
Efficient Algorithms for Substring Near Neighbor Problem

Alexandr Andoni
andoni@mit.edu

Piotr Indyk
indyk@mit.edu

MIT

Abstract
In this paper we consider the problem of finding the ap-
proximate nearest neighbor when the data set points are
the substrings of a given text T . Specifically, for a string
T of length n, we present a data structure which does the
following: given a pattern P , if there is a substring of T
within the distance R from P , it reports a (possibly dif-
ferent) substring of T within distance cR from P . The
length of the pattern P , denoted by m, is not known in ad-
vance. For the case where the distances are measured using
the Hamming distance, we present a data structure which
uses Õ(n1+1/c) space1 and with Õ

(
n1/c + mno(1)

)
query

time. This essentially matches the earlier bounds of [Ind98],
which assumed that the pattern length m is fixed in ad-
vance. In addition, our data structure can be constructed in
time Õ

(
n1+1/c + n1+o(1)M1/3

)
, where M is an upper bound

for m. This essentially matches the preprocessing bound
of [Ind98] as long as the term Õ

(
n1+1/c

)
dominates the run-

ning time, which is the case when, e.g., c < 3.
We also extend our results to the case where the dis-

tances are measured according to the l1 distance. The query
time and the space bound are essentially the same, while the
preprocessing time becomes Õ

(
n1+1/c + n1+o(1)M2/3

)
.

1 Introduction
The nearest neighbor problem is defined as follows:
given a set S of n points in Rm, construct a data struc-
ture that, given any q ∈ R

m, quickly finds the point
p ∈ S that has the smallest distance to q. This problem
and its decision version (the R-near neighbor) are the
central problems in computational geometry. Since the
exact problem is surprisingly difficult (for example, it
is an open problem to design an algorithm for m = 3
which uses sub-quadratic space and has logO(1) n query
time), recent research has focused on designing efficient
approximation algorithms. Furthermore, the approxi-
mate nearest neighbor is reducible to the approximate
R-near neighbor [IM98], and, therefore, we primarily
concentrate on the latter problem. In the approximate
R-near neighbor problem2, the data structure needs to
report a point within distance cR from q for some con-
stant c > 1, but only if there exists a point at distance

1We use notation f(n) = Õ(g(n)) to denote f(n) =
O(g(n) logO(1) n).

2The approximate nearest neighbor problem is defined in an
analogous way.

R from q. We will refer to this problem as an (R, c)-near
neighbor (NN) problem.

The approximate near and nearest neighbor prob-
lems have been studied for a long time. The approx-
imate nearest neighbor algorithms were first discov-
ered for the “low-dimensional” version of the problem,
where m is constant (see, e.g., [AMN+94] and the ref-
erences therein). Later, a few results were obtained for
the “high-dimensional” case, where m is a parameter
(see, e.g., [Kle97, IM98, KOR98, DIIM04]). In partic-
ular, the Locality-Sensitive Hashing (LSH) algorithm
of [IM98] solves the (R, c)-near neighbor problem using3

O(mn1+1/c) preprocessing time, O(mn + n1+1/c) space
and O(mn1/c) query time. By using the dimensional-
ity reduction of [KOR98], the query time can be further
reduced to Õ(m + n1/c), while the preprocessing time
can be reduced to Õ(mn+n1+1/c). The LSH algorithm
has been successfully used in several applied scenarios,
including computational biology (cf. [BT01, Buh02] and
the references therein, or [JP04], p. 414).

The bounds of the LSH algorithm can sometimes
be even further reduced if the points in the set S
are not arbitrary, but instead are implicitly defined
by a (smaller) data set. This is the case for many of
the applications of the approximate nearest neighbor
problem.

Particularly interesting is the case in which S is
defined as the set of m-substrings of a sequence of
numbers T [0 . . . n− 1]; we call the resulting problem an
(R, c)-substring near neighbor (SNN) problem. (R, c)-
SNN problem occurs, for example, in computational
biology [Buh01, Buh02]. Its exact version (i.e., when
c = 1) has been a focus of several papers in the
combinatorial pattern matching area (cf. [CGL04] and
the references therein).

Obviously, one can solve (R, c)-SNN by reducing
it to (R, c)-NN. Specifically, we can enumerate all m-
length substrings of T and use them as an input to the
(R, c)-NN problem. Then, if one uses the LSH algorithm

3The bounds refer to the time needed to solve the problem in
the m-dimensional Hamming space {0, 1}m; slightly worse bounds
are known for more general spaces.

to solve the near neighbor problem, then the space usage
can be reduced from O(nm+n1+1/c) to O(n1+1/c) (since
one can represent the substrings implicitly). Moreover,
the preprocessing time can be reduced from O(mn1+1/c)
to O(log m · n1+1/c) by using FFT [Ind98].

A deficiency of this approach lies in the fact that the
query pattern size m must be fixed in advance. This
assumption is somewhat restrictive in the context of
searching in sequence data. A straight-forward solution
would be to build a data structure for each possible
m ∈ {0 . . .M − 1}, where M is the maximum query
size. However, the space and the preprocessing time
would increase to Õ(n1+1/cM).

In this paper, we give improved algorithms for
the approximate substring near neighbor problem for
unknown string length m. Our algorithms achieve
query time of Õ(n1/c + mno(1)), while keeping space of
Õ(n1+1/c). Note that this essentially matches the query
and the space bounds for the case where m is fixed
in advance. If the distances are measured according
to the Hamming metric, the preprocessing time is
Õ
(
n1+1/c + n1+o(1)M1/3

)
. Thus, our preprocessing

essentially matches the bound for the case of fixed m,
as long as c < 3.

If the distances are measured according to the l1
norm, we achieve4 the same query and space bounds, as
well as preprocessing time of Õ

(
n1+1/c + n1+o(1)M2/3

)
.

For this algorithm, we need to assume that the alphabet
Σ of the text is discrete; that is, Σ = {0 . . .∆}.
Although such an assumption is not very common
in computational geometry, it is typically satisfied in
practice when the bounded precision arithmetic is used.

1.1 Our Techniques. Our algorithms are based on
the Locality-Sensitive Hashing (LSH) algorithm. The
basic LSH algorithm proceeds by constructing L =
O(n1/c) hash tables. Each point p ∈ S is then hashed
into each table; the ith table uses a hash function gi.
The query point is hashed L times as well; the points
colliding with the query are reported. For a more
detailed description of LSH, see the next section.

In order to eliminate the need to know the value
of m in advance, we replace each hash table by a trie5.
Specifically, for each gi, we build a trie on the strings
g1(p) . . . gL(p), where p is a suffix of T . Searching in a
trie does not require advance knowledge of the search
depth. At the same time, we show that, for the case
of the Hamming distance, the LSH analysis of [IM98]

4The section with the results for the l1 norm is omitted from
this extended abstract. These results can be found in [And05].

5An implementation of LSH using a trie has been investigated
earlier in [MS02]. However, the authors used that approach to get
a simpler algorithm for the near neighbor, not for the string near
neighbor problem.

works just as well even if we stop the search at an
arbitrary moment.

Unfortunately, constructing the trie of strings
g1(p) . . . gL(p) cannot be accomplished using the ap-
proach of [Ind98]. In a naive algorithm, which explicitly
constructs the tries, constructing one trie would take
O(Mn) time instead of the optimal Õ(n). We show
how to reduce this time considerably, to Õ(M1/3n).

In order to reduce the query and preprocessing
bounds even further, we redesign the LSH scheme. In
the new scheme, the functions gi are not totally inde-
pendent. Instead, they are obtained by concatenating
tuples of a smaller number of independent hash func-
tions. The smaller number of the “base” hash functions
enables faster query time and preprocessing computa-
tion. Using this approach, we achieve Õ

(
n1/c + mno(1)

)
query time and Õ

(
n1+1/c + n1+o(1)M1/3

)
preprocess-

ing time. This part is the most involved part of the
algorithm.

For the more general l1 norm, we assume that the
numbers are integers in the range Σ = {0 . . .∆}. One
approach to solve the l1 case is to reduce it to the Ham-
ming metric case. Then, we replace each character from
Σ by its unary representation: a character a is replaced
by a ones followed by ∆ − a zeros. Unfortunately, this
reduction multiplies the running time by a factor of ∆.

To avoid this deficiency, we proceed by using
locality-sensitive hash functions designed6 specifically
for the l1 norm. In particular, we compute the value
of the hash function on a point in the m-dimensional
space by imposing a regular grid in R

m, and shifting
it at random. Then each point is hashed to the grid
cell containing it. We show that such a hash func-
tion is locality-sensitive. Moreover, we show that, by
using pattern-matching techniques (notably, algorithms
for the less-than-matching problem [AF95]), we can per-
form the preprocessing in less than O(Mn) time per
function gi. We mention that less-than matching has
been earlier used for a geometric problem in [EIV01].

Finally, to achieve the stated bounds for l1, we
apply the technique of reusable gi functions, as in the
case of the Hamming distance.

1.2 Preliminaries. In preliminaries, we present our
notation and the formal problem definition. We also
present an overview of the LSH scheme of [IM98].

1.2.1 Notation. For a string A ∈ Σ∗ of length |A|
and a string χ ∈ {0, 1}∗, we define:

6One can observe that such functions can be alternatively ob-
tained by performing the unary mapping into the Hamming space,
and then using the bit sampling hash functions of [IM98], where
the sampled positions form arithmetic progression. However, this
view is not useful for the purpose of our algorithm.

• Am
i is the substring of A of length m starting at

position i (if the substring runs out of bounds of A,
we pad it with 0s at the end);

• A�χ = (A[0]�χ[0], A[1]�χ[1], . . . A[n−1]�χ[n−
1]), where n = min{|A|, |χ|}, and � is a product
operation such that for any c ∈ Σ, c � 1 = c and
c� 0 = 0.

Further, let I ⊆ {0, . . . M − 1} be a set of size
k ≤ M ; we call I a projection set. For a string A,
|A| = M , we define:

• A|I is the string (Ai1Ai2 . . . Aik
) of length k, where

I = {i1, . . . ik}, and i1 < i2 < . . . < ik;

• χI is a string of length M with χI [i] = 1 if i ∈ I
and χI [i] = 0 if i 6∈ I.

1.2.2 Problem definition. We assume that the text
T [0 . . . n−1] and the query pattern P [0 . . .m−1] are in
some alphabet space Σ. Furthermore, for two strings
A,B ∈ Σm, we define D(A,B) to be the distance
between the strings A and B (examples of the distance
D are the Hamming distance and the l1 distance).
Finally, we assume that Σ ⊂ N and that |Σ| ≤ O(n)
since we can reduce the size of the alphabet to the
number of encountered characters.

In this paper, we focus on the following problem.

Definition 1.1. The (R, c)-Substring Near Neighbor
(SNN) is defined as follows. Given:

• Text T [0 . . . n− 1], T [i] ∈ Σ;

• Maximum query size M ;

construct a data structure D that supports (R, c)-near
substring query. An (R, c)-near substring query on D is
of the form:

• Input is a pattern P [0 . . .m − 1], P [i] ∈ Σ, 1 ≤
m ≤ M ;

• Output is a position i such that D(Tm
i , P) ≤ cR

if there exists i∗ such that D(Tm
i∗ , P) ≤ R.

1.3 Locality-Sensitive Hashing. In this section we
briefly describe the LSH scheme (Locality-Sensitive
Hashing) from [IM98, GIM99]. The LSH scheme solves
the (R, c)-near neighbor problem, which is defined be-
low.

Definition 1.2. The (R, c)-near neighbor problem is
defined as follows. Given a set S of n points in the
metric space (Σd, D), construct a data structure that,
for a query point q ∈ Σd, outputs a point v such
that D(v, q) ≤ cR if there exists a point v∗ such that
D(v∗, q) ≤ R.

We call a ball of radius r centered at v, the set
B(v, r) = {q | D(v, q) ≤ r}.

1.3.1 Generic locality-sensitive hashing
scheme. The generic LSH scheme is based on an
LSH family of hash functions that can be defined as
follows.

Definition 1.3. A family H = {h : Σd → U} is called
(r1, r2, p1, p2)-sensitive, if for any q ∈ S:

• If v ∈ B(q, r1), then Pr[h(q) = h(v)] ≥ p1;

• If v 6∈ B(q, r2), then Pr[h(q) = h(v)] ≤ p2.

Naturally, we would like r1 < r2 and p1 > p2; that
is, if the query point q is close to v, then q and v should
likely fall in the same bucket. Similarly, if q is far from
v, then q and v should be less likely to fall in the same
bucket. In particular, we choose r1 = R and r2 = cR.

Since the gap between probabilities p1 and p2 might
not be sufficient, we need to amplify this gap. For
this purpose, we concatenate several functions h ∈
H. In particular, for some value k, define a function
family G = {g : Σd → Uk} of functions g(v) =
(h1(v), . . . , hk(v)), where hi ∈ H. Next, for some value
L, choose L functions g1, . . . , gL from G independently
at random. During preprocessing, the algorithm stores
each v ∈ S in buckets gi(v), for all i = 1, . . . , L. Since
the total number of buckets may be large, the algorithm
retains only the non-empty buckets by resorting to
hashing.

To process a query q, the algorithm searches buckets
g1(q), . . . , gL(q). For each point v found in one of these
buckets, the algorithm computes the distance from q
to v and reports the point v iff D(v, q) ≤ cR. If the
buckets g1(q), . . . , gL(q) contain too many points (more
than 3L), the algorithm stops after checking 3L points
and reports that no point was found. Query time is
O (L(k + d)), assuming that computing one function g
takes O(k+d) time, which is the case for the LSH family
we consider.

If we choose k = log1/p2
n and L = nρ, ρ =

log 1/p1
log 1/p2

, then, with constant probability, the algorithm
will report a point v ∈ B(q, cR) if there exists a point
v∗ ∈ B(q, R).

1.3.2 LSH family for the Hamming metric.
Next, we present the LSH family H used for the
Hamming metric.

Define an (r1, r2, p1, p2)-sensitive function h : Σd →
Σ as h(v) = vi = v|{i}, where i is drawn uniformly
at random from {0 . . . d − 1}. In other words, h is
a projection along a coordinate i. A function g =
(h1, . . . hk) can thus be viewed equal to g(v) = v|Ii

(up

to a reodering of the coordinates) where Ii is a set of
size k, with each element being chosen from {0, . . . d−1}
at random with replacement.

In our paper, we will use a slight modification of
the functions g. In particular, we define a function g
as g(v) = v � χIi

, where Ii is chosen in the same way.
This modification does not affect the algorithm and its
guarantees.

Note that if we set r1 = R and r2 = cR, then
p1 = 1 − R/d and p2 = 1 − cR/d. With these
settings, we obtain parameters k = log n

− log(1−cR/d) and
L = O(n1/c) [IM98].

2 Achieving O(n1+1/c) space for the Hamming
distance

In this section, we describe in detail our basic approach
for solving the (R, c)-SNN problem.

As mentioned previously, if we know the pattern size
m in advance, we can construct an LSH data structure
on the data set P = {Tm

i | i = 0 . . . n − m} (note
that the “dimension” of the points is d = m). If we
do not know m in advance, a straight-forward approach
would be to construct the above data structure for all
possible m ∈ {0, . . . M − 1}. However, this approach
takes Õ(n1+1/c ·M) space.

To reduce the space to O(n1+1/c), we employ the
same technique, however, with a small modification.
For a particular i ∈ {1 . . . L}, instead of hashing strings
gi(Tm

j), we store the strings gi(Tm
j) in a compressed

trie. Specifically, we construct a data structure DM

that represents the LSH data structure on the points
P = {TM

j , j = 0 . . . n − 1}. For each i = 1 . . . L, we
construct a trie Si on the strings gi(TM

j), j = 0, . . . n−1
(note that, gi(TM

j) is defined as gi(TM
j) = TM

j � χIi
,

with Ii being a set of k indexes chosen from 0 . . .M − 1
at random with replacement, as described in 1.3.2).

Observe that now we can easily perform queries
for patterns of maximum length M as follows. First,
for a given pattern P [0 . . .M − 1], and for a given
i ∈ {1 . . . L}, compute gi(P) = P � χIi

. Using the
ordinary pattern matching in a compressed trie, search
for the pattern gi(P) in the trie Si. The search returns
the set Ji of indices j corresponding to strings gi(TM

j),
such that gi(TM

j) = gi(P). Next, we process the strings
TM

j as we would in the standard LSH scheme: examine
consecutively the strings TM

j , j ∈ Ji, and compute the
distances D(TM

j , P). If D(TM
j , P) ≤ cR, return j and

stop. Otherwise, after we examine more than 3L strings
TM

j (over all i = 1, . . . , L), return NO. The correctness
of this algorithm follows directly from the correctness of
the standard LSH scheme for the Hamming distance.

Having described the query algorithm for patterns
of maximum length M , next we describe how to perform

a query for a pattern P of variable length m, where
m ≤ M . For this case, it will be essential that we
have constructed tries on the strings gi(TM

j) (instead
of hashing). Thus, for a query pattern P [0 . . .m − 1],
and an i ∈ {1 . . . L}, perform a search of gi(P) in the
trie Si. This search will return a set Ji of positions j
such that gi(P) is a prefix of gi(TM

j). Next, we consider
substrings Tm

j , that is, the substrings of T that start
at the same positions j ∈ Ji, but are of length only m.
We process the strings Tm

j exactly as in the standard
LSH: examine all the strings Tm

j , j ∈ Ji, and compute
the distances D(Tm

j , P). If D(Tm
j , P) ≤ cR, return j

and stop. Otherwise, after we examine more than 3L
strings Tm

j (over all i = 1, . . . , L), return NO.
The correctness of this algorithm follows from the

correctness of the standard LSH algorithm. The argu-
ment is simple, but somewhat delicate: we argue the
correctness by showing an equivalence of our instance
O to another problem instance. Specifically, we define
a new instance O′ of LSH obtained through the follow-
ing steps:

1. Construct an LSH data structure on the strings
Tm

j ◦ 0M−m of length M , for j = 0 . . . n− 1;
2. Let L and k be the LSH parameters for the Ham-

ming distance for distance R and dimension M
(note that these are equal to the values L and k
in the original instance O);

3. For each i = 1 . . . L, compute the strings gi(Tm
j ◦

0M−m), j = 0 . . . n− 1;
4. Perform a search query on the pattern P ◦ 0M−m;
5. For each i = 1 . . . L, let J ′

i be the set of all indices
j such that gi(P ◦ 0M−m) = gi(Tm

j ◦ 0M−m).
In the above instance O′, LSH guarantees to return

an i such that D(Tm
i ◦ 0M−m, P ◦ 0M−m) ≤ cR if there

exists i∗ such that D(Tm
i∗ ◦0M−m, P ◦0M−m) ≤ R. Fur-

thermore, if we observe that D(Tm
i ◦0M−m, P ◦0M−m) =

D(Tm
i , P), we can restate the above guarantee as fol-

lows: the query P in instance I ′ will return i such that
D(Tm

i , P) ≤ cR if there exists i∗ such that D(Tm
i∗ , P) ≤

R.
Finally, we note that J ′

i = Ji since the assertion
that gi(P ◦ 0M−m) = gi(Tm

j ◦ 0M−m) is equivalent to
the assertion that gi(P) is the prefix of gi(TM

j). Thus,
our instance O returns precisely the same answer as the
instance I, that is, the position i such that D(Tm

i , P) ≤
cR if there exists i∗ such that D(Tm

i∗ , P) ≤ R. This is
the desired answer.

A small technicality is that while searching the
buckets gi(P), i = 1, . . . L, we can encounter positions
j where j > n−m (corresponding to the the substrings
Tm

j that run out of T). We eliminate these false matches
using standard trie techniques: the substrings that run
out of T continue with symbols that are outside of the
alphabet Σ; in such case, a query will match a string

TM
j iff the j + |P | ≤ n. Note that we can do such an

update of the trie after the trie is constructed. This
update will take only O(n log n) time per trie, thus not
affecting the preprocessing times.

Concluding, we can use the data structure DM to
answer all queries of size m where m ≤ M . The query
time is O(n1/cm), whereas the space requirement is
O(n·L) = O(n1+1/c) since a compressed trie on n strings
takes O(n) space. We further improve the query time
in section 4.2.

3 Preprocessing for the Hamming distance
In this section, we analyze the preprocessing time nec-
essary to construct the data structure DM . We first
give a general technique that will be applied to both
Hamming and l1 metrics. Then, based on this tech-
nique, we show how to achieve the preprocessing time of
O(n1+1/cM1/3 log4/3 n) for the Hamming metric. Fur-
ther improvements to preprocessing are presented in
section 4.3.

In the preprocessing stage, we need to construct the
tries Si, for i = 1, . . . L. Each trie Si is a compressed trie
on n strings of length M . In general, constructing one
trie Si would take O(nM) time, yielding a preprocessing
time of O(n1+1/cM). We reduce this time as follows.
Consider a compressed trie Si on n strings gi(TM

j),
j = 0, . . . n − 1. To simplify the notation we use Tj

for TM
j . We reduce constructing the trie Si to basically

sorting the strings gi(Tj). In particular, suppose we
have an oracle that can compare two strings gi(Tj1)
and gi(Tj2) in time τ . Then, we can sort the strings
gi(Tj) in time O(τn log n). To construct the trie, we
need our comparison operation to also return the first
position l at which the two strings differ. In this way,
we can augment the list of sorted strings with extra
information: for every two adjacent strings, we store
their longest common prefix. With this information, we
obtain a suffix array on strings gi(Tj), from which we
can easily compute the trie Si [MM93].

In conclusion, we need a comparison operation that,
given two positions j1 and j2, will produce the first
position at which the strings gi(Tj1) and gi(Tj2) differ.

In the following section we describe how to im-
plement this operation in τ = O(M1/3 log1/3 n) time
for the Hamming metric. This directly implies a
O(n1+1/cM1/3 log4/3 n)-time preprocessing.

3.1 O(M1/3 log1/3 n) string comparison for the
Hamming distance. Consider some function gi. Re-
member that gi(Tj) = Tj � χIi

, where Ii is a set with
k elements, each element being chosen from the set
{0 . . .M−1} at random with repetition. Let the number
of different elements in I be k′ (k′ ≤ k). Furthermore,
to simplify the notation, we drop the subscripts from

χIi
and Ii.
We need to implement a comparison operation,

that, given two positions j1 and j2, returns the first
position at which the strings Tj1 � χ and Tj2 � χ
differ, where χ = χIi

. To solve this problem, we
give two comparison algorithms: Comparison A runs
in time O(

√
k′) = O(

√
k); and Comparison B runs in

time O(M/k · log n). We use Comparison A if k ≤
M2/3 log2/3 n and Comparison B if k > M2/3 log2/3 n to
obtain a maximum running time of O(M1/3 log1/3 n).

3.1.1 Comparison A. We need to compare the
strings Tj1 � χ and Tj2 � χ according to positions
{i1, i2, . . . ik′}. Assume that i1 < i2 < . . . ik′ . Then, we
need to find the smallest p such that Tj1 [ip] 6= Tj2 [ip].

In this algorithm, we divide the two strings into
√

k′

blocks of size
√

k′. We first find the block b at which
the two strings differ; the blocks are compared using
their fingerprints that are computed via FFT before-
hand. After we find the first non-matching block b, we
find the position within the block b at which the strings
differ.

More formally, we partition the ordered set I =
{i1, . . . ik′} into

√
k′ blocks, each of size

√
k′: I = I1 ∪

I1∪. . . I√k′ , where a block is Ib = {ib,1, ib,2, . . . ib,
√

k′} =
{i√k′(b−1)+w | w = 1 . . .

√
k′}.

Comparison A algorithm is:
1. Find the smallest b ∈ {1 . . .

√
k′}, for which strings

Tj1 � χIb
6= Tj2 � χIb

(we elaborate on this step
below);

2. Once we find such b, iterate over positions
ib,1, ib,2, . . . , ib,

√
k′ to find the smallest index w such

that Tj1 [ib,w] 6= Tj2 [ib,w]. The position ip = ib,w

will be the smallest position where the strings
Tj1 � χ and Tj2 � χ differ.
If we are able to check whether Tj1 � χIb

= Tj2 �
χIb

for any b ∈ {1 . . .
√

k′} in O(1) time, then the
algorithm above runs in O(

√
k′) time. Step one takes

O(
√

k′) because there are at most
√

k′ pairs of blocks
to compare. Step two takes O(

√
k′) because the length

of any block b is
√

k′.
Next, we show the only remaining part: how to

check Tj1 � χIb
= Tj2 � χIb

for any b ∈ {1 . . .
√

k′}
in O(1) time. For this, we compute Rabin-Karp fin-
gerprints [KR87] for each of the strings Tj � χIb

, b =
1 . . .

√
k′, j = 0 . . . n− 1. In particular define the finger-

print of Tj � χIb
as

Fb[j] =
(∑M−1

l=0 T [j + l] · χIb
[j + l] · |Σ|l

)
mod R

If we choose R to be a random prime of value at
most nO(1), then Fb[j1] = Fb[j2] ⇔ Tj1�χIb

= Tj2�χIb

for all b and all j1, j2 with high probability.
Thus, we want to compute the fingerprints Fb[j]

for all b = 1 . . .
√

k′ and all j = 0 . . . n − 1. To

accomplish this, we use the Fast Fourier Transform
in the field ZR, which yields an additional time of
O(n log M

√
k′) for the entire fingerprinting. For a

particular b ∈ {1, . . .
√

k′}, we compute Fb[j], j =
0 . . . n − 1, by computing the convolution of T and U ,
where U [0 . . .M−1] is defined as U [l] = (χIb

[M−1− l] ·
|Σ|M−1−l) mod R. If we denote with C the convolution
T ∗U , then C[j] = (

∑M
l=1 T [j−M + l] ·U [M− l])mod R

= (
∑M−1

l=0 T [j − (M − 1) + l] · χIb
[l] · |Σ|l) mod R =

Fb[j − (M − 1)]. Computing T ∗ U takes O(n log M)
time.

Consequently, we need O(n log M) time to com-
pute the fingerprints Fb[j] for a particular b, and
O(n log M

√
k′) time for all the fingerprints. This adds

O(n log M
√

k′) time to the time needed for constructing
a compressed trie, which is O(

√
k′) time per a compar-

ison operation. Thus, computing the fingerprints does
not increase the time of constructing the desired trie.

3.1.2 Comparison B. For comparison B we will
achieve O(M/k · log n) time with high probability.

We rely on the fact that the positions from I are
chosen at random from {0, . . . M − 1}. In particular, if
we find the positions p1 < p2 < . . . < pM at which the
strings Tj1 and Tj2 differ, then, in expectation, one of
the first O(M/k) positions is element of the set I.

Next, we describe the algorithm more formally, and
then we prove that it runs in O(M/k log n) time, w.h.p.
For this algorithm, we assume that we have a suffix
tree on the text T (which can be easily constructed in
O(n log n) time; see, for example [Far97]).

Comparison B algorithm is:
1. Set p = 0;
2. Find the first position at which the strings Tj1+p

and Tj2+p differ (we can find such position in O(1)
time using the suffix tree on T [BFC00]); set p equal
to this position (indexed in the original Tj1);

3. If p 6∈ I, then loop to the step 2;
4. If p ∈ I, then return p and stop.

Now, we will show that this algorithm runs in
O(M/k log n) time w.h.p. Let p1 < p2 < . . . < pM

be the positions at which the strings Tj1 and Tj2 differ.
Let l = 3M/k log n. Then, Pr[p1, . . . pl 6∈ I] = (1 −
l/M)k = (1 − 3 log n/k)k ≤ exp[−3k log n/k] = n−3.
The probability that this happens for any of the

(
n
2

)
pairs Tj1 and Tj2 is at most n−1 by the union bound.
Therefore, with probability at least 1−n−1, comparison
B will make O(M/k · log n) loops, yielding the same
running time, for any pair Tj1 , Tj2 .

4 Improved query and preprocessing times
In previous sections, we obtained the following
bounds for our data structure: space of O(n1+1/c);

query time of O(n1/cm); and preprocessing time of
O(n1+1/cM1/3 log4/3 n). Note that, while the space
bound matches the bound for the case when m is known
in advance, the query and preprocessing bounds are off
by, respectively, Õ(m) and Õ(M1/3) factors. In this
section we improve significantly these two factors.

To improve the dependence on m and M for, respec-
tively, query and preprocessing, we redesign the LSH
scheme. We show that we can use gi functions that are
not completely independent and, in fact, we reuse some
of the “base” hash functions. By doing so, we are able
to compute all the values gi(p) for a point p in parallel,
reducing the time below the original bound of O(n1/cm)
needed to evaluate the original functions gi(p). Using
the new scheme, we achieve Õ(n1/c+mno(1)) query time
and Õ(n1+1/c+n1+o(1)M1/3) preprocessing time for the
Hamming distance.

We describe first how we redesign the LSH scheme.
Next, we explain how we use the new scheme to achieve
better query and preprocessing times.

4.1 Reusable LSH functions. The basic LSH
scheme consists of L functions gi, i = 1 . . . L,
where gi = (hi,1, hi,2, . . . , hi,k) (for more de-
tails, see appendix 1.3). Each function hi,j

is drawn randomly from the family H, where
H =

{
h : Σd → {0, 1} | h(v) = v|r, r ∈ {0, . . . d− 1}

}
;

in other words, hi,j is a projection along a randomly-
chosen coordinate. The best performance is achieved for
parameters k = log n

log 1/p2
and L = nρ = O(n1/c). Recall

that p1 = 1− R
d , p2 = 1− cR

d , and ρ = log 1/p1
log 1/p2

.
We redesign this LSH scheme as follows. Let t be

an integer (specified later), and let w = nρ/t. Define
functions uj , for j = 1 . . . w, as uj ∈ Hk/t; each uj is
drawn uniformly at random from Hk/t. Furthermore,
redefine the functions gi as being t-tuples of distinct
functions uj ; namely, gi = (uj1 , uj2 , . . . ujt) ∈ Hk where
1 ≤ j1 < j2 < . . . < jt ≤ w. Note that there are in total
L =

(
w
t

)
functions gi. The rest of the scheme is exactly

as before.
Now, we need to verify that the query time of the

redesigned LSH is close to the original bound. To this
end, we have to show that there are not too many
collisions with points at distance ≥ cR. We need also to
show correctness, i.e., that the algorithm has a constant
probability of reporting a point within distance cR, if
such a point exists.

We can bound the number of collisions with points
at distance ≥ cR by ensuring that the number of
false positives is O(L), which is achieved by choosing
k as before k = log n

log 1/p2
. Since each particular gi is

indistinguishable from uniformly random on Hk, the
original analysis applies here as well.

A harder task is estimating the probability of the
failure of the new scheme. A query fails when there
is a point p at distance R from the query point q, but
gi(p) 6= gi(q) for all i. We can bound this probability by

1−Θ(1/t!) if we set t =
√

ρ log n
ln log n (a rigourous calculation

is deferred to appendix A due to lack of space).
To reduce this probability to a constant less than

1, it is enough to repeat the entire structure U =
Θ(t!) = O(e

√
ρ log n ln log n) times, using independent

random bits. Thus, while one data structure has
L =

(
w
t

)
≤ nρ/t! functions gi, all U structures have

U · L = O (t!nρ/t!) = O(nρ) functions gi that are
encoded by only w · U = O

(
exp

[
2
√

ρ log n ln log n
])

=
no(1) independently chosen functions u ∈ Hk/t.

The query time is still O(n1/cm) since we have
O(n1/c) functions gi, as well as an expected of O(LU) =
O(nρ) = O(n1/c) collisions with the non-matching
points in the LSH buckets.

This redesigned LSH scheme can be employed to
achieve better query and preprocessing times as will
be shown in the following sections. As will become
clear later, the core of the improvement consists in
the fact that there are only O

(
exp

[
2
√

ρ log n ln log n
])

independently chosen functions u ∈ Hk/t, and the main
functions gi are merely t-tuples of the functions u.

4.2 Query time of Õ
(
n1/c + mno(1)

)
for the

Hamming distance. To improve the query time, we
identify and improve the bottlenecks existing in the cur-
rent approach to performing a query (specifically, the
query algorithm from section 2). In the current algo-
rithm, we have a trie Si per each function gi. Then, for
a query P , we search the string gi(P) in Si (again, as
mentioned in section 1.3.2, gi(·) can be viewed as a bit-
mask, with the bits outside the boundaries of P being
discarded).

We examine the bottlenecks in this approach and
how we can eliminate them using the new LSH scheme.
Consider a query on string P . We have in total LU =
O(n1/c) functions gi (over all U data structures), each
sampling at most k = O(M) bits. The query time can
be decomposed into two terms:
Ts: Time spent on computing functions gi(P) and

searching gi(P) in the trie Si, for each i;
Tc: Time spent on examining the points found in the

bucket gi(P) (computing the distances to sub-
strings colliding with P to decide when one is a
cR-NN).
Both Ts and Tc are potentially O(n1/cm). We show

how to reduce Ts to
Õ
(
n1/c + m · exp

[
2
√

ρ log n ln log n
])

and Tc to
Õ(n1/c + m). We analyze Tc first.

Lemma 4.1. It is possible to preprocess the text T
such that, for a query string P of length m, after
O(m log n/ε2) processing of P , one can test whether
|P − Tm

j |H ≤ R or |P − Tm
j |H ≥ cR for any j in

O(log2 n/ε2) time (assuming that one of these cases
holds). Using this test, there is an algorithm achieving
Tc = O(n1/c log2 n/ε2 + m log n/ε2). The preprocessing
of T can be accomplished in O(n log3 n/ε2) time.

Proof. We can approximate the distance |P − Tm
j |H by

using the sketching technique of [KOR98] (after a cor-
responding preprocessing). Assume for the beginning
that the query P has length m = M . In the initial pre-
processing of T , we compute the sketches sk(TM

j) for
all j. Next, for a query P , we compute the sketch of
P , sk(P); and, from the sketches sk(P) and sk(TM

j),
we can approximate the distance |TM

j −P |H with error
c with probability 1 − n−O(1) in O(log n/ε2) time (for
details, see [KOR98], especially lemma 2 and section 4).
If the test reports that a point TM

j is at a distance ≤ cR
(i.e., the test does not classify the point as being at a
distance > cR), then we stop LSH and return this point
as the result (note that there is only a small probabil-
ity, n−O(1), that the test reports that a point TM

j , with
|P − Tji

M |H ≤ R, is at a distance > cR).
If P is of length m < M , then we compute the

sketches sk(P) and sk(Tm
j) from O(log n) sketches of

smaller lengths. Specifically, we divide the string P into
O(log m) diadic intervals, compute the sketches for each
diadic interval, and finally add sketches (modulo 2) to
obtain the sketch for the entire P . Similarly, to obtain
sk(Tm

j), we precompute the sketches of all substrings
of T of length a power of two (in the T -preprocessing
stage); and, for a query P , we add the O(log m)
sketches for the diadic intervals of Tm

j to obtain the
sketch of Tm

j . Thus, computation of the sketch of Tm
j

takes O(log2 n/ε2) time. Precomputing the sketch of
P takes O(m log n/ε2) time. With these two times, we
conclude that Tc = O(n1/c log2 n/ε2 + m log n/ε2). To
precompute all the sketches of all the substrings of T
of length a power of two, we need O(n log2 M log n/ε2)
time by applying FFT along the lines of [IKM00] or
section 3.1.1 (since a sketch is just a tuple of dot
products of the vector with a random vector).

Next, we show how to improve Ts, the time for
searching gi(P) in the corresponding tries.

Lemma 4.2. Using the new LSH scheme, it is possible
to match gi(P) in the tries Si, for all i’s, in Ts =
O
(
n1/c log3/2 n + m · exp

[
2
√

ρ log n ln log n
])

time.

Proof. To achieve the stated time, we augment each
trie Si with some additional information that enables
a faster traversal of the trie using specific fingerprints of

the searched string (i.e., gi(P)); the new LSH helps us
in computing these fingerprints for gi(P) for all tries Si

in parallel. For ease of notation, we drop the subscript i
from gi and Si. Recall that S is a trie on strings g(TM

j),
j = 1 . . . n − 1; we will drop the superscript M for TM

j

as well.
We augment the trie S with additional log(M) tries

S(l), l = 0 . . . log M − 1. For each l, let fl : Σ2l →
{0, . . . nO(1)} be a fingerprint function on strings of
length 2l. The trie S(l) is a trie on the following n
strings: for j ∈ {0 . . . n − 1}, take the string g(Tj),
break up g(Tj) into M/2l blocks each of length 2l, and
apply to each block the fingerprint function fl; thus, the
resulting string is

F
(l)
j = 〈fl

(
g(Tj)[0 : 2l − 1]

)
, fl

(
g(Tj)[2l : 2 · 2l − 1]

)
,

. . . fl

(
g(Tj)[M − 2l : M − 1]

)
〉

Note that, in particular, S = S(0).
Further, for each trie S(l+1) and each node Nl+1 ∈

S(l+1), we add a refinement link pointing to a node Nl

in S(l), the node which we call the equivalent node of
Nl+1. By definition, the equivalent node of Nl+1 is the
node Nl of S(l) that contains in its subtree exactly the
same leaves as the subtree of Nl+1 (a leaf in a trie is
a substring Tj). Note that such node Nl always exists.
Furthermore, if str(Nl+1) denotes the substring of T
corresponding to the path from the root to Nl+1, then
str(Nl+1) = str(Nl) or str(Nl+1) is a prefix of str(Nl).

Using l tries S(0), . . . S(log M−1) and the refinement
links, we can speed up searching of a string in the
trie S by using initially “rougher” tries (with higher l)
for rough matching of g(P), and gradually switching
to “finer” tries (with smaller l) for finer matching.
Specifically, for a string G = g(P), we break up
G into diadic substrings G = Gl1Gl2 . . . Glr , where
Gli has length 2li , and li’s are strictly decreasing
(li > li−1). Then, we match G in S as follows.
In the trie S(l1), follow the edge corresponding to
the symbol fl1(Gl1). Next, follow sequentially the
refinement links into the tries S(l1−1) . . . S(l2). In S(l2),
follow the edge corresponding to fl2(Gl2) (unless we
already jumped this block while following the refinement
links). Continue this procedure until we finish it in the
trie Glr , where the final node gives all the matching
substrings g(Tj). If, at any moment, one of the traversed
trie edges is longer than one fingerprint symbol or a
refinement link increased str(Nl) of current node to
str(Nl) ≥ |G|, then we stop as well (since, at this
moment, we matched all |G| positions of G, and the
current node yields all the matches). Note that, if we
know all the fingerprints fl(Gl), then we can match
gi(P) in the trie Si in time O(log n).

The remaining question is how to compute the fin-
gerprints fl1(Gl1), fl2(Gl2), . . . flr (Glr) (for each of the

UL functions gi). We will show that we can compute
the fingerprints for one of the U independent sets of
gi’s in Õ

(
L + m · exp

[√
ρ log n ln log n

])
; this gives a

total time of Õ
(
UL + U ·m · exp

[√
ρ log n ln log n

])
=

Õ
(
n1/c + m · exp

[
2
√

ρ log n ln log n
])

. To this purpose,
consider one of the U independent data structures, and
some diadic substring Glj = G[a : b], with a correspond-
ing fingerprinting function f = flj , for which we want to
compute the fingerprints flj (Glj) = flj (gi(P)[a : b]) =
f (gi(P)[a : b]) for all L functions gi in the considered
independent data structure. Remember that each of
the L functions gi is defined as a t-tuple of functions
uh1 , . . . uht , 1 ≤ h1 < h2 < . . . < ht ≤ w.

For computing the fingerprints f(gi(P)[a : b]),
for all gi, we rely on the following idea: we first
compute similar fingerprints for all the functions uh,
1 ≤ h ≤ w, and then combine them to obtain
the fingerprints for the functions gi. To be able to
combine easily the fingerprints of the functions uh, we
use the fingerprinting function of Rabin-Karp [KR87],
which was already used in section 3.1.1. With this
fingerprinting function, the fingerprint for gi is just
the sum modulo R of the fingerprints for the functions
uh1 , uh2 , . . . uht

(remember that R is a random prime
for the fingerprinting function). Specifically,

f (gi(P)[a : b]) =

(
t∑

x=1

f (uhx
(P)[a : b])

)
(mod R)

A technicality is that a particular position in P can
be sampled in several uh’s, thus contributing multiple
times the same term to the above sum. However,
this technicality is easily dealt with if we use t|Σ| <
O(log n · |Σ|) as the base in the fingerprinting function
(instead of |Σ| as was used in section 3.1.1). With this
new base, the “oversampled” position will contribute in
exactly the same way to the fingerprint of f(gi(P)[a : b])
as well as to the fingerprints of the strings in the trie.

Finally, we can conclude that Ts =
O
(
n1/c log3/2 n + m · exp

[
2
√

ρ log n ln log n
])

.
First, for computing the fingerprints for all
substrings Gl1 , . . . , Glr , for all functions uh,
h = 1 . . . w, we need only O

(
w
∑r

j=1 lj

)
=

O(mw) = O
(
m · exp

[√
ρ log n ln log n

])
time. For

all U independent data structures, this takes
O(mwU) = O

(
m · exp

[
2
√

ρ log n ln log n
])

time.
Once we have the fingerprints for the functions
uh, we can combine them to get all the finger-
prints for all the functions gi; this takes a total of
O(log1/2 n ·LU · log n) = O(n1/c log3/2 n) time (because
we need only O(t) < O(log1/2 n) time for computing
a fingerprint for one function gi once we have the
fingerprints of the corresponding t functions uh).

4.3 Preprocessing time of Õ(n1+1/c +
n1+o(1)M1/3) for the Hamming distance. We
will show that to carry out the necessary preprocessing,
we need Õ

(
n1+1/c + nM1/3e2

√
ρ log n ln log n

)
time. As

in section 3, the bottleneck of the preprocessing stage
is constructing the tries Si. Furthermore, the trie
augmentation from the previous section requires con-
structing the tries S1

i , . . . S
(log M−1)
i . In our algorithm,

we first construct the tries Si = S0
i in time

Õ
(
n1+1/c + nM1/3 exp

[
2
√

ρ log n ln log n
])

. Hav-
ing constructed all S

(0)
i , we construct the tries

S1
i , . . . S

(log M−1)
i from the trie S

(0)
i , for all i, in

Õ(n1+1/c) time.

Lemma 4.3. We can construct the tries Si = S
(0)
i for

all U · L functions gi in time
O
(
n1+ 1

c log
3
2 n + nM

1
3 exp

[
2
√

ρ log n ln log n
]
log

4
3 n
)
.

Additionally, given S
(0)
i , we can construct all

S1
i , . . . S

(log M−1)
i in O(n1+1/c log n).

Proof. We again use the inter-dependence of the LSH
functions in the redesigned scheme. Consider one of
the U independent data structures. In the considered
independent data structure, we have w functions uh; the
functions gi are defined as t-tuples of the functions uh.
Thus, we can first construct w tries corresponding to the
functions uh, 1 ≤ h ≤ w (i.e., a trie for the function uh is
the trie on the strings uh(TM

j)); and, from these, we can
construct the tries for the functions gi. For constructing
the tries for the functions uh, we can use the algorithm
from section 3, which will take O(w · nM1/3 log4/3 n)
total time since there are w functions uh.

Once we have the w tries corresponding to the
functions uh, 1 ≤ h ≤ w, we can construct the tries
for the functions gi in O(Ln log3/2 n) time. Recall from
section 3 that if, for two substrings TM

j1
and TM

j2
, in

time τ , we can find the first position where gi(TM
j1

)
and gi(TM

j2
) differ, then we can sort and ultimately

construct the trie on the strings gi(TM
j), for each i,

in O(τLn log n) time. Indeed, at this moment, it is
straight-forward to find the first position where gi(TM

j1
)

and gi(TM
j2

) differ: this position is the first position
where uh(TM

j1
) and uh(TM

j2
) differ, for one of the t

function uh that define the function gi. Thus, for two
substrings TM

j1
and TM

j2
, and some function gi, we can

find the first position where uh(TM
j1

) and uh(TM
j2

) differ
for all t functions defining gi (using the tries for the
functions uh); the smallest of these positions is the
position of the first difference of gi(TM

j1
) and gi(TM

j2
).

Now, we can conclude that one “comparison” operation
takes τ = O(t) = O(

√
log n) time (again, finding the

first difference of two strings in a uh’s trie can be

done in O(1) time [BFC00]). Since there is a total
of L functions gi (in one of the U independent data
structures), the total time for constructing the tries for
gi’s is O(τLn log n) = O(Ln log3/2 n).

Summing up the times for construct-
ing the uh tries and then the gi tries,
we get O(wnM1/3 log4/3 n + Ln log3/2 n) =
O
(
Ln log3/2 +nM1/3 exp

[√
ρ log n ln log n

]
log4/3 n

)
.

For all U independent data structures, the total
time for constructing all S

(0)
i is

U · O
(
wnM1/3 log4/3 n + Ln log3/2 n

)
=

O
(
ULn log3/2 n + nM1/3wU log4/3 n

)
=

O
(
n1+1/c log3/2 n + nM1/3 exp

[
2
√

ρ log n ln log n
]
log4/3 n

)
.

This time dominates the preprocessing time.
Having constructed the tries S

(0)
i , we show how to

construct the tries S1
i , . . . S

(log M−1)
i from a trie Si =

S
(0)
i . We will construct the trie S

(l)
i for some given i

and l as follows. Recall that the trie S
(l)
i contains the

strings

F
(l)
j = 〈fl

(
gi(TM

j)[0 : 2l − 1]
)
, fl

(
gi(TM

j)[2l : 2 · 2l − 1]
)
,

. . . fl

(
gi(TM

j)[M − 2l : M − 1]
)
〉

(i.e., the string obtained by fingerprinting 2l-length
blocks of gi(TM

j)). As for the tries Si, we need to find

the sorted list of leaves F
(l)
j , as well as the position of

the first difference of each two consecutive F
(l)
j in the

sorted list. With this information, it is easy to construct
the trie S

(l)
i [MM93].

Finding the sorted order of leaves F
(l)
j is straight-

forward: the order is exactly the same as the order of the
leaves gi(TM

j) in the trie Si. Similarly, in constant time,

we can find the position where two consecutive F
(l)
j1

and

F
(l)
j2

differ for the first time. If p is the position where

gi(TM
j1

) and gi(TM
j2

) differ for the first time, then F
(l)
j1

and F
(l)
j2

differ for the first time at the position
⌊
p/2l

⌋
.

Thus, constructing one trie S
(l)
i takes O(n) time. For

all log n fingerprint sizes l and for all LU functions gi,
this takes time O(log n · ULn) = O(n1+1/c log n).

References

[And05] A. Andoni. Approximate Nearest Neighbor Prob-
lem in High Dimensions. Master of Engineering The-
sis, Massachusetts Institute of Technology, Cambridge,
MA, June 2005.

[AF95] A Amir and M Farach. Eficient 2-dimensional ap-
proximate matching of non-rectangular figures. Infor-
mation and Computation, 118:1–11, 1995.

[AMN+94] S. Arya, D.M. Mount, N.S. Netanyahu, R. Sil-
verman, and A. Wu. An optimal algorithm for ap-
proximate nearest neighbor searching. Proceedings of
the Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 573–582, 1994.

[BFC00] Michael A. Bender and Martin Farach-Colton.
The lca problem revisited. In Proceedings of the 4th
Latin American Symposium on Theoretical Informat-
ics, pages 88–94. Springer-Verlag, 2000.

[BT01] J. Buhler and M. Tompa. Finding motifs using ran-
dom projections. Proceedings of the Annual Interna-
tional Conference on Computational Molecular Biology
(RECOMB01), 2001.

[Buh01] J. Buhler. Efficient large-scale sequence compar-
ison by locality-sensitive hashing. Bioinformatics,
17:419–428, 2001.

[Buh02] J. Buhler. Provably sensitive indexing strategies
for biosequence similarity search. Proceedings of the
Annual International Conference on Computational
Molecular Biology (RECOMB02), 2002.

[CGL04] R. Cole, L.A. Gottlieb, and M. Lewenstein. Dic-
tionary matching and indexing with errors and don’t
cares. Annual ACM Symposium on Theory of Comput-
ing, pages 91–100, 2004.

[DIIM04] M. Datar, N. Immorlica, P. Indyk, and V. Mir-
rokni. Locality-sensitive hashing scheme based on p-
stable distributions. Proceedings of the ACM Sympo-
sium on Computational Geometry, 2004.

[EIV01] A. Efrat, P. Indyk, and S. Venkatasubramanian.
Pattern matching for sets of segments. Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms,
2001.

[Far97] M. Farach. Optimal suffix tree construction with
large alphabets. In Proceedings of the 38th An-
nual Symposium on Foundations of Computer Science
(FOCS ’97), page 137. IEEE Computer Society, 1997.

[GIM99] A. Gionis, P. Indyk, and R. Motwani. Similarity
search in high dimensions via hashing. Proceedings of
the 25th International Conference on Very Large Data
Bases (VLDB), 1999.

[IKM00] P. Indyk, N. Koudas, and S. Muthukrishnan. Iden-
tifying representative trends in massive time series
datasets using sketches. Proceedings of the 26th Inter-
national Conference on Very Large Databases (VLDB),
2000.

[IM98] P. Indyk and R. Motwani. Approximate nearest
neighbor: towards removing the curse of dimensional-
ity. Proceedings of the Symposium on Theory of Com-
puting, 1998.

[Ind98] P. Indyk. Faster algorithms for string matching
problems: matching the convolution bound. Annual
Symposium on Foundations of Computer Science, 1998.

[Ind00] P. Indyk. Stable distributions, pseudorandom gen-
erators, embeddings and data stream computation.
Annual Symposium on Foundations of Computer Sci-
ence, 2000.

[JP04] N. C. Jones and P. A. Pevzner. An Introduction
to Bioinformatics Algorithms. The MIT Press Cam-
bridge, MA, 2004.

[Kle97] J. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensions. Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Comput-
ing, 1997.

[KOR98] E. Kushilevitz, R. Ostrovsky, and Y. Rabani.
Efficient search for approximate nearest neighbor in
high dimensional spaces. Proceedings of the Thirtieth
ACM Symposium on Theory of Computing, pages 614–
623, 1998.

[KR87] R.M. Karp and M.O. Rabin. Efficient random-
ized pattern-matching algorithms. IBM Journal of Re-
search and Development, 1987.

[MM93] U. Manber and G. Myers. Suffix arrays: A new
method for on-line string searches. SIAM Journal on
Computing, 1993.

[MS02] S. Muthukrishnan and S. C. Sahinalp. Simple
and practical sequence nearest neighbors with block
operations. CPM, 2002.

A Failure probability of the redesigned LSH
scheme

In this section we compute the probability of failure of
the new LSH scheme described in section 4.1.

Lemma A.1. For two points p, q at distance at most R,
denote by Pr[fail] the probability that for all i = 1 . . . L,
gi(q) 6= gi(p), where gi are the functions described
in section 4.1 and L =

(
w
t

)
, w = nρ/t. Then, for

t =
√

ρ log n
ln log n , Pr[fail] ≤ 1−Θ(1/t!).

Proof. By definition, Pr[fail] is the probability that for
all i = 1 . . . L, gi(q) 6= gi(p). This event happens exactly
when the points p and q collide on no more than t − 1
functions uj . Since p−k

1 = nρ, we have that
Pr[fail] =

∑t−1
i=0

(
w
i

)
p

i·k/t
1 (1− p

k/t
1)w−i

=
∑t−1

i=0

(
w
i

)
w−i(1− w−1)w−i

≤ e−w−1w
∑t−1

i=0

(
w
i

)
w−i(1− w−1)−i

= 1
e (1 + ww−1(1− w−1)−1

+w(w−1)
2 w−2(1− w−1)−2

+
∑t−1

i=3

(
w
i

)
w−i(1− w−1)−i)

≤ 1
e

(
1 + (1 + 1

w−1) + 1
2 (1 + 1

w−1) +
∑t−1

i=3
wi

i! w−i
)

= 1
e

(
1 + 1 + 1/2 + 3/2

w−1 +
∑t−1

i=3 1/i!
)

= 1
e

(∑t−1
i=0 1/i! + Θ(n−ρ/t)

)
≤ 1

e

(
e− 1/t! + Θ(n−ρ/t)

)
≤ 1 + Θ(n−ρ/t)−Θ(1/t!)

If we set t =
√

ρ log n
ln log n , we obtain that

Pr[fail] ≤ 1 + Θ(e−
√

ρ log n ln log n)−Θ(e−t ln t+t/
√

t)
≤ 1−Θ(e−t ln t+t/

√
t)

= 1−Θ(1/t!)

