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SKETCHING AND EMBEDDING ARE EQUIVALENT FOR NORMS∗

ALEXANDR ANDONI† , ROBERT KRAUTHGAMER‡ , AND ILYA RAZENSHTEYN§

Abstract. An outstanding open question posed by Guha and Indyk in 2006 asks us to char-
acterize metric spaces in which distances can be estimated using efficient sketches. Specifically, we
say that a sketching algorithm is efficient if it achieves constant approximation using constant sketch
size. A well-known result of Indyk [J. ACM, 53 (2006), pp. 307–323] implies that a metric that ad-
mits a constant-distortion embedding into `p for p ∈ (0, 2] also admits an efficient sketching scheme.
But is the converse true, i.e., is embedding into `p the only way to achieve efficient sketching? We
address these questions for the important special case of normed spaces, by providing an almost
complete characterization of sketching in terms of embeddings. In particular, we prove that a finite-
dimensional normed space allows efficient sketches iff it embeds (linearly) into `1−ε with constant
distortion. We further prove that for norms that are closed under sum-product, efficient sketching
is equivalent to embedding into `1 with constant distortion. Examples of such norms include the
earth mover’s distance (specifically its norm variant, called the Kantorovich–Rubinstein norm), and
the trace norm (a.k.a. the Schatten 1-norm or the nuclear norm). Using known nonembeddability
theorems for these norms by Naor and Schechtman [SIAM J. Comput., 37 (2007), pp. 804–826] and
by Pisier [Compos. Math., 37 (1978), pp. 3–19], we then conclude that these spaces do not admit
efficient sketches either, making progress toward answering another open question posed by Indyk
in 2006. Finally, we observe that resolving whether “sketching is equivalent to embedding into `1
for general norms” (i.e., without the above restriction) is equivalent to resolving a well-known open
problem in functional analysis posed by Kwapien in 1969.
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1. Introduction. One of the most exciting notions in modern algorithm design
is that of sketching, where an input is summarized into a small data structure. Per-
haps the most prominent use of sketching is to estimate distances between points, one
of the workhorses of similarity search. For example, some early uses of sketches have
been designed for detecting duplicates and estimating resemblance between documents
[19, 20, 24]. Another example is nearest neighbor search, where many algorithms
rely heavily on sketches, under the labels of dimension reduction (like the Johnson–
Lindenstrauss lemma [40]) or locality-sensitive hashing (see, e.g., [36, 48, 4]). Sketches
see widespread use in streaming algorithms, for instance, when the input implicitly
defines a high-dimensional vector (via, say, frequencies of items in the stream), and a
sketch is used to estimate the vector’s `p norm. The situation is similar in compres-
sive sensing, where acquisition of a signal can be viewed as sketching. Sketching—
especially of distances such as `p norms—was even used to achieve improvements for
classical computational tasks: see, e.g., recent progress on numerical linear algebra
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algorithms [76] or dynamic graph algorithms [2, 43]. Since sketching is a crucial prim-
itive that can lead to many algorithmic advances, it is important to understand its
power and limitations.

A primary use of sketches is for distance estimation between points in a metric
space (X, dX), such as the Hamming space. The basic setup here asks us to design a
sketching function sk : X → {0, 1}s, so that the distance dX(x, y) can be estimated
given only the sketches sk(x), sk(y). In the decision version of this problem, the
goal is to determine whether the inputs x and y are “close” or “far,” as formalized
by the distance threshold estimation problem [67], denoted DTEPr(X,D), where, for
a threshold r > 0 and approximation D ≥ 1 given as parameters in advance, the
goal is to decide whether dX(x, y) ≤ r or dX(x, y) > Dr. Throughout, it will be
convenient to omit r from the subscript.1 Efficient sketches sk almost always need
to be randomized, and hence we allow randomization, requiring (say) 90% success
probability.

The diversity of applications gives rise to a variety of natural and important
metrics M for which we want to solve DTEP: Hamming space, Euclidean space,
other `p norms, the earth mover’s distance, edit distance, and so forth. Sketches for
Hamming and Euclidean distances are now classic and well-understood [36, 48]. In
particular, both are “efficiently sketchable”: one can achieve approximation D = O(1)
using sketch size s = O(1) (most importantly, independent of the dimension of X).
Indyk [35] extended these results to efficient sketches for every `p norm for p ∈ (0, 2].
In contrast, for `p-spaces with p > 2, efficient sketching (constant D and s) was proved
impossible using information-theoretic arguments [67, 14]. Extensive subsequent work
investigated sketching of other important metric spaces,2 or refined bounds (like a
trade-off between D and s) for “known” spaces.3

These efforts provided beautiful results and techniques for many specific settings.
Seeking a broader perspective, a foundational question has emerged [55, Question #5].

Question 1.1. Characterize metric spaces which admit efficient sketching.
To focus the question, efficient sketching will mean constant D and s for us. Since

its formulation circa 2006, progress on this question has been limited. The only known
characterization is by [33] for distances that are decomposable by coordinates, i.e.,
dX(x, y) =

∑n
i=1 ϕ(xi, yi) for some ϕ. In particular, they show a number of general

conditions on ϕ which imply an Ω(n) sketching complexity for dX .

1.1. The embedding approach. To address DTEP in various metric spaces
more systematically, researchers have undertaken the approach of metric embeddings.
A metric embedding of X is a map f : X → Y into another metric space (Y, dY ). The
distortion of f is the smallest D′ ≥ 1 for which there exists a scaling factor t > 0 such
that

∀x, y ∈ X, dY (f(x), f(y)) ≤ t · dX(x, y) ≤ D′ · dY (f(x), f(y)).

If the target metric Y admits sketching with parameters D and s, then X admits
sketching with parameters D ·D′ and s, by the simple composition sk′ : x 7→ sk(f(x)).

1When X is a normed space it suffices to consider r = 1 by simply scaling the inputs x, y.
2Other metric spaces include edit distance [12, 15, 63, 8] and its variants [31, 59, 30, 29, 25, 6],

the earth mover’s distance in the plane or in hypercubes [24, 37, 26, 44, 5, 3], cascaded norms of
matrices [39], and the trace norm of matrices [50].

3These refinements include the gap Hamming distance problem [75, 38, 21, 22, 23, 71, 73] and
LSH in `1 and `2 spaces [57, 62].
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This approach of “reducing” sketching to embedding has been very successful, includ-
ing for variants of the earth mover’s distance [24, 37, 26, 60, 5] and for variants of edit
distance [15, 63, 25, 6, 31, 59, 30, 29]. The approach is obviously most useful when
Y itself is efficiently sketchable, which holds for all Y = `p, p ∈ (0, 2] [35] (we note
that `p for 0 < p < 1 is not a metric space but rather a quasi-metric space; the above
definitions of embedding and distortion make sense even when Y is a quasi-metric,
and we will use this extended definition liberally). In fact, the embeddings mentioned
above are all into `1, except for [6], which employs a more complicated target space.
We remark that in many cases the distortion D′ achieved in the current literature is
not constant and depends on the “dimension” of X.

Extensive research on embeddability into `1 has resulted in several important dis-
tortion lower bounds. Some address the aforementioned metrics [44, 60, 47, 8], while
others deal with metric spaces arising in rather different contexts such as functional
analysis [65, 27, 28] or approximation algorithms [52, 10, 46, 45]. Nevertheless, ob-
taining (optimal) distortion bounds for `1-embeddability of several metric spaces of
interest are still well-known open questions [54].

Yet sketching is a more general notion, and one may hope to achieve better
approximation by bypassing embeddings into `1. As mentioned above, some limited
success in bypassing an `1-embedding has been obtained for a variant of edit distance
[6], albeit with a sketch size depending mildly on the dimension of X. Our results
disparage these hopes, at least for the case of normed spaces.

1.2. Our results. Our main contribution is to show that efficient sketchability
of norms is equivalent to embeddability into `1−ε with constant distortion. Below we
only assert the “sketching =⇒ embedding” direction, as the reverse direction follows
from [35], as discussed above.

Theorem 1.2. Let X be a finite-dimensional normed space, and suppose that 0 <
ε < 1/3. If X admits a sketching algorithm for DTEP(X,D) for approximation D > 1
with sketch size s, then X linearly embeds into `1−ε with distortion D′ = O(sD/ε).

One can ask whether it is possible to improve Theorem 1.2 by showing that X,
in fact, embeds into `1. Since many nonembeddability theorems are proved for `1,
such a statement would “upgrade” such results to lower bounds for sketches. Indeed,
we show results in this direction too. First of all, the above theorem also yields the
following statement.

Theorem 1.3. Under the conditions of Theorem 1.2, X linearly embeds into `1
with distortion O(sD · log(dimX)).

Ideally, we would like an even stronger statement: efficient sketchability for norms
is equivalent to embeddability into `1 with constant distortion (i.e., independent of the
dimension of X as above). Such a stronger statement in fact requires the resolution
of an open problem posed by Kwapien in 1969 (see [42, 16]). To be precise, Kwapien
asks whether every finite-dimensional normed space X that embeds into `1−ε for
0 < ε < 1 with distortion D0 ≥ 1 must also embed into `1 with distortion D1 that
depends only on D0 and ε but not on the dimension of X (this is a reformulation
of the finite-dimensional version of the original Kwapien’s question). In fact, by
Theorem 1.2, the “efficient sketching =⇒ embedding into `1 with constant distortion”
statement is equivalent to a positive resolution of the Kwapien’s problem. Indeed, for
the other direction, consider a potential counterexample to the Kwapien’s problem,
i.e., a normed space X that embeds into `1−ε with a constant distortion D0 ≥ 1, but
every embedding of X into `1 incurs a distortion D1 = ω(1), where the asymptotics is
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with the dimension of X (it is really a sequence of normed spaces). Hence, X admits
an efficient sketch obtained by combining the embedding into `1−ε with the sketch
of [35] but does not embed into `1 with constant distortion. Thus, if the answer to
Kwapien’s question is negative, then our desired stronger statement is false.

To bypass the resolution of the Kwapien’s problem, we prove the following variant
of the theorem using a result of Kalton [42]: efficient sketchability is equivalent to
`1-embeddability with constant distortion for norms that are “closed” under sum-
products. A sum-product of two normed spaces X and Y , denoted X ⊕`1 Y , is the
normed space X × Y endowed with ‖(x, y)‖ = ‖x‖ + ‖y‖. It is easy to verify that
`1, the earth mover’s distance, and the trace norm are all closed under taking sum-
products (potentially with an increase in the dimension). Again, we only need to
show the “sketching =⇒ embedding” direction, as the reverse direction follows from
the arguments above—if a normed space X embeds into `1 with constant distortion,
we can combine it with the `1 sketch of [35] and obtain an efficient sketch for X. We
discuss the application of this theorem to the earth mover’s distance in section 1.3.

Theorem 1.4. Let (Xn)∞n=1 be a sequence of finite-dimensional normed spaces.
Suppose that for every i1, i2 ≥ 1 there exists m = m(i1, i2) ≥ 1 such that Xi1 ⊕`1 Xi2

embeds isometrically into Xm. Assume that every Xn admits a sketching algorithm for
DTEP(Xn, D) for fixed approximation D > 1 with fixed sketch size s (both independent
of n). Then, every Xn linearly embeds into `1 with bounded distortion (independent
of n).

Overall, we almost completely characterize the norms that are efficiently sketch-
able, thereby making significant progress on Question 1.1. In particular, our results
suggest that the embedding approach (embed into `p for some p ∈ (0, 2], and use the
sketch from [35]) is essentially unavoidable for norms. It is interesting to note that
for general metrics (not norms) the implication “efficient sketching =⇒ embedding
into `1 with constant distortion” is false: for example the Heisenberg group embeds
into `2-squared (with bounded distortion) and hence is efficiently sketchable, but it is
not embeddable into `1 [49, 27, 28] (another example of this sort is provided by Khot
and Vishnoi [46]). At the same time, we are not aware of any counterexample to the
generalization of Theorem 1.2 to general metrics.

1.3. Applications. To demonstrate the applicability of our results to concrete
questions of interest, we consider two well-known families of normed spaces, for which
we obtain the first nontrivial lower bounds on the sketching complexity.

Trace norm. Let Tn be the vector space Rn×n (all real square n × n matrices)
equipped with the trace norm (also known as the nuclear norm and the Schatten
1-norm), which is defined to be the sum of singular values. It is well-known that Tn
embeds into `2 (and thus also into `1) with distortion

√
n (observe that the trace norm

is within
√
n from the Frobenius norm, which embeds isometrically into `2). Pisier [65]

proved a matching lower bound of Ω(
√
n) for the distortion of any embedding of Tn

into `1.
This nonembeddability result, combined with our Theorem 1.3, implies a sketch-

ing lower bound for the trace norm. Before, only lower bounds for specific types of
sketches (linear and bilinear) were known [50].

Corollary 1.5. For any sketching algorithm for DTEP(Tn, D) with sketch size
s the following bound must hold:

sD = Ω
( √

n

logn

)
.
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Earth mover’s distance. The (planar) earth mover’s distance (also known as
the transportation distance, Wasserstein-1 distance, and Monge–Kantorovich distance)
is the vector space EMDn = {p ∈ R[n]2 :

∑
i pi = 0} endowed with the norm ‖p‖EMD

defined as the minimum cost needed to transport the “positive part” of p to the “neg-
ative part” of p, where the transportation cost per unit between two points in the
grid [n]2 is their `1-distance (for a formal definition see [60]). It is known that this
norm embeds into `1 with distortion O(logn) [37, 24, 60] and that any `1-embedding
requires distortion Ω(

√
logn) [60].

We obtain the first sketching lower bound for EMDn, which in particular addresses
a well-known open question [55, Question #7]. Its proof is a direct application of
Theorem 1.4 (which we can apply, since EMDn is obviously closed under taking
sum-products), to essentially “upgrade” the known nonembeddability into `1 [60] to
nonsketchability.

Corollary 1.6. No sketching algorithm for DTEP(EMDn, D) can achieve ap-
proximation D and sketch size s that are constant (independent of n).

The reason we cannot apply Theorem 1.3 and get a clean quantitative lower
bound for sketches of EMDn is the factor log(dimX) in Theorem 1.3. Indeed, the
lower bound on the distortion of an embedding of EMDn into `1 proved in [60] is
Ω(
√

logn), which is smaller than log(dimX) = Θ(logn).
We note that EMDn is a (slight) generalization of the EMD metric version com-

monly used in computer science applications. In the latter, given two weighted sets
A,B ⊂ [n]2 of the same total weight, one has to solve, using only their sketches
sk(A), sk(B), the DTEP(EMD, D) problem where the EMD distance is the min-cost
matching between A and B. Observe that the weights used in the sets A,B ⊂ [n]2 are
all positive. The slight difference is that inDTEP (EMDn, D), which asks analogously
to estimate ‖p− q‖EMD, each of p, q ∈ R[n]2 has both “positive” and “negative” parts.
Nevertheless, we show in Appendix A that efficient sketching of EMD on weighted
sets implies efficient sketching of the EMDn norm. Hence, the nonsketchability of
EMDn norm applies to EMD on weighted sets as well.

1.4. Other related work. Another direction for “characterizing tractable met-
rics” is in the context of streaming algorithms, where the input is an implicit vec-
tor x ∈ Rn given in the form of updates (i, δ), with the semantics that coordinate i
has to be increased by δ ∈ R.

There are two known results in this vein. First, [18] characterized the streaming
complexity of computing the sum

∑
i ϕ(xi), for some fixed ϕ (e.g., ϕ(x) = x2 for

`2 norm), when the updates are positive. They gave a precise property of ϕ that
determines whether the complexity of the problem is small. Second, [51] showed
that, in certain settings, streaming algorithms may as well be linear, i.e., maintain a
sketch f(x) = Ax for a matrix A, and the size of the sketch is increased by a factor
logarithmic in the dimension of x.

Furthermore, after the appearance of the conference version of the current arti-
cle, there has been another characterization result that significantly generalizes and
extends [18]. Specifically, for every symmetric norm ‖ · ‖X , it is proved in [17] that
the sketching (and streaming) complexity of computing ‖x‖X is characterized by the
norm’s (maximum) modulus of concentration, up to polylogarithmic factors in the di-
mension of X. Finally, we mention a related work [9], where an efficient data structure
for the approximate nearest neighbor search (ANN) is constructed for every symmet-
ric norm. It is known [36, 48] that efficient sketches imply good data structures for
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ANN; however, the result of [9] shows that having an efficient ANN data structure is
a way more general property of an underlying norm.

1.5. Proof overview. Following common practice, we think of sketching as a
communication protocol. In fact, our results hold for protocols with an arbitrary
number of rounds (and access to public randomness).

Our proof of Theorem 1.2 can be divided into two parts: information-theoretic
and analytic. First, we use information-theoretic tools to convert an efficient protocol
for DTEP(X,D) into a so-called threshold map from X to a Hilbert space. Our
notion of a threshold map can be viewed as a very weak definition of embeddability
(see Definition 4.5 for details). Second, we use techniques from nonlinear functional
analysis to convert a threshold map to a linear map into `1−ε.

Information-theoretic part. To get a threshold map from a protocol for
DTEP(X,D), we proceed in three steps. First, using the fact that X is a normed
space, we are able to give a good protocol for DTEP(`k∞(X), Dk) (Lemma 4.3). The
space `k∞(X) is a product of k copies of X equipped with the norm ‖(x1, . . . , xk)‖ =
maxi ‖xi‖. Then, invoking the main result from [7], we conclude nonexistence of
certain Poincaré-type inequalities for X (Theorem 4.4, in the contrapositive).

Finally, we use convex duality together with a compactness argument to conclude
the existence of a desired threshold map from X to a Hilbert space (Lemma 4.6, again
in the contrapositive).

Analytic part. We proceed from a threshold map by upgrading it to a uniform
embedding (see Definition 2.1) of X into a Hilbert space (Theorem 4.12). For this we
adapt arguments from [41, 66]. We use two tools from nonlinear functional analysis:
an extension theorem for 1/2-Hölder maps from a (general) metric space to a Hilbert
space [56] (Theorem 4.16) and a symmetrization lemma for maps from metric abelian
groups to Hilbert spaces [1] (Lemma 4.14).

Then we convert a uniform embedding of X into a Hilbert space to a linear
embedding into `1−ε by applying the result of Aharoni, Maurey, and Mityagin [1]
together with the result of Nikišin [61]. A similar argument has been used in [60].

To prove a quantitative version of this step, we examine the proofs from [1] and [61]
and obtain explicit bounds on the distortion of the resulting map. We accomplish this
in section 5.

Embeddings into `1. To prove Theorem 1.3 (which has dependence on the
dimension of X), we note that it is a simple corollary of Theorem 1.2 and a result of
Zvavitch [77], which gives a dimension reduction procedure for subspaces of `1−ε.

Norms closed under sum-product. Finally, we prove Theorem 1.4—
embeddability into `1 for norms closed under sum-product—by proving and using
a finitary version of the theorem of Kalton [42] (Lemma 6.1), instead of invoking
Nikišin’s theorem as above. We prove the finitary version by reducing it to the origi-
nal statement of Kalton’s theorem via a compactness argument.

Let us point out that Naor and Schechtman [60] showed how to use (the original)
Kalton’s theorem to upgrade a uniform embedding of EMDn into a Hilbert space to a
linear embedding into `1 (they used this reduction to exclude uniform embeddability
of EMDn). Their proof used certain specifics of EMD. In contrast, to get Theorem 1.4
for general norms, we seem to need a finitary version of Kalton’s theorem.

We also note that in Theorems 1.2, 1.3, and 1.4, we can conclude embeddability
into `d1−ε and `d1, respectively, where d is near-linear in the dimension of the original
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space. This conclusion uses the known dimension reduction theorems for subspaces
from [72, 77].

2. Preliminaries on functional analysis. We recall a few definitions and stan-
dard facts from functional analysis that will be useful for our proofs. A central notion
in our proofs is the notion of uniform embeddings, which is a weaker version of em-
beddability.

Definition 2.1. For two metric spaces X and Y , we say that a map f : X → Y is
a uniform embedding if there exist two nondecreasing functions L,U : R+ → R+ such
that for every x1, x2 ∈ X one has L(dX(x1, x2)) ≤ dY (f(x1), f(x2)) ≤ U(dX(x1, x2)),
U(t) → 0 as t → 0 and L(t) > 0 for every t > 0. The functions L(·) and U(·) are
called moduli of the embedding.

Definition 2.2. An inner-product space is a real vector space X together with
an inner product 〈·, ·〉 : X × X → R, which is a symmetric positive-definite bilinear
form. A Hilbert space is an inner-product space X that is complete as a metric space.

Every inner-product space is a normed space: we can set ‖x‖ =
√
〈x, x〉. For a

normed space X we denote by BX its closed unit ball. The main example of a Hilbert
space is `2, the space of all real sequences {xn} with

∑
i x

2
i < ∞, where the inner

product is defined as
〈x, y〉 =

∑
i

xiyi.

Definition 2.3. For a set S, a function K : S × S → R is called a kernel if
K(s1, s2) = K(s2, s1) for every s1, s2 ∈ S. We say that the kernel K is positive-
definite if for every α1, α2, . . . , αn ∈ R and s1, s2, . . . , sn ∈ S, one has

n∑
i,j=1

αiαjK(si, sj) ≥ 0.

We say that K is negative-definite if for every α1, . . . , αn ∈ R with α1+α2+· · ·+αn =
0 and s1, s2, . . . , sn ∈ S, one has

n∑
i,j=1

αiαjK(si, sj) ≤ 0.

The following are standard facts about positive- and negative-definite kernels.
Fact 2.4 (see [68]). For a kernel K : S × S → R, there exists an embedding

f : S → H, where H is a Hilbert space, such that K(s1, s2) = 〈f(s1), f(s2)〉H for
every s1, s2 ∈ S, iff K is positive-definite.

Fact 2.5 (see [69]). For a kernel K : S × S → R, there exists an embedding
f : S → H, where H is a Hilbert space, such that K(s1, s2) = ‖f(s1) − f(s2)‖2

H for
every s1, s2 ∈ S, iff K(s, s) = 0 for every s ∈ S and K is negative-definite.

Definition 2.6. For an abelian group G, we say that a function f : G → R is
positive-definite if a kernel K(g1, g2) = f(g1 − g2) is positive-definite. Similarly, f is
said to be negative-definite if K(g1, g2) = f(g1 − g2) is negative-definite.

The following lemma essentially says that an embedding of an abelian group G
into a Hilbert space can be made translation-invariant.
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Lemma 2.7 (see the proof of Lemma 3.5 in [1]). Suppose that f is a map
from an abelian group G to a Hilbert space such that for every g ∈ G we have
supg1−g2=g〈f(g1), f(g2)〉 < +∞. Then, there exists a map f ′ from G to a Hilbert
space such that 〈f ′(g1), f ′(g2)〉 depends only on g1 − g2 and for every g1, g2 ∈ G we
have

inf
g′1−g′2=g1−g2

〈f(g′1), f(g′2)〉 ≤ 〈f ′(g1), f ′(g2)〉 ≤ sup
g′1−g′2=g1−g2

〈f(g′1), f(g′2)〉.

Finally, let dimX denote the dimension of a finite-dimensional vector space X.

3. Preliminaries on communication complexity. Let X be a metric space,
on which we would like to solve DTEPr(X,D) defined as follows for some r > 0 and
D ≥ 1. Alice has a point x ∈ X, Bob has a point y ∈ X, and they would like to
decide between the two cases: dX(x, y) ≤ r and dX(x, y) > Dr. To accomplish this
goal, Alice and Bob exchange at most s bits of communication.

There are several types of communication protocols that we consider, depending
on the randomness used, which we present below in the order of their power. Our
main result applies to the most powerful type. We will later show some connections
between the protocols of different types.

• Deterministic protocols. This is a simple two-way communication proto-
col with no randomness. First, Alice sends a bit to Bob that depends only
on x. Then, Bob sends a bit to Alice that depends on Alice’s first communi-
cation bit and on y. Then, Alice sends a bit to Bob that depends on x and
the two previous communication bits, etc. Finally, whoever sends the sth bit
must decide the answer to the DTEP problem. We define a transcript Πx,y

to be the sequence of s bits sent by the two parties for a given pair of inputs
x and y.

• Private-coin protocols with bounded number of coins. This is a ran-
domized version of the previous definition. Alice and Bob each have access to
an independent random string, denoted a ∈ {0, 1}R and b ∈ {0, 1}R, respec-
tively. Communication bits sent by Alice are allowed to depend on a, and
those sent by Bob may depend on b. We require that for every pair of inputs,
the probability (over the random coins a, b) of the answer being correct is at
least, say, 2/3. Whenever we allow randomness, the transcript Πx,y becomes
a random variable (depending on x and y). For fixed a, b ∈ {0, 1}R, we de-
note by Πx,y(a, b) the (deterministic) transcript for inputs x and y when the
random strings are set to be a and b, respectively.

• Public-coin protocols with finitely many coins. This is a variant of the
previous definition, where Alice and Bob have access to a common random
string sampled uniformly from {0, 1}R, and the bits sent by both Alice and
Bob can depend on this random string. Again, we require the probability
(over the public coins) of the answer being correct to be at least, say, 2/3 for
every pair of inputs. Also, we denote by Πx,y(u) the deterministic transcript
for fixed inputs and public coins u.
Clearly, a public-coin protocol with 2R public coins can emulate a private-coin
protocol with R random bits for each of Alice and Bob.

• Public-coin protocols with countably many coins. The protocols de-
fined above are standard in the communication complexity literature. How-
ever, we need a definition that is stronger: we allow countably many public
coins. The reason to consider the stronger notion is that the known protocols
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for DTEP based on [35] fall into this category. Since we allow infinitely many
coins, we need to be careful when defining a class of allowed protocols. A
sequence of coin tosses u can be identified with a point in the Cantor space
Ω = {0, 1}ω equipped with the standard Lebesgue measure. We require that
for every pair of inputs x, y ∈ X, the function u 7→ Πx,y(u) is measurable.
This restriction allows us to consider probabilities of the form Pr[Πx,y ∈ A],
where A ⊆ {0, 1}s is an arbitrary set of possible transcripts. In particular,
the probability of success is well-defined, and we require it, as before, to be
at least 2/3.

The results in this paper apply to the most general protocols: public-coin proto-
cols with countably many coins.

We now show some connections between these notions. A crucial tool in our result
is a theorem of [7], which is itself based on the tools from [13]. The latter shows a
lower bound for private-coin protocols with finitely many coins. We show next how
the lower bounds from [7, 13] extend to the most general type, public-coin protocols
with countably many coins.

3.1. Information complexity: Private coins versus public coins. In gen-
eral, a lower bound for private-coins protocols does not imply a lower bound for public-
coins protocols (without a loss in the parameters). However, such an implication does
hold for the particular lower bound technique that we are employing. In particular,
we use and exploit the notion of information complexity from [13], defined as follows.
Let (x, y, λ) be distributed according to a distribution D over X × X × Λ, where Λ
is an auxiliary set. We will assume that the support of D is finite. Then, we can
define the information complexity with respect to D, denoted ICD(DTEPr(X,D)), to
be the infimum of I(x, y : Πx,y | λ) over all private-coin protocols for DTEPr(X,D),
which succeed on every valid input with probability at least 2/3, where I(· : · | ·) is
the (conditional) mutual information.

It is a standard fact that ICD(DTEPr(X,D)) is a lower bound on the communi-
cation complexity of DTEPr(X,D) with private-coin protocols since

I(x, y : Πx,y | λ) ≤ sup
x,y,a,b

|Πx,y(a, b)|.

However, we are interested in using the information complexity (as defined above)
to lower bound the communication complexity of DTEPr(X,D) for public-coin pro-
tocols with finite number of coins. It turns out that ICD(DTEPr(X,D)) is a valid
lower bound for this case as well, as argued in the claim below.

Lemma 3.1. The communication complexity of DTEPr(X,D) for public-coin pro-
tocols with finite number of coins is at least ICD(DTEPr(X,D)).

Proof. Consider any protocol with public randomness, denoted Πx,y(u), where
x, y are the two inputs and u is the public random string. Then

sup
x,y,u
|Πx,y(u))| ≥ H(Πx,y(u) | λ, u) ≥ I(x, y : Πx,y(u) | λ, u).

Now consider the following private-coins protocol Π′x,y(a, b), where a, b are the
two private random strings of Alice and Bob, respectively. In the first round, Alice
sends a to Bob to be used as public randomness u = a. Then they run Πx,y(u). In
other words, the transcript of Π′x,y(a, b) is 〈a,Πx,y(a)〉. We claim that

I(x, y : Π′x,y(a, b) | λ) = I(x, y : Πx,y(u) | λ, u).
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Indeed, by definition of Π′,

I(x, y : Π′x,y(a, b) | λ) = I(x, y : a,Πx,y(a) | λ),

and using the chain rule for mutual information,

I(x, y : a,Πx,y(a) | λ) = I(x, y : a | λ) + I(x, y : Πx,y(a) | λ, a).

The first term is exactly zero since x, y and a are independent (conditioned on λ).
The remaining term gives the equality we are looking for and proves the lemma. In
particular, we see that the length of a public-coin protocol is at least the information
complexity I(x, y : Π′x,y(a, b) | λ) of any private-coin protocol Π′.

3.2. From countable to finite number of coins. We now observe that if
we focus only on a finite number of possible inputs to our DTEP problem, then the
existence of a protocol with countably many coins implies the existence of a protocol
with bounded number of coins. This claim will be sufficient to generalize our theorem
to the most general type of protocols—public-coin protocols with countably many
coins: see the remark after Theorem 4.4.

Claim 3.2. Fix a public-coin protocol with countably many coins and s bits of
communication. Let (x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N)) be N fixed pairs of inputs
for the DTEP problem, and let ε > 0 be a positive parameter. Then there exists a
public-coin protocol with R = R(s,N, ε) < ∞ coins and s bits of communication,
such that for every 1 ≤ i ≤ N , the success probabilities of the original and the new
protocols on (x(i), y(i)) differ by at most ε.

Proof. Since we care about the correctness of the protocol only on the inputs
(x(i), y(i)), we can think of the protocol as a distribution over a bounded (as a function
of s and N) number of deterministic protocols (there’s only a finite number of distinct
protocol transcripts). Then, we can approximate this distribution within a statistical
distance ε using a bounded number of public coins.

4. From sketches to uniform embeddings. Our main technical result shows
that, for a finite-dimensional normed space X, good sketches for DTEP(X,D) imply
a good uniform embedding of X into a Hilbert space (Definition 2.1). Below is the
formal statement.

Theorem 4.1. Suppose a finite-dimensional normed space X admits a public-
coin randomized communication protocol for DTEP(X,D) of size s for approximation
D > 1. Then, there exists a map f : X → H to a Hilbert space such that for all
x1, x2 ∈ X,

min
{

1, ‖x1 − x2‖X
s ·D

}
≤ ‖f(x1)− f(x2)‖H ≤ K · ‖x1 − x2‖1/2

X ,

where K > 1 is an absolute constant.
Theorem 4.1 implies a qualitative version of Theorem 1.2 using the results of

Aharoni, Maurey, and Mityagin [1] and Nikišin [61] (see Theorem 4.2).
Theorem 4.2 (see [1, 61]). For every fixed 0 < ε < 1, any finite-dimensional

normed space X that is uniformly embeddable into a Hilbert space is linearly embed-
dable into `1−ε with a distortion that depends only on ε and the moduli of the assumed
uniform embedding.
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To prove the full (quantitative) versions of Theorems 1.2 and 1.3, we adapt the
proofs from [1] and [61] in section 5 to get an explicit bound on the distortion.

In the rest of this section, we prove Theorem 4.1 according to the outline in
section 1.5, putting the pieces together in section 4.4.

4.1. Sketching implies the absence of Poincaré inequalities. Sketching is
often viewed from the perspective of a two-party communication complexity. Alice
receives input x, Bob receives y, and they need to communicate to solve the DTEP
problem. In particular, a sketch of size s implies a communication protocol that
transmits s bits: Alice just sends her sketch sk(x) to Bob, who computes the output
of DTEP (based on that message and his sketch sk(y)). We assume here a public-
coins model, i.e., Alice and Bob have access to a common (public) random string that
determines the sketch function sk.

To characterize sketching protocols, we build on results of Andoni, Jayram, and
Pǎtraşcu [7, sections 3 and 4]. This works in two steps: first, we show that a protocol
for DTEP(X,D) implies a sketching algorithm for DTEP(`k∞(X), kD), with a loss of
factor k in approximation (Lemma 4.3; see the proof at the end of the section). As
usual, `k∞(X) is a normed space derived from X by taking the vector space Xk and
letting the norm of a vector (x1, . . . xk) ∈ Xk be the maximum of the norms of its k
components. The second step is to apply a result from [7] (Theorem 4.4), which asserts
that sketching for `k∞(X) precludes certain Poincaré inequalities for the space X.

Lemma 4.3. Let X be a finite-dimensional normed space that for some D ≥ 1
admits a communication protocol for DTEP(X,D) of size s. Then for every integer
k, the space `k∞(X) admits sketching with approximation kD and sketch size s′ = O(s).

Proof. Fix a threshold t > 0, and recall that we defined the success probability
of sketching to be 0.9. By our assumption, there is a sketching function sk for X
that achieves approximation D and sketch size s for threshold kt. Now define a
“sketching” function sk′ for `k∞(X) by choosing random signs ε1, . . . , εk ∈ {±1},
letting sk′ : x 7→ sk(

∑k
i=1 εixi), and using the same decision procedure used by sk

(for X).
Now to examine the performance of sk′, consider x, y ∈ `k∞(X). If their distance

is at most t, then we always have that ‖
∑k
i=1 εixi−

∑k
i=1 εiyi‖ ≤

∑k
i=1‖xi−yi‖ ≤ kt

(i.e., for every realization of the random signs). Thus with probability at least 0.9 the
sketch will declare that x, y are “close.”

If the distance between x, y is greater than kD · t, then for some coordinate,
say, i = 1, we have ‖x1 − y1‖ > kD · t. Letting z =

∑
i≥2 εi(xi − yi), we can write

‖
∑k
i=1 εixi−

∑k
i=1 εiyi‖ = ‖ε1(x1−y1)+z‖ = ‖(x1−y1)+ε1z‖. The last term must be

at least ‖x1− y1‖ under at least one of the two possible realizations of ε1, because by
the triangle inequality 2‖x1−y1‖ ≤ ‖(x1−y1)+z‖+‖(x1−y1)−z‖. We see that with
probability 1/2 we have ‖

∑k
i=1 εixi−

∑k
i=1 εiyi‖ ≥ ‖x1− y1‖ > D · kt, and thus with

probability at least 1/2 ·0.9 = 0.45 the sketch will declare that x, y are “far.” This last
guarantee is not sufficient for sk′ to be called a sketch, but it can easily be amplified.

The final sketch sk′′ for `k∞(X) is obtained by O(1) independent repetitions of
sk′, and returning “far” if at least 0.3-fraction of the repetitions come up with this
decision. These repetitions amplify the success probability to 0.9 while increasing the
sketch size to O(s).

We now state a slight modification of the theorem from [7]. We will actually use
its contrapositive, to conclude the absence of Poincaré inequalities.
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Theorem 4.4 (modification of [7]). Let X be a metric space, and fix r > 0,
D ≥ 1. Suppose there are α > 0, β ≥ 0, and two symmetric probability measures
µ1, µ2 on X ×X such that

• the support of µ1 is finite and is only on pairs with distance at most r;
• the support of µ2 is finite and is only on pairs with distance greater than Dr;
and

• for every f : X → B`2 (where B`2 is the unit ball of `2),

E
(x,y)∼µ1

‖f(x)− f(y)‖2 ≥ α · E
(x,y)∼µ2

‖f(x)− f(y)‖2 − β.

Then for every integer k, the communication complexity of DTEP(`k∞(X), D) for
protocols with countably many public coins (see section 3 for precise definitions) and
with probability of error δ0 > 0 is at least Ω(k) ·

(
α(1− 2

√
δ0)− β

)
.

In [7], almost the same theorem is proved with only one difference: the protocols
for DTEP(`k∞(X), D) are only allowed to use finitely many private coins. Here we use
Lemma 3.1 and Claim 3.2 to generalize their theorem to Theorem 4.4.

Indeed, because the “hard distributions” µ1 and µ2 are finitely supported, an
inspection of the proofs from [7] shows that there is a finite set of inputs I such that
any private-coin protocol for DTEP(`k∞(X), D) that is correct on I with probability
at least 1 − δ0 must have information complexity at least Ω(k) ·

(
α(1− 2

√
δ0)− β

)
.

But by Lemma 3.1, we get that any protocol with bounded number of public coins
correct on I must have communication complexity at least Ω(k) ·

(
α(1− 2

√
δ0)− β

)
.

Finally, Claim 3.2 implies that the same is true for protocols with countably many
public coins that are correct on all valid inputs with probability at least 1− δ0.

4.2. The absence of Poincaré inequalities implies threshold maps. We
proceed to prove that nonexistence of Poincaré inequalities implies the existence of
a “threshold map,” as formalized in Lemma 4.6 below. The proof is similar to du-
ality arguments that one often encounters in embedding theory: for instance, see
Proposition 15.5.2 in [53]. First we define the notion of threshold maps.

Definition 4.5. A map f : X → Y between metric spaces (X, dX) and (Y, dY )
is said to be (s1, s2, τ1, τ2, τ3)-threshold for 0 < s1 < s2, 0 < τ1 < τ2 < τ3, if for all
x1, x2 ∈ X,

• if dX(x1, x2) ≤ s1, then dY (f(x1), f(x2)) ≤ τ1;
• if dX(x1, x2) ≥ s2, then dY (f(x1), f(x2)) ≥ τ2; and
• dY (f(x1), f(x2)) ≤ τ3.

We now provide the main lemma of this section, stated in the contrapositive: the
nonexistence of threshold maps implies a Poincaré inequality.

Lemma 4.6. Suppose X is a metric space that does not allow an (s1, s2, τ1,
τ2,+∞)-threshold map to a Hilbert space. Then, for every δ > 0 there exist two
symmetric probability measures µ1, µ2 on X ×X such that

• the support of µ1 is finite and is only on pairs with distance at most s1;
• the support of µ2 is finite and is only on pairs with distance at least s2; and
• for every f : X → B`2 ,

(1) E
(x,y)∼µ1

‖f(x)− f(y)‖2 ≥
(
τ1

τ2

)2
· E

(x,y)∼µ2
‖f(x)− f(y)‖2 − δ.

We prove Lemma 4.6 via the following three claims. The first one uses standard
arguments about embeddability of finite subsets (see, e.g., Proposition 8.12 in [16],
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or Lemma 1.1 from [11]). We note that this claim requires a finite value for τ3, as
opposed to τ3 = +∞, which is the only reason the definition of a threshold embedding
(Definition 4.5) needs the parameter τ3. In the following claims, we denote by

(
X
2
)

the set of all unordered pairs {x, y} with x, y ∈ X, x 6= y.
Claim 4.7. For every metric space X and every 0 < s1 < s2, 0 < τ1 < τ2 < τ3

there exists an (s1, s2, τ1, τ2, τ3)-threshold map of X to a Hilbert space iff the same is
true for every finite subset of X.

The proof of Claim 4.7 uses standard definitions and facts from general topol-
ogy: product topology, Tychonoff’s theorem, as well as convergence and accumulation
points along nets. These definitions can be found in a general topology textbook (see,
e.g., [58]).

Proof. The “only if” direction is obvious, so let us turn to the “if” part. Consider
the topological space

U =
∏

{x,y}∈(X
2 )

[−τ2
3 , τ

2
3 ].

By Tychonoff’s theorem U is compact. For every finite X ′ ⊂ X there exists an
(s1, s2, τ1, τ2, τ3)-threshold map fX′ from X ′ to a Hilbert space. It gives rise to a
point uX′ ∈ U whose coordinates are given by

(uX′)x,y =
{
‖fX′(x)− fX′(y)‖2, if x, y ∈ X ′;
0, otherwise.

Since U is compact, uX′ has an accumulation point u∗ ∈ U along the net of finite
subsets of X. Let us reformulate what it means.

Claim 4.8. For every {x1, y1}, {x2, y2}, . . . , {xk, yk} ∈
(
X
2
)
and every ε > 0, there

exists a finite set A ⊂ X such that for all 1 ≤ i ≤ k, both xi, yi ∈ A and
∣∣∣(u∗)xi,yi

−

‖fA(xi)− fA(yi)‖2
∣∣∣ < ε .

Now we define a kernel K : X ×X → R, given by (recall Definition 2.3):

K(x, y) =
{

0, if x = y;
(u∗)x,y, otherwise.

Claim 4.9. The kernel K(·, ·) is negative-definite.
Proof. Suppose that K is not negative-definite. It means that there exist α1,

α2, . . . , αn ∈ R with
∑
i αi = 0, and t1, t2, . . . , tn ∈ X such that

n∑
i,j=1

αiαjK(ti, tj) = γ > 0.

There exists ε > 0 such that for every (aij)ni,j=1 with |aij −K(ti, tj)| < ε one has

(2)
n∑

i,j=1
αiαjaij ≥ γ/2 > 0.
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Now apply Claim 4.8 to get a finite set A ⊂ X that contains all si’s such that
‖fA(ti)− fA(tj)‖2 is within ε from K(ti, tj) for every i, j. But by (2), it means that

n∑
i,j=1

αiαj‖fA(ti)− fA(tj)‖2 ≥ γ/2 > 0,

which contradicts Fact 2.5. This proves Claim 4.9.
Thus, by Fact 2.5, there exists a map f : X → H to a Hilbert space H such that

for every x, y ∈ X one has ‖f(x)− f(y)‖2 = K(x, y). The final step is to verify that
f is indeed a required (s1, s2, τ1, τ2, τ3)-map (according to Definition 4.5). This can
be done exactly the same way as in the proof of Claim 4.9. This completes the proof
of Claim 4.7.

Claim 4.10. Suppose that (X, dX) is a finite metric space and 0 < s1 < s2,
0 < τ1 < τ2 < τ3. Assume that there is no (s1, s2, τ1, τ2, τ3)-threshold map of X to `2.
Then, there exist two symmetric probability measures µ1, µ2 on X ×X such that

• µ1 is supported only on pairs with distance at most s1, while µ2 is supported
only on pairs with distance at least s2; and

• for every f : X → `2,
(3)

E
(x,y)∼µ1

‖f(x)−f(y)‖2 ≥
(
τ1

τ2

)2
· E
(x,y)∼µ2

‖f(x)−f(y)‖2−
(

2τ1

τ3

)2
·sup
x∈X
‖f(x)‖2.

Proof. Let L2 ⊂ R(X
2 ) be the cone of squared Euclidean metrics (also known

as negative-type distances) on X. Let K ⊂ R(X
2 ) be the polytope of nonnegative

functions l :
(
X
2
)
→ R+ such that for every x, y ∈ X we have

• l({x, y}) ≤ τ2
3 ;

• if dX(x, y) ≤ s1, then l({x, y}) ≤ τ2
1 ;

• if dX(x, y) ≥ s2, then l({x, y}) ≥ τ2
2 .

Notice that L2∩K = ∅, as otherwise X allows an (s1, s2, τ1, τ2, τ3)-threshold map
to `2. We will need the following claim, which is just a variant of the hyperplane
separation theorem.

Claim 4.11. There exists a ∈ R(X
2 ) such that

∀l ∈ L2, 〈a, l〉 ≤ 0;(4)
∀l ∈ K, 〈a, l〉 > 0.(5)

Proof. Since both L2 and K are convex and closed, and, in addition, K is compact,
there exists a separating (affine) hyperplane between L2 and K. Specifically, there is
a nonzero a such that for every l ∈ L2 one has 〈a, l〉 ≤ η, and for every l ∈ K one has
〈a, l〉 > η. Since L2 is a cone, one can assume without loss of generality that η = 0.
Indeed, the case η < 0 is impossible because 0 ∈ L2, so suppose that η > 0. If for
all l ∈ L2 we have 〈a, l〉 ≤ 0, then we are done. Otherwise, take any l ∈ L2 such
that 〈a, l〉 > 0, and scale it by sufficiently large C > 0 to get a point Cl ∈ L2 so that
〈a,Cl〉 = C〈a, l〉 > η, arriving to a contradiction.

We now continue the proof of Claim 4.10. We may assume without loss of gener-
ality that

∀ {x, y} ∈
(
X
2
)
, if dX(x, y) < s2 then a{x,y} ≤ 0.(6)
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To see this, let us zero every such a{x,y} > 0 and denote the resulting point â. Then
for every l ∈ L2 (which clearly has nonnegative coordinates), 〈â, l〉 ≤ 〈a, l〉 ≤ 0. And
for every l ∈ K, let l̂ be equal to l except that we zero the same coordinates where we
zero a (which in particular satisfy dX(x, y) < s2); observe that also l̂ ∈ K, and thus
〈â, l〉 = 〈a, l̂〉 > 0. We get that â separates K and L2 and also satisfies (6).

Now we define nonnegative functions µ̃1, µ̃2, µ̃3 :
(
X
2
)
→ R+ as follows:

µ̃1({x, y}) = −a({x, y}) 1{dX (x,y)≤s1};
µ̃2({x, y}) = a({x, y}) 1{dX (x,y)≥s2 and ax,y≥0};
µ̃3({x, y}) = −a({x, y}) 1{dX (x,y)>s1 and ax,y<0}.

By (6), these µ̃i “cover” all cases, i.e.,

∀ {x, y} ∈
(
X
2
)
, a({x, y}) = −µ̃1({x, y}) + µ̃2({x, y})− µ̃3({x, y}).

For i ∈ {1, 2, 3} define λi =
∑
{x,y} µ̃i({x, y}) and µi({x, y}) = µ̃i({x, y})/λi. We

argue that µ1 and µ2 are as required by Claim 4.10, and indeed the only nontrivial
property to check is the second item. From the condition that 〈a, l〉 ≤ 0 for every
l ∈ L2 we get that for every map f : X → `2,

0 ≥
∑
{x,y}

a({x, y}) · ‖f(x)− f(y)‖2

=
∑
{x,y}

[
− µ̃1({x, y}) + µ̃2({x, y})− µ̃3({x, y})

]
· ‖f(x)− f(y)‖2,

which, in turn, implies

(7) λ1 · E
(x,y)∼µ1

‖f(x)− f(y)‖2 ≥ λ2 · E
(x,y)∼µ2

‖f(x)− f(y)‖2 − 4λ3 · sup
x
‖f(x)‖2.

Consider the point l ∈ K with value τ2
1 on supp(µ1), value τ2

2 on supp(µ2), value τ2
3

on supp(µ3), and 0 otherwise; the condition 〈a, l〉 > 0 gives

−λ1τ
2
1 + λ2τ

2
2 − λ3τ

2
3 > 0,

which implies λ1 < λ2 · τ2
2 /τ

2
1 and λ3 < λ2 · τ2

2 /τ
2
3 (in particular, λ2 > 0). Plugging

into (7), we get the inequality required for Claim 4.10.
We are now ready to prove Lemma 4.6.
Proof of Lemma 4.6. We start with a metric space X that does not admit a

(s1, s2, τ1, τ2,+∞)-threshold map and prove that this implies the Poincaré inequal-
ity (1).

Indeed, X has no (s1, s2, τ1, τ2, τ3)-threshold map to a Hilbert space for any finite
value τ3. We set τ3 > τ2 to be sufficiently large so that (2τ1/τ3)2 < δ. Then, by
Claim 4.7 there exists a finite subset X ′ ⊂ X that has no (s1, s2, τ1, τ2, τ3)-threshold
map to a Hilbert space (which without loss of generality can be chosen to be `2,
since X ′ is finite). Now, using Claim 4.10, we obtain finitely supported probability
measures µ1 and µ2, which satisfy (3). This concludes the proof of Lemma 4.6, since
its statement only considers f such that the image of f is the unit ball of `2, and,
thus, supx∈X ‖f(x)‖2 ≤ 1. Note that the measures µ1, µ2 depend on the value of τ3
(and, as a result, on δ).
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4.3. Threshold maps imply uniform embeddings. We now prove that
threshold embeddings imply uniform embeddings, formalized as follows.

Theorem 4.12. Suppose that X is a finite-dimensional normed space such that
there exists a map to a Hilbert space, which is (1, D, τ1, τ2,+∞)-threshold for some
D > 1 and for some 0 < τ1 < τ2 with τ2 > 8τ1. Then there exists a map h of X into
a Hilbert space such that for every x1, x2 ∈ X,

(8) (τ1/2
2 − (8τ1)1/2) ·min

{
1, ‖x1 − x2‖

2D + 4

}
≤ ‖h(x1)− h(x2)‖ ≤ (2τ1‖x1 − x2‖)1/2.

In particular, h is a uniform embedding of X into a Hilbert space with moduli that
depend only on τ1, τ2 and D.

Let us point out that in [41, 66], Johnson and Randrianarivony prove that for
a Banach space coarse embeddability into a Hilbert space is equivalent to uniform
embeddability. Our definition of a threshold map is weaker than that of a coarse
embedding (for the latter see [41], say), but we show that we can adapt the proof of
[41, 66] to our setting as well (at least whenever the gap between τ1 and τ2 is large
enough). Since we only need one direction of the equivalence, we present a part of
the argument from [41] with one (seemingly new) addition: Claim 4.19. The resulting
proof is arguably simpler than the combination of [41] and [66] and yields a clean
quantitative bound (8).

Intuition. Let us provide some very high-level intuition of the proof of Theo-
rem 4.12. We start with a threshold map f from X to a Hilbert space. First, we
show that f is Lipschitz on pairs of points that are sufficiently far. In particular, f ,
restricted on a sufficiently crude net N of X, is Lipschitz. This allows us to use a
certain extension theorem to extend the restriction of f on N to a Lipschitz function
on the whole X, while preserving the property that f does not contract too much
distances that are sufficiently large. Then, we get a required uniform embedding by
performing a certain symmetrization step.

The actual proof is different in a number of details; in particular, instead of being
Lipschitz the actual property we will be trying to preserve is different.

Useful facts. To prove Theorem 4.12, we need the following three results.

Lemma 4.13 (see [70]). For a set S and a map f from S to a Hilbert space, there
exists a map g from S to a Hilbert space such that ‖g(x1)−g(x2)‖ = ‖f(x1)−f(x2)‖1/2

for every x1, x2 ∈ S.

Lemma 4.14 (essentially Lemma 3.5 from [1]; see also Lemma 2.7 in the present
paper). Suppose that f is a map from an abelian group G to a Hilbert space such that
for every g ∈ G we have supg1−g2=g ‖f(g1)− f(g2)‖ < +∞. Then, there exists a map
f ′ from G to a Hilbert space such that ‖f ′(g1)− f ′(g2)‖ depends only on g1 − g2 and
for every g1, g2 ∈ G we have

(9) inf
g′1−g′2=g1−g2

‖f(g′1)− f(g′2)‖ ≤ ‖f ′(g1)− f ′(g2)‖ ≤ sup
g′1−g′2=g1−g2

‖f(g′1)− f(g′2)‖.

Proof. This lemma is similar to Lemma 2.7 with one twist: in the statement, we
now have distances instead of dot products. The proof of Lemma 2.7 relies on the
characterization from Fact 2.4. If instead we use Fact 2.5, we can reuse the proof of
Lemma 3.5 from [1] verbatim to prove the present lemma.
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Let us sketch here the symmetrization procedure. Let B(G) be the vector space
of bounded functions h : G → R. Then, one can show that there exists a finitely
additive invariant mean M : B(G)→ R: a linear functional such that

• for every h ∈ B(G) such that h ≥ 0 one has Mh ≥ 0;
• for every h ∈ B(G) and g ∈ G one has Mh = M(x 7→ h(x+ g));
• M(x 7→ 1) = 1.

The existence of such M is nontrivial and requires the axiom of choice (see, e.g.,
Theorem 17.5 from [34]).

Let us now consider a map f from the statement of the lemma and consider the
kernelK(g1, g2) = ‖f(g1)−f(g2)‖2. Let us define a new functionK ′(g1, g2) as follows:

K ′(g1, g2) = M(x 7→ K(x+ g1 − g2, x)).

Now we need to check that
• K ′ is a kernel (that is, it is nonnegative and symmetric) and K ′(g, g) = 0 for
every g ∈ G;

• K ′ is negative-definite (see Definition 2.3), assuming that K is negative-
definite (which is true by Fact 2.5);

• for every g1, g2 ∈ G one has

inf
g′1−g′2=g1−g2

‖f(g′1)− f(g′2)‖2 ≤ K ′(g1, g2) ≤ sup
g′1−g′2=g1−g2

‖f(g′1)− f(g′2)‖2

assuming (9).
This can be done exactly the same way as in the proof of Lemma 3.5 from [1]. Finally,
we observe that K ′(g1, g2) depends only on g1 − g2 and via Fact 2.5 gives a map f ′
from G to a Hilbert space with the required properties.

Definition 4.15. We say that a map f : X → Y between metric spaces is 1/2-
Hölder with constant C if for every x1, x2 ∈ X one has dY (f(x1), f(x2)) ≤ C ·
dX(x1, x2)1/2.

Theorem 4.16 (see [56]; see also Theorem 19.1 in [74]). Let (X, dX) be a metric
space and let H be a Hilbert space. Suppose that f : S → H, where S ⊂ X, is a
1/2-Hölder map with a constant C > 0. Then there exists a map g : X → H that
coincides with f on S and is 1/2-Hölder with the constant C.

We are now ready to prove Theorem 4.12.
Proof of Theorem 4.12. We prove the theorem via the following sequence of claims.

Suppose that X is a finite-dimensional normed space. Let f be a (1, D, τ1, τ2,+∞)-
threshold map to a Hilbert space.

The first claim is well-known and is a variant of Proposition 1.11 from [16].
Claim 4.17. For every x1, x2 ∈ X we have ‖f(x1) − f(x2)‖ ≤ max{1, 2 ·

‖x1 − x2‖} · τ1.
Proof. If ‖x1 − x2‖ ≤ 1, then ‖f(x1)− f(x2)‖ ≤ τ1, and we are done. Otherwise,

let us take y0, y1, . . . , yl ∈ X such that y0 = x1, yl = x2, ‖yi − yi+1‖ ≤ 1 for every i,
and l = d‖x1−x2‖e. In particular, we can take yi = x1+i· x1−x2

‖x1−x2‖ for i = 0, 1, . . . l−1,
and yl = x2. We have

‖f(x1)− f(x2)‖ ≤
l−1∑
i=0
‖f(yi)− f(yi+1)‖ ≤ lτ1 = d‖x1 − x2‖e · τ1 ≤ 2‖x1 − x2‖ · τ1,
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where the first step is by the triangle inequality, the second step follows from ‖yi −
yi+1‖ ≤ 1, and the last step follows from ‖x1 − x2‖ ≥ 1.

The proof of the next claim essentially appears in [41].
Claim 4.18. There exists a map g from X to a Hilbert space such that for every

x1, x2 ∈ X,
• ‖g(x1)− g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;
• if ‖x1 − x2‖ ≥ D + 2, then ‖g(x1)− g(x2)‖ ≥ τ1/2

2 − (8τ1)1/2.
Proof. From Claim 4.17 and Lemma 4.13 we can get a map g′ from X to a Hilbert

space such that for every x1, x2 ∈ X
• ‖g′(x1)− g′(x2)‖ ≤ max

{
1, (2‖x1 − x2‖)1/2} · τ1/2

1 ;
• if ‖x1 − x2‖ ≥ D, then ‖g′(x1)− g′(x2)‖ ≥ τ1/2

2 .
Let N ⊂ X be a 1-net of X such that all the pairwise distances between points

in N are more than 1. The map g′ is 1/2-Hölder on N with a constant (2τ1)1/2,
so we can apply Theorem 4.16 and get a map g that coincides with g′ on N and is
1/2-Hölder on the whole X with a constant (2τ1)1/2. That is, for every x1, x2 ∈ X
we have

• ‖g(x1)− g(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;
• if x1 ∈ N , x2 ∈ N and ‖x1 − x2‖ ≥ D, then ‖g(x1)− g(x2)‖ ≥ τ1/2

2 .
To conclude that g is as required, let us lower bound ‖g(x1) − g(x2)‖ whenever

‖x1 − x2‖ ≥ D + 2. Suppose that x1, x2 ∈ X are such that ‖x1 − x2‖ ≥ D + 2. Let
u1 ∈ N be the closest net point to x1 and, similarly, let u2 ∈ N be the closest net
point to x2. Observe that

‖u1 − u2‖ ≥ ‖x1 − x2‖ − ‖x1 − u1‖ − ‖x2 − u2‖ ≥ (D + 2)− 1− 1 = D.

We have
‖g(x1)−g(x2)‖ ≥ ‖g(u1)−g(u2)‖−‖g(u1)−g(x1)‖−‖g(u2)−g(x2)‖ ≥ τ1/2

2 −2(2τ1)1/2,

as required, where the second step follows from the inequality ‖g(u1)−g(u2)‖ ≥ τ1/2
2 ,

which is true, since u1, u2 ∈ N , and that g is 1/2-Hölder with a constant (2τ1)1/2.
The following claim completes the proof of Theorem 4.12.
Claim 4.19. There exists a map h from X to a Hilbert space such that for every

x1, x2 ∈ X,
• ‖h(x1)− h(x2)‖ ≤ (2τ1 · ‖x1 − x2‖)1/2;
• ‖h(x1)− h(x2)‖ ≥ (τ1/2

2 − (8τ1)1/2) ·min {1, ‖x1 − x2‖/(2D + 4)}.

Proof. We take the map g from Claim 4.18 and apply Lemma 4.14 to it. Let
us call the resulting map h. The first desired condition for h follows from a similar
condition for g and Lemma 4.14. Let us prove the second one.

If x1 = x2, then there is nothing to prove. If ‖x1−x2‖ ≥ D+2, then by Claim 4.18
and Lemma 4.14, ‖h(x1)− h(x2)‖ ≥ τ1/2

2 − (8τ1)1/2, and we are done. Otherwise, let
us consider points y0, y1, . . . , yl ∈ X such that y0 = 0, yi − yi−1 = x1 − x2 for every
i, and l =

⌈
D+2
‖x1−x2‖

⌉
. Since ‖yl − y0‖ = ‖l(x1 − x2)‖ = l‖x1 − x2‖ ≥ D + 2, we have

τ
1/2
2 − (8τ1)1/2 ≤ ‖h(yl)− h(y0)‖ ≤

l∑
i=1
‖h(yi)− h(yi−1)‖

= l · ‖h(x1)− h(x2)‖ ≤ 2D + 4
‖x1 − x2‖

· ‖h(x1)− h(x2)‖,

where the equality follows from the conclusion of Lemma 4.14.
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Finally, observe that Theorem 4.12 is merely a reformulation of Claim 4.19.
4.4. Putting it all together. We now show that Theorem 4.1 follows by ap-

plying Lemma 4.3, Theorem 4.4, Lemma 4.6, and Theorem 4.12, in this order, with
an appropriate choice of parameters.

Proof of Theorem 4.1. Suppose DTEP(X,D) admits a protocol of size s. By
setting k = Cs in Lemma 4.3 (C is a large absolute constant, to be chosen later), we
conclude that DTEP(`Cs∞ (X), CsD) admits a protocol of size s′ = O(s).

Now choosing C large enough and applying Theorem 4.4 (in contrapositive), we
conclude that X has no Poincaré inequalities for distance scales 1 and CsD, with
α = 0.01 and β = 0.001.

Then, applying Lemma 4.6 (in contrapositive), we conclude that X allows a
(1, CsD, 1, 10,+∞)-threshold map to a Hilbert space.

Using Theorem 4.12, it follows that there is a map h from X to a Hilbert space,
such that for all x1, x2 ∈ X,

min
{

1, ‖x1 − x2‖
s ·D

}
≤ ‖h(x1)− h(x2)‖ ≤ K · ‖x1 − x2‖1/2,

where K > 1 is an absolute constant, and this proves the theorem.

Remark. Instead of applying Lemma 4.3 and Theorem 4.4, we could have at-
tempted to apply the reduction from [8] to get a threshold map from X to a Hilbert
space directly. That approach is much simpler technically but has two fatal draw-
backs. First, we end up with a threshold map with a gap between τ1 and τ2 being
arbitrarily close to 1, and thus we are unable to invoke Theorem 4.12, which requires
the gap to be more than 8. Second, the parameters of the resulting threshold map
are exponential in the number of bits in the communication protocol, which is bad for
the quantitative bounds from section 5.

5. Quantitative bounds. In this section we prove the quantitative version of
our results, namely, Theorems 1.2 and 1.3, for which we will reuse Theorem 4.1. In
particular, we prove the following theorem.

Theorem 5.1. For a finite-dimensional normed space X and ∆ > 1, assume we
have a map f : X → H to a Hilbert space H, such that, for an absolute constant
K > 0 and for every x1, x2 ∈ X,

• ‖f(x1)− f(x2)‖H ≤ K · ‖x1 − x2‖1/2
X ; and

• if ‖x1 − x2‖X ≥ ∆, then ‖f(x1)− f(x2)‖H ≥ 1.
Then, for any ε ∈ (0, 1/3), the space X linearly embeds into `1−ε with distortion

O(∆/ε).
Note that Theorem 1.2 now follows from applying Theorem 4.1 together with

Theorem 5.1 for ∆ = sD. We can further prove Theorem 1.3 by using the following
result of Zvavitch from [77].

Lemma 5.2 (see [77]). Every d-dimensional subspace of L1−ε embeds linearly
into `d·poly(log d)

1−ε with distortion O(1).
Indeed, applying Lemma 5.2 together with Theorem 5.1, we get that for every

0 < ε < 1/3 the space X linearly embeds into `poly(dimX)
1−ε with distortion O(∆/ε).

Thus, X is embeddable into `1 with distortion

O
(
∆ · (dimX)O(ε)/ε

)
.

Setting ε = Θ(1/ log(dimX)), we obtain Theorem 1.3.
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It remains to prove Theorem 5.1. Its proof proceeds by adjusting the arguments
from [1] and [61].

Proof of Theorem 5.1. Fix X, ∆ > 0, and the corresponding map f : X → H.
We first prove the following lemma.

Lemma 5.3. There exists a probability measure µ on RdimX symmetric around the
origin such that its (real-valued) characteristic function ϕ : X → R has the following
properties for every x ∈ X:

• ϕ(x) ≥ e−K̃·‖x‖X ; and
• if ‖x‖X ≥ ∆, then ϕ(x) ≤ 1/e.

Here K̃ > 0 is an absolute constant.

Proof. It is known from [69] that for a Hilbert spaceH the function g : h 7→ e−‖h‖
2
H

is positive-definite. Thus, there exists a function g̃ : H → H̃ to a Hilbert space H̃ such
that for every h1, h2 ∈ H one has

〈
g̃(h1), g̃(h2)

〉
H̃

= e−‖h1−h2‖2
H . Setting f̃ = g̃ ◦ f ,

we get a function f̃ : X → H̃ to a Hilbert space such that for an absolute constant
K̃ > 0 for every x1, x2 ∈ X, we have

•
∥∥∥f̃(x1)

∥∥∥
H̃

= 1;

•
〈
f̃(x1), f̃(x2)

〉
H̃
≥ e−K̃·‖x1−x2‖X ; and

• if ‖x1 − x2‖X ≥ ∆, then
〈
f̃(x1), f̃(x2)

〉
H̃
≤ 1/e.

Applying Lemma 2.7 and Fact 2.4, we obtain a positive-definite function ϕ : X →
R such that

• ϕ(0) = 1;
• for every x ∈ X one has ϕ(x) ≥ e−K̃·‖x‖X ; and
• if ‖x‖X ≥ ∆, then ϕ(x) ≤ 1/e.

We can now use Bochner’s theorem, which is the following characterization of
continuous positive-definite functions, via the Fourier transform.

Theorem 5.4 (Bochner’s theorem; see, e.g., [32]). If a function f : Rd → R
is positive-definite, continuous at zero, and f(0) = 1, then there exists a probability
measure µ on Rd such that f is the µ’s characteristic function. That is, for every
x ∈ Rd,

f(x) =
∫
Rd

ei〈x,v〉 µ(dv).

In particular, note that we have that ϕ(0) = 1, ϕ is positive-definite and is
continuous at zero. Hence, by Bochner’s theorem, we get a probability measure µ
over RdimX whose characteristic function equals to ϕ. That is, for every x ∈ X we
get

ϕ(x) =
∫
Rdim X

ei〈x,v〉 µ(dv),

where 〈·, ·〉 is the standard dot product in RdimX . Clearly, µ is symmetric around the
origin, since ϕ is real-valued. This completes the proof of Lemma 5.3.

Our next goal is to show that µ gives rise to a one-measurement linear sketch
for X with approximation O(∆) and a certain additional property that will be use-
ful to us. The following lemma contains two standard facts about one-dimensional
characteristic functions (see, e.g., [64]). We include the proof for completeness.
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Lemma 5.5. Let ν be a symmetric probability measure over the real line, and let

ψ(t) =
∫
R
eivt ν(dv)

be its characteristic function (which is real-valued due to the symmetry of ν). Then,
• if for some R > 0 and 0 < ε < 1 we have |ψ(R)| ≤ 1− ε, then

(10) ν
({
v ∈ R : |v| ≥ Ωε(1/R)

})
≥ Ωε(1);

• for every δ > 0 one has

(11) ν
({
v ∈ R : |v| ≥ 1/δ

})
≤ O(1/δ) ·

∫ δ

−δ

(
1− ψ(t)

)
dt.

Proof. Let us start with proving the first claim. We have for every α > 0

1− ε ≥ |ψ(R)| ≥
∫
R

cos(vR) ν(dv) ≥ cos α · ν
(
{v ∈ R : |vR| ≤ α}

)
− ν
(
{v ∈ R : |vR| > α}

)
= (1 + cosα) · ν

(
{v ∈ R : |vR| ≤ α}

)
− 1,

where the second step uses the fact that ψ is real-valued. Thus, we have

ν
(
{v ∈ R : |vR| ≤ α}

)
≤ 2− ε

1 + cosα.

Setting α = Θ
(√
ε
)
, we get the desired bound.

Now let us prove the second claim. We have, for every δ > 0,∫ δ

−δ

(
1− ψ(t)

)
dt =

∫ δ

−δ

∫
R

(
1− eivt

)
ν(dv) dt = 2δ ·

∫
R

(
1− sin(δv)

δv

)
ν(dv)

≥ 2(1− sin 1) · δ · ν
(
{v ∈ R : |δv| ≥ 1}

)
,

where we use that (1− sin y/y) > (1− sin 1) for every y such that |y| > 1.
Now we will show that the probability measure µ from Lemma 5.3 gives a good

linear sketch for X. To see this we use the conditioning on the characteristic function
of µ, namely, we exploit them using the above Lemma 5.5. In order to do this, we
look at the one-dimensional projections of µ as follows. Let x ∈ X be a fixed vector.
For a measurable subset A ⊆ R we define

ν(A) = µ
({
v ∈ RdimX : 〈x, v〉 ∈ A

})
.

It is immediate to check that the characteristic function ψ of ν is as follows: ψ(t) =
ϕ(t · x) (recall that ϕ is the characteristic function of µ). Next we apply Lemma 5.5
to ψ and use the properties of ϕ from the conclusion of Lemma 5.3. Namely, we get
for every x ∈ X,

(12) µ
({
v ∈ RdimX : |〈x, v〉| ≥ Ω(‖x‖X/∆)

})
= Ω(1),
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and for every t > 0,

(13) µ
({
v ∈ RdimX : |〈x, v〉| ≥ t · ‖x‖X

})
≤ O(1/t).

Indeed, (12) follows from the bound ϕ(x) ≤ 1/e whenever ‖x‖X ≥ ∆ and (10).
The inequality (13) follows from the estimate ϕ(x) ≥ e−K̃·‖x‖X and (11) (for 1/δ =
t‖x‖X) that together give

µ
({
v ∈ RdimX : |〈x, v〉| ≥ t · ‖x‖X

})
= ν({r ∈ R : |r| ≥ t‖x‖X})

≤ O(t‖x‖X)
∫ 1/t‖x‖X

−1/t‖x‖X

(1− e−K̃s‖x‖X ) ds,

as well as from the inequality

t

∫ 1/t

−1/t

(
1− e−Cs

)
ds ≤ t

∫ 1/t

−1/t

(
1− (1− Cs)

)
ds = C/t.

Hence, µ gives rise to a one-measurement linear sketch of X with approximation
O(∆), whose “upper tail” is not too heavy.

Finally, we are ready to describe a desired linear embedding of X into L1−ε; we
map X into L1−ε(µ) as follows: x 7→ (v 7→ 〈x, v〉). The following lemma states that
the distortion of this embedding is O(∆/ε), as required.

Lemma 5.6. For 0 < ε < 1/3 and every x ∈ X,

Ω
(
‖x‖X/∆

)
≤ ‖v 7→ 〈x, v〉‖L1−ε(µ) ≤ O

(
‖x‖X/ε

)
.

Proof. The lower bound is straightforward:

‖v 7→ 〈x, v〉‖1−ε
L1−ε(µ) =

∫
Rdim X

∣∣〈x, v〉∣∣1−ε µ(dv) ≥ Ω(1) · Ω(‖x‖X/∆)1−ε,

where the last step follows from (12).
For the upper bound, we have for every α > 0,

‖v 7→ 〈x, v〉‖1−ε
L1−ε(µ) =

∫
Rdim X

∣∣〈x, v〉∣∣1−ε µ(dv)

=
∫ ∞

0
µ
(
{v ∈ RdimX : |〈x, v〉|1−ε ≥ s}

)
ds

≤ α+O(1) · ‖x‖X ·
∫ ∞
α

s−
1

1−ε ds ≤ α+O(1) · ‖x‖X
ε
· α−

ε
1−ε ,

where the third step follows from (13). Choosing α = ‖x‖1−ε
X /ε1−ε, we get

‖v 7→ 〈x, v〉‖L1−ε(µ) ≤ O(1) · 2
1

1−ε · ‖x‖X
ε

.

This concludes the proof of Theorem 5.1.



912 A. ANDONI, R. KRAUTHGAMER, AND I. RAZENSHTEYN

6. Embedding into `1 via sum-products. Finally, we prove Theorem 1.4:
good sketches for norms closed under the sum-product imply embeddings into `1 with
constant distortion. First we invoke Theorem 4.1 and get a sequence of good uniform
embeddings into a Hilbert space, whose moduli depend only on the sketch size and
the approximation. Then, we use the main result of this section: Lemma 6.1. Before
stating the lemma, let us recall a few notions. For a metric space X, recall that the
metric space `k1(X) =

⊕k
`1
Xn is the direct sum of k copies of X, with the associated

distance defined as a sum-product (`1-product) over the k copies. We define `1(X)
similarly. We also denote X ⊕`1 Y the sum-product of X and Y .

Lemma 6.1. Let (Xn)∞n=1 be a sequence of finite-dimensional normed spaces. Sup-
pose that for every i1, i2 ≥ 1 there exists m = m(i1, i2) ≥ 1 such that Xi1 ⊕`1 Xi2 is
isometrically embeddable into Xm. If every Xn admits a uniform embedding into a
Hilbert space with moduli independent of n, then every Xn is linearly embeddable into
`1 with distortion independent of n.

Note that Theorem 1.4 just follows from combining Lemma 6.1 with Theorem 4.1.
Before proving Lemma 6.1, we state the following two useful theorems. The first

one (Theorem 6.2) follows from the fact that uniform embeddability into a Hilbert
space is determined by embeddability of finite subsets [16]. The second one (The-
orem 6.3) follows by composing results of Aharoni, Maurey, and Mityagin [1] and
Kalton [42].

Theorem 6.2 (Proposition 8.12 from [16]). Let A1 ⊂ A2 ⊂ . . . be metric spaces
and let A =

⋃
iAi. If every An is uniformly embeddable into a Hilbert space with

moduli independent of n, then the whole A is uniformly embeddable into a Hilbert
space.

Theorem 6.3 (see [1, 42]). A Banach space X is linearly embeddable into L1 iff
`1(X) is uniformly embeddable into a Hilbert space.

We are now ready to proceed with the proof of Lemma 6.1.
Proof of Lemma 6.1. Let X = X1 ⊕`1 X2 ⊕`1 . . .. More formally,

X =
{

(x1, x2, . . .) : xi ∈ Xi,
∑
i

‖xi‖ <∞
}
,

where the norm is defined as follows:∥∥(x1, x2, . . .)
∥∥ =

∑
i

‖xi‖.

We claim that the space `1(X) embeds uniformly into a Hilbert space. To see this,
consider Up = `p1(X1⊕`1 X2⊕`1 . . .⊕`1 Xp), which can be naturally seen as a subspace
of `1(X). Then, U1 ⊂ U2 ⊂ · · · ⊂ Up ⊂ · · · ⊂ `1(X) and

⋃
p Up is dense in `1(X). By

the assumption of the lemma, Up is isometrically embeddable into Xm for some m,
thus, Up is uniformly embeddable into a Hilbert space with moduli independent of
p. Now, by Theorem 6.2,

⋃
p Up is uniformly embeddable into a Hilbert space. Since⋃

p Up is dense in `1(X), the same holds also for the whole `1(X), as claimed.
Finally, since `1(X) embeds uniformly into a Hilbert space, we can apply Theo-

rem 6.3 and conclude that X is linearly embeddable into L1. The lemma follows since
X contains every Xi as a subspace.

Appendix A. EMD reduction. Recall that EMDn is a normed space on all
signed measures on [n]2 (that sum up to zero). We also take the view that a weighted
set in [n]2 is in fact a measure on [n]2.
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Lemma A.1. Suppose the EMD metric between nonnegative measures (of the same
total measure) admits a sketching algorithm sk with approximation D > 1 and sketch
size s. Then the normed space EMDn admits a sketching algorithm sk′ with approxi-
mation D and sketch size O(s).

Proof. The main idea is that if x, y are signed measures and we add a sufficiently
large term M > 0 to all of their coordinates, then the resulting vectors x′ = x+M ·~1
and y′ = y + M · ~1 are measures (all their coordinates are nonnegative) of the same
total mass, and ‖x−y‖EMD is equal to the EMD distance between measures x′, y′. The
trouble is in identifying a large enough M . We use the values of x and y themselves
to agree on M . Details follow.

Without loss of generality we can fix the DTEP threshold to be r = 1.
We design the sketch sk′ as follows. First choose a hash function h : N→ {0, 1}9

(using public randomness). Fix an input x ∈ Rn2 of total measure zero, i.e.,
∑
i xi = 0.

Let m(x) = mini xi, and let b(x) be the largest multiple of 2 that is smaller than
m(x). Since x has total measure zero, b(x) < m(x) ≤ 0. Now let b(1)(x) = b(x) and
b(2)(x) = b(x) − 2, and then x(q) = x − b(q)(x) · ~1 for q = 1, 2. Notice that in both
cases x(q) > x ≥ 0 (componentwise). Now let the sketch sk′(x) be the concatenation
of sk(x(q)), h(b(q)(x)) for q = 1, 2.

Given two sketches sk′(x) = (sk(x(q)), h(b(q)(x)))q=1,2 and sk′(y) = (sk(y(q)),
h(b(q)(x)))q=1,2, the distinguisher works as follows. If there are qx, qy ∈ {1, 2} whose
hashes agree h(b(q)(x)) = h(b(q)(y)) (breaking ties arbitrarily if there are multiple
possible agreements), then outputwhatever theEMD metric distinguisher would out-
put on sk(x(qx)), sk(y(qy)). Otherwise output “far” (i.e., that ‖x− y‖EMD > D).

To analyze correctness, consider the case when ‖x− y‖EMD ≤ 1. Without loss of
generality, suppose m(x) ≥ m(y). Then m(x)−m(y) ≤ 1 (otherwise x, y are further
away in EMD norm than 1). Hence either b(x) = b(y) or b(x) = b(y) + 2. Then there
exists a corresponding q ∈ {1, 2} for which the hashes agree h(b(1)(x)) = h(b(q)(y)).
By properties of the hash function, with sufficiently large constant probability the
hashes match only when the b’s match, in which case the values qx, qy used by the
distinguisher satisfy b(qx)(x) = b(qy)(y). In this case, ‖x−y‖EMD = dEMD(x(qx), y(qy)),
and the correctness now depends on sk, and the distinguisher for the EMD metric.

Otherwise, if ‖x − y‖EMD > D, either the b-values coincide for some qx, qy and
then the above argument applies again, or with sufficiently large constant probability
the hashes will not agree and the distinguisher outputs (correctly) “far.”

There is a small loss in success probability due to use of the hash function, but
that can be amplified back by independent repetitions.

Notice that the above lemma assumes a sketching algorithm for the EMD metric
between any nonnegative measures of the same total measure, and not only in the
case where the total measure is 1. The proof can be easily modified so that any non-
negative measure being used always has a fixed total measure (say, 1, by simply scaling
the inputs), which translates to scaling the threshold r of the DTEP problem. This
is acceptable because, under standard definitions, a metric space is called sketchable
if it admits a sketching scheme for every threshold r > 0.
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