounds for streaming algorithms was used in
[SS02, BJKS04] to obtain a streaming lower bound for `∞. In particular, their main technical
result is a tight communication lower bound for one-way protocols for distance estimation of Lp’s
for p > 2.

1.3 Preliminaries

Fix a metric space M, and r > 0, α ≥ 1. Let DEM,r,α (stands for Distance Estimation) denote the
promise problem of deciding, upon input (x, y) ∈M×M whether dM(x, y) ≤ r or dM(x, y) > αr.

2 Metrics with Large Communication Complexity

We start our investigation with the regime of high communication complexity, proving that ex-
pander graphs, when equipped with the shortest distance metric, are the “hardest” metrics for
one-way and for two-way protocols. Namely, we show that for every approximation α ≥ 1, all
n-point metrics admit communication upper bound of O( log n

α ), and that this bound is tight for
expander graphs.

Theorem 2.1. Consider any metric (M, dM) with n points. Then, for every r > 0 and 1 ≤ α ≤
logn, the one-way communication complexity of DEM,r,α is O( log n

α ).

Theorem 2.2. Consider an (expander) graph G of size n, which is d-regular and its adjacency
matrix has second eigenvalue at most λ2d < d. Then, for every 1 ≤ α ≤ O(logn), the two-way
communication complexity of DEG,r,α is Ωλ2,d(

log n
α ).

These results generalize the statement that expanders are the hardest metrics for embedding
into normed spaces such as `1 or `2. The equivalent of Theorem 2.1 for embeddings is Bourgain’s
theorem [Bou85] that every n-point metric embeds into `1 with O(logn) distortion. The equivalent
of Theorem 2.2 for embeddings says that expanders require distortion Ω(logn) in any embedding
into `1 and (`2)p for constant p [AR98, LLR95, LM00, Mat02]. We proceed to proving Theorem 2.1
and Theorem 2.2.

Proof of Theorem 2.1. Let (M, dM) be a finite metric space. Henceforth, let B(x, t) denote the
(closed) ball of radius t around x. For a partition P of M, we shall call the elements C ∈ P
clusters. The partition is called ∆-bounded if its clusters all have diameter at most ∆. For a point
x ∈ X, we let P (x) denote the cluster C ∈ P containing x. We shall need the following lemma due
to Mendel and Naor [MN07, Lemma 3.1].

Lemma 2.3 ([MN07]). Let (M, dM) be a finite metric space. Then for every ∆ > 0 there exists
a probability distribution over ∆-bounded partitions P of M such that for every 0 < t < ∆/8 and
every x ∈M,

Pr
P

[B(x, t) ⊆ P (x)] ≥
( |B(x,∆/8)|
|B(x,∆)|

)16t/∆

.

Fix r > 0 and α ≥ Ω(1). Let c > 0 be a sufficiently large constant, e.g. c = 3 suffices. Alice
and Bob use their shared randomness to compute T = cn16/α decompositions of the shortest-path
metric of G, each drawn independently from the distribution in Lemma 2.3, using parameters
∆ = αr and t = r. Denote these randomly chosen partitions by P1, . . . , PT . Call v ∈ V padded in
decomposition Pi if B(v, r) ⊆ Pi(x). By the lemma, every v ∈ V is padded in every partition Pi

with probability ≥ ( 1
n)16/α.
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The one-way protocol proceeds as follows. Alice find a partition Pi in which its input x is
padded, and sends to Bob the value of i ∈ [T ] and h(Pi(x)) where h : 2V 7→ {0, 1}c is a universal
hash function, chosen using the shared randomness. If there is no such Pi, then Alice sends an
error message, and we shall just assume the protocol fails. Bob computes for its input y the value
h(Pi(y)) using the same hash function h(·) as Alice and the i he received, and accepts (declares
that d(x, y) ≤ r) if and only if the hash value he computed is equal to the one he received from
Alice, namely h(Pi(y)) = h(Pi(x)).

Clearly, the communication complexity is O(log T )+c = O( log n
α ). It thus remains to bound the

error probability. One obvious term is the probability the protocol fails because x is not padded
in all the T partitions, which occurs with probability ≤ (1 − ( 1

n)16/α)T < e−3. Assume now the
protocol did not fail, i.e. x is padded in Pi. If d(x, y) ≤ r then y ∈ B(x, r) ⊆ Pi(x), hence
Pi(x) = Pi(y) and Bob must accept. If d(x, y) > αr = ∆ then necessarily Pi(x) 6= Pi(y), and their
hash values must collide for Bob to accept, which occurs with probability ≤ 2−c. We conclude that
in either case, the protocol errs with probability at most e−c + 2−c ≤ 1/4.

For α = O(1), Alice can just send a hash value of its point, which takes O(log n) = O( log n
α )

communication.

Proof of Theorem 2.2. Fix r = Θ( logd n
α ) and consider the following two distributions. The “far

distribution”, µ0, is uniformly random over pairs (x, y). The “close distribution”, µ1, chooses a
random x and then generates y by taking a random walk from x of r steps. Technically, the “far
distribution” may generate pairs of points that are not at distance ≥ αr = Ω(logn), but this
happens with probability 2−Ω(log n), which we will ignore for the sake of clarity (see an example of
the formal treatment of this issue in [AIK08] or [AK07]).

Suppose l is the complexity of a two-way protocol of DEG,r,α. Then, Lemma 3.1 from [AK07]
implies that there exist boolean function HA,HB : V → {0, 1} such that

Pr
µ0

[HA(x) 6= HB(y)]− Pr
µ1

[HA(x) 6= HB(y)] ≥ 2−O(l).

Let A = (HA)−1(1) and B = (HB)−1(1), and let Er(A,B) denote the set of length r walks starting
in A and ending in B. Then

Pr
µ0

[HA(x) 6= HB(y)]−Pr
µ1

[HA(x) 6= HB(y)] = 2Pr
µ1

[HA(x)HB(y)]−2Pr
µ0

[HA(x)HB(y)] = 2 |E
r(A,B)|
dr|V | −2 |A|·|B||V |2 .

Applying the expander mixing lemma to the graph Gr defined by these walks,
∣∣∣|Er(A,B)| − dr|A|·|B|

|V |
∣∣∣ ≤ (λ2d)r

√
|A| · |B| ≤ (λ2d)r|V |.

Altogether, we conclude that 2−O(l) ≤ λr
2, hence l ≥ Ω(r log 1

λ2
) = Ω( log n

α · logd(1/λ2)).

3 Metrics with Very Efficient Protocols

At the other end of the spectrum we have metrics admitting very low space communication proto-
cols. We focus on path metrics, trees, and products of these spaces, which embed isometrically into
`1, and thus admit sketching with approximation 1 + ε and sketch-size O(1/ε2) by [KOR00]. We
answer the basic question of whether better dependence on ε is possible for these specific families.

First we establish near-tight bounds on the communication complexity of a simple path (equiva-
lently, the real line R) and of a complete binary tree (which contains every finite tree as a submetric,
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up to scaling). It is interesting to note that the complexity of these two metrics is different, in fact
there is an exponential gap between them (in terms of ε).

Using these two metrics as a baseline, we then establish a form of a hierarchy of simple metrics.
This hierarchy is obtained by applying the sum-product operation. For example, a sum-product of
k path metrics (real lines) yields a k-dimensional `1. The sum-product operation is very natural,
and many common metrics are closed under this operation.

Technically, we design “generic” protocols for ⊕kM, the sum-product of M with itself k times,
by assuming M admits an efficient protocol and using it as a black-box. Applying these results to
the two basic metrics (the path and the tree), we get protocols for the sum-product of paths (i.e.
Rk) and for the sum-product of trees (which effectively include hyperbolic spaces). We accompany
these protocols with a lower bound for the sum-product of paths, which nearly matches our protocol
for all k ≤ 1/2ε; beyond this value, the complexity stabilizes to Θ(1/ε2), the complexity of full-
dimensional `1. An immediate consequence is that our generic protocol is nearly the best possible.

3.1 Path and Tree Metrics

We shall use the term path metric P to denote the metric on R with dP (x, y) = |x− y|.
Theorem 3.1. Let P be a path metric. Then there is a sketching algorithm for the distance
estimation problem DEP,r,1+ε that uses sketches of size O(log 1

ε ). Furthermore, every one-way
protocol for this problem must have size Ω( log(1/ε)

log log(1/ε)) = Ω̃(log 1
ε ).

Deferring this proof to Appendix B, we now state and prove the result on tree metrics.

Theorem 3.2. Let T be a (possibly infinite) tree metric. Then there is a sketching algorithm for
the distance estimation problem DET,r,1+ε that uses sketches of size O(1

ε log 1
ε ). Furthermore, every

one-way protocols for this problem, even for complete binary trees, must use size Ω(1
ε ).

We remark that the protocol in this theorem is randomized with one-sided error. The lower
bound holds even for randomized, two-sided error protocols.

Proof of Theorem 3.2. We first prove the upper bound on the sketch size. We shall fix a point in
T as the root and assume that ε < 1/2. We may assume without loss of generality (by subdividing
and scaling) that all tree edges have unit length, and that r and εr/3 are integral. We may further
assume that all the points are at distance at least r from the root, by adding to T a path of length
r hanging off the root of T , making the other endpoint of this path the new root of T .

Sketching protocol. We now describe Alice’s algorithm for her input x ∈ T ; Bob’s algorithm for
his input y ∈ T is identical. Given her input x, Alice first finds all the strict ancestors of x (in the
tree T ) whose distance from x is at most r(1 + ε/3) and whose depth (distance from the root) is a
multiple of εr/3. Denote this sequence of points as Sx (ordered by their distance from x). Next,
Alice hashes the name (unique identifier) of each point in this set Sx into O(log(1/ε)) bits using
the shared randomness, letting σ(x) be the resulting sequence of hash values. Bob uses the same
algorithm to compute σ(y). It is easy to verify that the claimed bound on communication since
|Sx| ≤ 3

ε + 1, and each of these points is hashed into O(log 1
ε ) bits.

The referee’s algorithm is as follows. Given two sketches a = σ(x) and b = σ(y), he checks
whether there are i, j such that the ith hash value in a equals the jth hash value in b and such that
i+ j ≤ 3

ε + 2. If so, he decides that dT (x, y) ≤ r; otherwise, he decides that dT (x, y) > r(1 + ε).
We now show that the referee’s decision is correct with high probability. Fix x, y ∈ T such that

dT (x, y) ≤ r. Let the point z ∈ T be their least common ancestor. Let z′ ∈ T be the ancestor of z
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closest to z (i.e. the first point of the path from z to the root) whose depth is a multiple of εr/3. By
the triangle inequality d(x, z′) ≤ r(1 + ε/3), and thus z′ ∈ Sx. A similar argument shows z′ ∈ Sy,
and their hash values in s(x) and s(y) are clearly equal. Furthermore, the position i of z′ in Sx and
the position j of z′ in Sy satisfy i+ j ≤ d(x,z)+d(z,z′)

εr/3 + d(y,z)+d(z,z′)
εr/3 = d(x,y)+2d(z,z′)

εr/3 ≤ 3
ε + 2, hence

the referee will accept (with probability 1).
Next, fix x, y ∈ T such that dT (x, y) > r(1 + ε). Consider some i and j such that i+ j ≤ 3

ε + 2.
We claim that the ith point in Sx and the jth point in Sy must be distinct points in T . Indeed,
if they were the same point z ∈ T , then by the triangle inequality d(x, y) ≤ d(x, z) + d(z, y) ≤
(i+ j)εr/3 ≤ r(1+2ε/3), which contradicts our assumption. Using the claim and since hash values
have O(log 1

ε ) bits, we get that the two corresponding hash values in s(x) and in s(y) will be equal
with probability at most ε3/32. The number of such pairs i, j is at most (3

ε + 1)2 ≤ 16/ε2, and by
a union bound we get that the referee will reject with high probability (at least 1− ε/2 ≥ 3/4).

Lower bound. We proceed to proving the lower bound on communication. The proof is by
reduction from a modified version of the indexing problem. We first recall the definition of this
problem, and then describe our reduction from this problem to distance estimation.

Modified Indexing. A classical hard problem for one-way communication complexity is the
indexing problem INDn: Alice is given a string v ∈ {0, 1}n and Bob is given an index i ∈ {1, . . . , n},
and based on a single message from Alice, Bob has to output vi. It is well known that in any one-
way protocol solving this problem, even a randomized one, Alice’s message has to be of length Ω(n).
We will need a variant of this problem (in which Bob has more information), denoted INDn,k: Alice
gets a string v ∈ {0, 1}n; Bob gets an index i ≥ k and also the k− 1 bits in v that precede position
i; the goal is again to output vi. Lemma 2 from [BYJKK04] shows that the modified indexing
problem requires Ω(n− k) communication from Alice (for every n and k).

The reduction. Fix 0 < ε < 1/3 and let n = 3/ε and k = 2n/3. We now describe the reduction
from INDn,k to distance estimation in a complete binary tree T of depth n. The root of the tree,
denoted root, is at depth 0. Let v ∈ {0, 1}n be Alice’s input, and let (i,vi−(k−1), . . . ,vi−1) be
Bob’s input. Notice that the tree T is predetermined and thus requires no communication, and
that every point in T corresponds to a unique 0− 1 string of length at most n. Alice lets the string
x ∈ {0, 1}2n/3 consist of the last 2n/3 bits in her input v, i.e. x = vn/3+1 . . .vn. Bob lets the string
y ∈ {0, 1}2i−n consist of the last i − n/3 − 1 bits his input contains from v, concatenated with
i − 2n/3 + 1 zeros, i.e., y = vn/3+1 . . .vi−10i−2n/3+1. Next, Alice and Bob consider their strings
x, y as points in T , and apply the assumed one-way protocol for DET,r,1+ε, for r = n/3; notice that
ε = 3/n = 1/r. Finally, if the distance estimation protocol decides that dT (x, y) ≤ r, then Bob
outputs 0; otherwise he outputs 1.

The key observation is that for every x, y ∈ T , if jxy is the length of the longest common prefix
of x and y (i.e. the first j bits in x and y are equal), then dT (x, y) = dT (x, root)+dT (y, root)−2jxy.
It follows that if vi = 0, then jxy ≥ i−n/3; thus dT (x, y) ≤ 2n/3+(2i−n)−2(i−n/3) = n/3 = r,
and with high probability the distance estimation protocol will report this. Similarly, if vi = 1,
then jxy ≤ i− n/3− 1; thus dT (x, y) ≥ 2n/3 + (2i− n)− 2(i− n/3− 1) = n/3 + 2 > r(1 + ε), and
with high probability the distance estimation protocol will report this.

Now if there exists a one-way protocol for DET,r,1+ε that uses at most s = s(ε) bits of commu-
nication, then we obtain a one-way protocol for INDn,2n/3 with n = 1/ε that uses at most s bits of
communication. But as mentioned above, we know that the latter must be Ω(n), and we conclude
that s ≥ Ω(n) = Ω(1

ε ).
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3.2 Products of Metrics

We now consider the complexity of product metrics. We prove two results of the following type: if
the problem DEN,r,α has a protocol with communication sα (for all r > 0), then

⊕k N has commu-
nication protocol of communication linear in k · sα, potentially for a slightly bigger approximation.
One result, Proposition B.1, gives a protocol with Õ(αk

ε ) · sα communication for (1 + ε)α approx-
imation for DELk N,r,(1+ε)α. A second result, Proposition B.1, achieves a smaller communication,

Õ(k log 1
ε ) · sα, but requires a technical condition on N . We defer the statements and their proofs

to Appendix B. We note that both proofs proceed (roughly) by suitably choosing a random ri for
each metric Ni and sketching each Ni for the respective ri.

Applying the results for sum-product metrics, we obtain upper bounds for two specific families:
(i) sum-product of paths, and (ii) sum-product of trees. For both families, we obtain a sketching
protocol whose communication grows almost linearly with k, and for the former family we also
provide a nearly matching lower bound. Note that both families embed isometrically into `1, hence
DEM,r,1+ε can be solved using sketch-size O(1/ε2) [KOR00], and if k (the dimension) is unbounded
(or even about 1/ε2), this sketch-size is known to be optimal [Woo04]. But for relatively small k, e.g.
k ¿ 1/ε, the bounds we provide here are better. We prove the following theorem in Appendix B.

Theorem 3.3. Let P k = P1 × · · · × Pk be the product metric of k (possibly infinite) path metrics,
and let T k = T1 × · · · × Tk be a product metric of k (possibly infinite) tree metrics. Then for every
r > 0 and ε ≤ 1, there is a sketching algorithm for the following distance estimation problems:
¥ DEP k,r,1+ε has sketching complexity O(k log k

ε ). Furthermore, every one-way algorithm must use
Ω(k · log(1/εk)

log log(1/εk)) = Ω̃(k log 1
εk ) communication if 2k ≤ 1/ε, or Ω(k) if k ≤ 1/ε2.

¥ DET k,r,1+ε has sketching complexity O(k
ε log2(k

ε )) = Õ(k
ε ).

4 Embeddings into Normed Spaces

We now compare the power of sketching protocols and that of embeddings, offering a partial converse
to the well-known fact that sketching generalizes the “embeddings approach”. The motivation here
is to characterize sketchable metrics by their embeddability into normed spaces (see also open
problem 2 in Appendix A).

It is natural to compare sketching to the normed spaces such as (`2)p, for p ∈ N, the pth power of
`2. The metric (`2)p is the space on Rd, endowed with the semimetric distance d(x, y) = ‖x− y‖p

2.
We note that (`2)p is isometrically embeddable into (`1)p (defined similarly), which, in turn, is
isometrically embeddable into (`2)2p.

The feature of (`2)p is that sketching (`2)p takes O(p2/ε2) communication for approximation
1 + ε. Furthermore, the spaces (`2)p are known to be progressively richer spaces as p increases. In
fact, Deza and Maehara [DM90] proved that every metric on n points is isometrically embeddable
into space (`2)p for p = O(n).

We prove that small communication sketching implies embedding of the respective metric into
(`2)p, for relatively small p’s, in particular much smaller than given by Deza-Maehara. Contrary
to Deza-Maehara (which concerned isometric embeddings), our result concerns approximations to
true distances.

Our resulting embedding is asymmetric. Namely, we construct two functions ψ1 and ψ2 both
taking M into (`2)p, and we measure distance between x and y as ‖ψ1(x) − ψ2(y)‖p

2. Later, we
explain why the asymmetry is necessary, at least if we want a small p. The formal statement of
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the result follows. The aspect ratio ∆ of a metric is the ratio of the maximum distance over the
minimum (non-zero) distance.

Theorem 4.1. Let M be a metric of aspect ratio ∆ > 1, and fix approximation factor α ≥ 1.
Suppose that for each r ∈ [1,∆], DEM,r,α admits a sketching protocol of size s. Then, for every
ε > 0 there are ψ1, ψ2 : M→ (`2)p for p =

( log ∆
ε

)O(s), such that for all x 6= y ∈M,

dM(x, y) ≤ ‖ψ1(x)− ψ2(y)‖p
2 ≤ (1 + ε)α · dM(x, y).

Proof of Theorem 4.1. First boost the error probability of the sketching to be at most δ (small, to
be fixed later). This increases the sketch size by a factor of O(log 1/δ).

The high-level proof is as follows. Fix I = dlog1+ε ∆e + 1. In step 1, we construct embedding
φj,i for all j ∈ {1, 2} and i ∈ [I], from the sketching algorithm for the radii ri = (1 + ε)i−1. In step
2, we construct φ′j,i from φj,i. In the third final step, we construct each of ψj , for j ∈ {1, 2}, by
concatenating φj,i for i ∈ [I].

Step 1. Fix i ∈ [I] and radius ri = (1 + ε)i−1. We construct functions φj,i, viewed as an
embedding into L1, which will satisfy

1− 1/S ≤ ‖φ1,i(x)− φ2,i(y)‖1 ≤ 1

as well as the following guarantees. If d(x, y) ≤ ri then ‖φj,i(x) − φj,i(y)‖1 ≤ 1 − (1 − δ)/S. If
d(x, y) > αri then ‖φj,i(x)− φj,i(y)‖1 ≥ 1− δ/S.

We obtain φj,i from the assumed sketching algorithm. Fix S , 2sO(log 1/δ) = (1/δ)O(s) to be the
number of different messages Alice or Bob can transmit. Let R be the random string that is used
by Alice, Bob, and the referee. We will set φj,i = (Pr[R]

2S · φR
j,i)R, where each φR

j,i(x) ∈ {−1, 0, 1}S2
.

Fixing R, all algorithms are deterministic. Let AR be the binary matrix of size S×S that describes
the output of the referee: AR

i,j = 1 if the referee outputs “close” on receiving message i from Alice
and j from Bob; AR

i,j = 0 otherwise. For each possible value of R, we generate S × S coordinates,
a coordinate corresponding to a tuple of message from Alice (treated as a number from 0 to S− 1)
and a message from Bob. For φR

1,i(x), we set precisely one entire row (corresponding to Alice’s
message) to 1 and the rest to 0. For φR

2,i(x), we set the column indexed by Bob’s message to be
equal to a vector ∈ {±1}S ; in particular, a coordinate of this column is 1 if the corresponding entry
of AR is 1 and it is -1 otherwise.

Step 2. For some k > 0, we construct φ′j,i such that ‖φ′1,i(x)−φ′2,i(y)‖2
2 = 1−e−k·‖φ1,i(x)−φ2,i(y)‖1 .

This is possible due to Schoenberg’s theorem [Sch38] (constructively it can be obtained as in [RR07]).
We use k = 2 lnSI. Let t = e−k and assume t < .5.
Step 3. Construct ψj by concatenating scaled φj,i: ψj = exp

[
1
2 t

1−1/S
]

1
I (φ′j,i)i∈[I]. We set

p = I ln(1+ε)

t1−(1−δ)/S−t
and δ = 1/I. Then we have S = IO(s) and then p = I · ln(1+ε) ·ek ·S/k = (I/ε)O(s).

We defer the analysis of the distortion of the resulting embedding to the appendix C.

We note that the embedding necessarily has to be asymmetric if we target to obtain the value of
p as in the theorem. Namely, there exists a metric that has O(1) sketch for exact DE but embedding
(symmetrically) it into (`2)p requires either 2 − o(1) distortion or p = Ω(n). We note that Deza-
Maehara [DM90] proved that there exists an n-point metric that requires power p = Ω(n) to be
embedded isometrically into (`2)p. In contrast, we prove that the same statement holds even if
we allow a distortion of nearly 2. We prove the statement for the graph Kn,n. The proof of the
following observation is in Appendix C.

Observation 4.2. Let p(n,D) be the minimum p such that Kn,n embeds into (`2)p with distortion
≤ D. Then, for all ε > 0, p(n, 2− ε) ≥ Ωε(n).
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A Open Problems and Discussion

We mention some concrete problems derived from the meta-question.

1. Is there a family of n-point metrics and approximation α(n) such that the sketching complexity
differs its one-way complexity by more than a constant factor? Same question but for sketching
vs. two-way complexity?

At the moment we do not have any separation between sketching and one-way communication
complexity of distance estimation. Note that, for general functions (not distance estimation),
such separations are known [BJKS04].

2. Is there a sketching algorithm with O( log n
α ) communication for a general metric?

A positive answer would improve Theorem 2.1 from one-way to sketching protocols, and
obtain tight results for the latter. Currently the two extreme cases, α = 1 and α = logn, are
easily achieved. A negative answer would resolve also Problem 1.

3. Fix a metric M and suppose that
⊕k

M is sketchable with approximation α using O(s) space,
for sufficiently large k. Can the distortion of an (asymmetric) embedding ofM into squared-`2
be upper bounded by f(s) · α?

A positive answer would mean that non-embeddability of a metric M implies lower bounds
for sketching

⊕M. For example, it would (roughly) imply that planar Earth-Mover Distance
(EMD) requires ω(1) sketch complexity for O(1) approximation (using the non-embeddability
result of [NS06] and the fact that EMD is closed under taking sum-products).

Put differently, we ask whether a solution for a specific problem in a specific model (embedding
M into squared-`2) can always be obtained from a solution for a harder problem (

⊕M) in
a more general model (sketching). A more straightforward question is whether sketching M
(as opposed to

⊕M) implies embeddability of M into squared-`2. We suspect the answer
to the latter question is negative, say there might be a metric in (`2)10 (thus admits efficient
sketching) that cannot be embedded with O(1) distortion into squared-`2.

4. If the sketching complexity of an n-point metric M is Ω( log n
α ) for all 1 ≤ α ≤ logn, is it

necessarily true that embedding M into squared-`2 requires Ω(logn) distortion?

A similar question regarding embedding into `1 is open as well.

B Proofs from Section 3

Proof of Theorem 3.1. We prove here only the upper bound on the sketch size. The lower bound
is proved (as a special case) in Theorem 3.3. Without loss of generality, we shall assume that εr is
an integer and that ε ≤ 1.
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The Sketching Algorithm. We now describe Alice’s algorithm for her input x ∈ P ; Bob’s
algorithm for his input y ∈ P is identical. Alice first uses the shared randomness to choose uniformly
at random an “offset” value v ∈ [8r], and rounds down x+ v to its nearest multiple of 8r, denoting
this last value by x′. She then uses the shared randomness to choose a random function h (for
better efficiency, she may choose h as a hash function from an approximate pairwise-independent
hash family) with range [20

ε ]. Next, Alice computes her sketch to be σ(x) = bx+v−x′
εr/4 + h(x′)c, and

sends this value to the referee. Note that 0 ≤ x+ v−x′ < 8r and 0 ≤ σ(x) < 8r
εr/4 +1+ 20

ε ≤ O(1
ε ),

and hence the sketch size is |σ(x)| ≤ O(log 1
ε ).

The referee’s algorithm is very simple. Given the two sketches a = σ(x) and b = σ(y), he
decides that dP (x, y) ≤ r if and only if |a− b| ≤ 4

ε + 1.
Correctness. It remains to prove that the referee’s decision is correct with high probability.

Fix first x, y ∈ P with dP (x, y) ≤ r. Then clearly Prv[x′ 6= y′] = dP (x,y)
8r ≤ 1/8. In other words,

with probability at least 7/8, v is chosen such that x′ = y′. Assuming this is the case, we have
h(x′) = h(y′) and |(x+v−x′)−(y+v−y′)| = |x−y| ≤ r, implying that |σ(x)−σ(y)| ≤ r

εr/4+1 = 4
ε+1,

and thus the referee decides correctly that dP (x, y) ≤ r.
Fix next x, y ∈ P with dP (x, y) > (1 + ε)r. We now have two cases: (i) x′ = y′, and thus

|σ(x)−σ(y)| > (1+ε)r
εr/4 −1 = 4

ε +3, implying that the referee correctly decides that dP (x, y) > (1+ε)r.
(ii) x′ 6= y′ and then using the independence between h(x′) and h(y′) we get that |σ(x)−σ(y)| ≤ 4

ε +1
occurs with probability at most (4

ε +1)/(20
ε ) ≤ 1/4, i.e. the referee decides correctly with probability

at least 3/4.

Proposition B.1. Let M = N1 × · · · × Nk be the sum-product of k metrics. Suppose there exist
α ≥ 1 and sα such that for every r > 0 and every metric Ni, the distance estimation problem
DENi,r,α admits a sketching protocol with communication sα. Then for every r > 0 and ε ≤ 1, there
is a sketching protocol for the problem DEM,r,(1+ε)α that has Õ(αk

ε ) · sα communication.

Proof of Proposition B.1. Let x, y denote the inputs to Alice and Bob, respectively. For each
metric Ni, Alice, Bob, and the referee execute the assumed sketching algorithm applied to xi, yi

with several possible parameter settings; specifically, for ε′ = ε/3 and every value r′ = r, r/(1 +
ε′), r/(1 + ε)2, . . . , ε′r

αk , they execute this algorithm with parameters r′ and ε′. For each metric Ni

we get log1+ε′(αk/ε′) executions, which adds up to t = O(αk
ε′ log αk

ε′ ) executions. We shall assume
in the sequel that the error probability of each of these algorithms is at most 1/4t (which is easily
achieved by repeating each such algorithm O(log t) times). Alice and Bob run all these sketching
algorithms simultaneously, and concatenate the resulting sketches, which yields a total sketch-size
sα ·O(t log t) = sα ·O(αk

ε log2 αk
ε ).

After completing all these executions, the referee performs the following steps. (1) If there is a
metric Ni where the protocol applied with r′ = r reported that dNi(xi, yi) > αr′, then the referee
decides that dM (x, y) > αr (and halts). (2) The referee identifies all metrics Ni for which the
protocol applied with r′ = ε′r

αk reported that dNi(xi, yi) ≤ r′, sets his estimate for each of these
distances to be ρi = αr′ = ε′r

k ; clearly, ρi is an estimate from above for dNi(xi, yi). (3) In all other
metrics Ni, the referee may assume that ε′r

αk < dNi(xi, yi) ≤ αr.2 Under this last assumption, the
referee can determine an upper estimate ρifor dNi(xi, yi) that has multiplicative accuracy α(1+ε′).
Indeed, the referee finds the smallest value r′ in which the algorithm reported that dNi(xi, yi) ≤ r′,
and sets his estimate to be ρi = αr′; by the outcome for this value of r′, it cannot be the case that

2This is true with high probability, because a too large value would have been noticed in step 1, and a too small
value would have been noticed in step 2.
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dNi(xi, yi) > αr′ = ρi, and by the outcome for the “next smaller” value r′/(1 + ε′), it cannot be
the case that dNi(xi, yi) ≤ r′/(1 + ε)′ = ρi

(1+ε′)α . (4) Finally, the referee decides that dM (x, y) ≤ r

if and only if his estimates from steps 2 and 3 satisfy
∑k

i=1 ρi ≤ (1 + 2ε′)αr.
It remains to prove that with high probability the referee’s output is correct. Each of the t

algorithms is correct with probability at least 1−1/4t; applying a union bound, with probability at
least 3/4 they are all correct, and in the sequel, we shall assume that this is indeed the case. Observe
that if the referee halts in step 1, then the protocol succeeds because necessarily dNi(xi, yi) > r.
Assume now that the referee does not halt in step 1. Then his estimates ρi in step 2 have total
additive error at most k · ε′r

k ≤ ε′r, an the estimates in step 3 have (separately and thus in total) a
multiplicative error of at most (1 + ε′)α. It follows that whenever dM (x, y) ≤ r, the referee’s sum
in step 4 will be ∑

i

ρi ≤ ε′r + (1 + ε′)αdM (x, y) ≤ (1 + 2ε′)r.

And whenever dN (x, y) > (1 + ε)αr, the referee’s sum in step 4 will be
∑

i ρi ≥
∑

i dNi(xi, yi) >
(1 + ε)αr. In both cases, the protocol succeeds. We have thus shown a sketching algorithm that
uses sketch size O(k

ε log k log 1
ε ) = Õ(k

ε ) and succeeds with probability at least 3/4.

Proposition B.2. Let M = N1 × · · · × Nk be the sum-product of k metrics. Suppose there exist
1 ≤ α ≤ 2 and sα such that for every r > 0 and every metric Ni, there is a sketching protocol that,
using sα communication, finds ρ ∈ [αr/2, αr] such that

Pr[min{dNi(xi, yi), αr} ≤ ρ ≤ α ·max{dNi(xi, yi), r/2}] ≥ 3/4.

Then for every r > 0 and ε ≤ 1, there is a sketching protocol for the problem DEM,r,(1+ε)α that has
Õ(k log 1

ε ) · sα communication.

Proof of Proposition B.2. The proof is similar to that of Proposition B.1, and we only describe
the differences. For each metric Ni, Alice, Bob and the referee use fewer values of r′, namely,
r′ = r, r/2, . . . , ε′r/k, hence t = O(k · log k

ε′ ). Again, we assume that each of these has success
probability at least 1−1/3t by employing O(log t) repetitions. It follows that with high probability
all these t executions succeed, and we assume in the sequel that this last event indeed happens.
Finally, observe that the assumed sketching algorithm (with various values r′) maintains the three
properties we used in the aforementioned proof:
1. If r′/2 ≤ dNi(xi, yi) ≤ αr′, the algorithm’s output ρ provides an upper estimate on dNi(xi, yi)

within multiplicative accuracy α.
2. If dNi(xi, yi) ≤ r′/2, the algorithm reports ρ = αr′/2.
3. If dNi(xi, yi) ≥ αr′, the algorithm reports ρ = αr′.
The total sketch size is O(t log t) · sα = O(k · log k

ε · (log k + log log 1
ε )) · sα.

Proof of Theorem 3.3. We prove the theorem for product of paths and product of trees separately.

Product of paths. The upper bound follows from Proposition B.2, by plugging in the sketching
algorithm of Theorem 3.1. We choose α = 1+ ε, and obtain a sketching algorithm for DEM,r,(1+ε)2 .
An inspection of the proof of the latter shows its sketching algorithm not only solves a relaxed
(gap) decision problem, but rather provides the stronger guarantee required by the proposition
(e.g. whenever the distance is in the range [r/2, r], the algorithm can provide an additive O(εr)
approximation). Since sα = O(log 1

ε ), this immediately yields sketch size O(k log2(k
ε ) · sα) ≤

O(k log3(k
ε )).
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This can be further improved as follows. It is easy to verify that the O(log t) term in the proof of
Proposition B.2 is not really needed, because by changing some constants in the proof of Theorem
3.1, one can reduce the error probability to be at most ε2. Furthermore, a 1 + ε multiplicative
accuracy in the entire range [εr/k, r] can be similarly obtained with error probability ε2/k using
sketch-size O(log k

ε ). This would lead to a total sketch size O(k · log k
ε ).

We proceed to proving the lower bound. Notice that M = `k1, i.e. k-dimensional `1. The bound
of Ω(k) for k ≤ 1/ε2 follows from the lower bound for `1 [Woo04]. Now assume that 2k ≤ 1/ε.

Assume there exists a one-way protocol that estimates the distance within factor 1 + ε using
sketch size s = s(k, ε). We will use it to construct a protocol for indexing on L = k log 1

εk bits. In
the indexing problem, Alice gets a bit-string x′ of length L, and Bob gets an index j ∈ [L]. Let
Alice ”break” her input into k equal-size blocks, and consider each block as a binary representation
of an integer between 1 and v = 1

εk . This gives rise to a point x ∈M . Alice could then execute the
assumed protocol for distance estimation in M and send a message to Bob.

The idea is that Bob can pretend to have any (fixed) point y ∈ M , or even t points in M if
we were to increase the success probability to 1 − 1/3t (by O(log t) repetitions, which increases
the sketch size accordingly). In particular, Bob can use the point y that is 1 in all but the jth
coordinate, and try different values for the jth coordinate. Notice that the value for Bob’s jth
coordinate that gives the smallest `1 distance between x and y is exactly the jth coordinate of x.
This value has log 1

εk bits, and Bob can find this value using log 1
εk iterations, revealing one bit at

a time. (Note: This requires decreasing the error probability by using repetitions, i.e. increasing
the sketch size s by an O(log log 1

εk ) factor.)
Strictly speaking, Bob cannot evaluate the distance dM (x, y), but only apply a approximate

decision version with respect to a fixed value r. But we can get around this shortcoming as follows.
Let us actually use 2k dimensions, i.e. M = `2k

1 , where the first k dimensions are as before (i.e.,
Alice reads them off her input x′ and Bob sets all of them but the jth coordinate to 1.) Alice
will then let dimensions k + 1, ..., 2k be the same as dimensions 1, ..., k, respectively, and Bob will
set his coordinates k + 1, ..., 2k to be 1 + v (which is about the largest possible value for Alice).
Notice if Bob were to set his jth coordinate to 1, i.e. yj = 1, then regardless of x we would get
dM (x, y) = k ·v = 1/ε (because coordinates 1 and k+1 contribute together |x1−1|+|1+v−x1| = v,
and so forth). We will set r = 1/ε, thus (1 + ε)r = r + 1, implying that a 1 + ε approximation
can distinguish an additive increase of 1 in the distance dM (x, y). Bob can now figure out the
jth coordinate of x (with high probability) iteratively bit by bit (recall it is represented by log 1

εk
bits). The precise details are somewhat complicated to describe (see also the proof in [KNR99]
for the Greater-Than problem), and we will only show as an example how Bob can reveal the
most significant bit (MSB) of xj . Let Bob could plug in yj the value 1 + v instead of 1; now, if
dM (x, y) ≤ r then xj is closer to 1 + v than to 1, hence the MSB of xj is 1. (We may need to
assume here that 1 + v is a power of 2.) To apply such an argument in subsequent iterations, we
might need an additional coordinate 2k + 1 that will be used to “offset” the target distance to be
exactly r.

We thus obtain a one-way communication protocol that uses O(s · log log 1
εk ) bits to solve the

indexing problem. But since there is a known Ω(L) lower bound for this problem, we conclude that
s ≥ Ω( k log(1/εk)

log log(1/εk)).

Product of Paths. The upper bound follows from Proposition B.2, by plugging in the sketching
algorithm of Theorem 3.2. We choose α = 1+ ε, and obtain a sketching algorithm for DEM,r,(1+ε)2 .
An inspection of the proof of the latter shows its sketching algorithm not only solves a relaxed
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(gap) decision problem, but rather provides the stronger guarantee required by the proposition
(e.g. whenever the distance is in the range [r/2, r], the algorithm can provide an additive O(εr)
approximation). Since sα = O(1

ε log 1
ε ), this immediately yields sketch size O(k log2(k

ε ) · sα) ≤
O(k

ε log3(k
ε )).

This can be further improved as follows. It is easy to verify that the O(log t) term in the proof of
Proposition B.2 is not really needed, because by changing some constants in the proof of Theorem
3.2, one can reduce the error probability to be at most ε2. This would lead to a total sketch size
O(k · log k

ε · sα) ≤ O(k
ε log2(k

ε )).

C Proofs from Section 4

Completion of the proof of Theorem 4.1. It is actually more convenient for the analysis to first
define ψj ’s as

ψj = 1
I (φ′j,i)i∈[I].

Define u = blog1+ε d(x, y)c, and a = blog1+ε αc, and let m = u+ a+ 2. Then, ψj ’s satisfy:

‖ψ1(x)−ψ2(y)‖2
2 ≤ 1

I

(
(I −m) · (1− t1−(1−δ)/S) +m · (1− t)

)
= 1− t1−(1−δ)/S + m

I (t1−(1−δ)/S − t)

‖ψ1(x)−ψ2(y)‖2
2 ≥ 1

I

(
(I − u) · (1− t1−1/S) + u · (1− t1−δ/S)

)
= 1−t1−1/S+ u

I t
−δ/S(t1−(1−δ)/S−t).

Raising ‖ψ1(x)− ψ2(y)‖2
2 to power p = I ln(1+ε)

t1−(1−δ)/S−t
, we get the following upper bound

‖ψ1(x)− ψ2(y)‖2p
2 ≤ exp

[
−pt1−(1−δ)/S + pm

I (t1−(1−δ)/S − t)
]
≈ exp

[
−pt1−(1−δ)/S

]
αd(x, y). (1)

where ≈ means up to approximation 1 +O(ε). For the lower bound, we use the approximation
1− ξ ≥ e−ξ−2ξ2

for ξ ≤ .5, to get

‖ψ1(x)− ψ2(y)‖2p
2 ≥ exp

[
−pt1−1/S

]
(d(x, y))t−δ/S

exp
[
−2p(t1−1/S)2

]
. (2)

Note that d(x, y)t−δ/S ≥ d(x, y). We approximate t1−f/S , for f ∈ [0, 1], as t(1 + kf/S) ≤
t1−f/S = tekf/S ≤ t(1 + kf/S + 2k2/S2). Then, the approximation of the resulting embedding is
the ratio between RHS of Eqn (1) and RHS of Eqn. (2):

β ≤ α exp

[
ln(1 + ε)I

−t1−(1−δ)/S + t1−1/S

t1−(1−δ)/S − t

]
· exp

[
−2p(t1−1/S)2

]

=⇒ β ≤ α exp

[
ln(1 + ε)I · k/S − (1− δ)k/S + 2k2

S2

1 + (1− δ)k/S − 1− 2k2

S2

]
(1+ε)4I

√
t/(k/S)β ≤ α(1+ε)O(δI)·(1+ε)4IS

√
t/k.

We set δ = 1/I. Also note that 4IS
√
t/k = O(e−k/2 ·IS/k) < 1. Concluding, we have S = IO(s)

and then p = I ·ln(1+ε)·ek ·S/k = (I/ε)O(s). To obtain the stated results we rescale the embeddings
ψj ’s by exp

[
1
2 t

1−1/S
]
, as well as the values of p and ε.
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Proof of Observation 4.2. Suppose there exists an embedding φ : Kn,n → (`2)p of distortion D < 2.
Let the vertices of Kn,n be Ai and Bi, i ∈ [n]. Then there exists an embedding ψ of (Kn,n)2/p into
(`2)2 such that, for u, v ∈ Kn,n,

(dKn,n(u, v))2/p ≤ ‖ψ(u)− ψ(v)‖2
2 ≤ (D · dKn,n(u, v))2/p.

We can construct a new embedding ψ′ such that ‖ψ′(u)−ψ′(v)‖2
2, for v 6= u, takes only two values:

“small distance” and “large distance”. ψ′ is obtained by concatenating ψ◦I for all I : Kn,n → Kn,n

that are isometric automorphisms. Then, for i 6= j,

‖ψ′(Ai)−ψ′(Aj)‖2
2 = ‖ψ′(Bi)−ψ′(Bj)‖2

2 =
∑

i6=j

(‖ψ(Ai)−ψ(Aj)‖2
2+‖ψ(Bi)−ψ(Bj)‖2

2)·n!(n−2)! ≥ 2(n!)222/p,

and also, for all i, j,

‖ψ′(Ai)− ψ′(Bj)‖2
2 =

∑

i,j

‖ψ(Ai)− ψ(Bj)‖2
2 · 2(n− 1)!(n− 1)! ≤ 2(n!)2D2/p,

But negative type inequality then says that for bAi = +1 and bBj = −1, we must have:

∑

i<j

bAibAj2
2/p +

∑

i<j

bBibBj2
2/p +

∑

i,j

bAibBjD
2/p ≤ 0,

or 22/p · n(n− 1)−D2/p · n2 ≤ 0. This implies D ≥ 2(1− 1/n)p/2.

D Applications of Distance Estimation Protocols

D.1 Nearest Neighbor Search via Communication Protocols

We show that one can obtain algorithms for nearest neighbor search (NNS) problem from small
complexity communication protocols of the distance estimation problem. In particular, below we
show that upper bounds on one-way protocol for distance estimation implies NNS algorithm. The
algorithm exhibits a smooth tradeoff between the space requirement and query time.

Lemma D.1. Consider metric M for which distance estimation problem DEM,r,α admits one-way
protocol of size s. Suppose Alice’s computation time is τA, and time for distance computation in
M is τd. Then, for any δ, with 0 < δ ≤ s, there exists a NNS for M achieving approximation α
with space n1+O(δ) and query time O(n1−δ/s · τd + τA logn). Preprocessing time is O(n1+O(δ) · τB),
where τB is Bob’s computation time per message.

Proof. Let t = log2 n
δ/s. Boost the success probability of the one-way protocol by repeating it

Θ(t) = Θ( δ
s · log n) times, decreasing the error probability to 2−t = nδ/s. A “hash table” is an

index of all possible strings of length st (messages of the boosted protocol): for each possible string
store all dataset points for which Bob would answer “close”. The query algorithm just looks at the
corresponding bucket and computes the distance all points in the bucket.

The space requirement is 2sΘ(t) ·n = nO(δ) ·n (2sΘ(t) is the number of possible buckets). Expected
query time is n1−δ/s because, in expectation, a fraction of 2−t of “far” points may be confused as
“close” points, thus colliding with the query point. Thus, there are (n−1)·2−t ≤ n1−δ/s points in the
bucket in expectation. The true “close” point will be in the bucket with probability ≥ 1− 2−t.
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D.2 Distance labeling via Communication Complexity

Let F be a family of finite metric spaces. A k-bit approximate distance labeling scheme for F
provides (i) for every M ∈ F , a mapping fM : M 7→ {0, 1}k, and (ii) a decoder g : {0, 1}k ×
{0, 1}k 7→ R, such that for all M ∈ F and x, y ∈ M, the distance dM(x, y) is approximated by
g(fM(x), fM(y)).

It is easy to see that distance labeling immediately implies a deterministic sketching protocol
for the same metric, with the same approximation factor and the same size. Indeed, we simply let
the sketch of a point be its label in the distance labeling algorithm, and let the referee perform
the decoder’s algorithm and decide accordingly. But this is generally not useful for finite metrics,
because such a metric M always admits a trivial O(log |M|)-size sketching protocol.

Conversely, a one-way distance estimation protocol for an infinite metric M implies an approx-
imate distance labeling scheme for the family of all finite submetrics of M.

The next proposition shows that a one-way distance estimation protocol for an infinite metric
M implies an approximate distance labeling scheme for the family of all finite submetrics of M.
Examples for infinite metric spaces that are relevant here include trees (binary or of unbounded
degree), doubling metrics, the real hyperbolic space Hk, and so forth.

Proposition D.2. Let M be an infinite metric space and let α, s ≥ 1. Suppose that for every r > 0
there is a sketching protocol of size s for DEM,r,α. Then for every 0 < ε ≤ 1, the family of finite
submetrics of M admits a (1+ε)α-approximate distance labeling scheme with O( s

ε · log n · log(n∆))-
bit labels, where n is the size of the finite submetric and ∆ is its diameter.

Proof. Fix M and let M′ be a finite submetric of it of size n. We show a probabilistic construction
that succeeds with high probability. The label of each x ∈ M′ contains, for each r = 1, 1 +
ε, (1 + ε)2, . . . ,∆ a concatenation of O(log(n∆)) independent executions of the sketching protocol
applied to x. (It Alice’s and Bob’s algorithms are different, then it includes both.) It is easy to
see that the O(log(n∆)) repetitions can be used (by a majority rule) to increase the sketching
algorithm’s success probability to 1 − 1/4n2∆. The distance labeling decoding function iterators
over these values of r, reporting the smallest r > 0 for which the sketching algorithm determined
that dM(x, y) > αr. Using a union bound, it is easily verified that probability at least 3/4, for all
x, y ∈M′ the decoder’s output is larger than d(x, y) by at most a (1 + ε)α factor.
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