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Nearest Neighbor Search (NNS)

Preprocess: a set D of O
points in R¢

Query: given a new point g,

report a point peD with the -/Dp

smallest distance to g o




Motivation

Generic setup:
Points model objects (e.g. images)
Distance models (dis)similarity measure
Application areas:

machine learning, data mining, speech
recognition, image/video/music clustering,
bioinformatics, etc...

Distance can be:

Euclidean, Hamming, £..,
edit distance, Ulam, Earth-mover distance, etc...

Primitive for other problems:
find the closest pair in a set D, MST, clustering...




Plan for today

1. NNS for basic distances
2. NNS for advanced distances: embeddings

3. NNS via product spaces




2D case

Compute Voronoi diag

Given query g, perform
point location
Performance:

Space: O(n)

Query time: O(log n)




High-dimensional case

All exact algorithms degrade rapidly with the
dimension d

Algorithm Query time | Space

Full indexing | O(d*log n) | n®@ (Voronoi diagram size)

No indexing | O(dn) O(dn)
— linear scan

When d is high, state-of-the-art is unsatisfactory:
Even in practice, query time tends to be linear in n




Approximate NNS
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Approximation Algorithms for NNS

A vast literature:

With exp(d) space or Q(n) time:
[Arya-Mount-et al], [Kleinberg’'97], [Har-Peled’ 02],...

With poly(n) space and o(n) time:
'Kushilevitz-Ostrovsky-Rabani’98], [Indyk-Motwani’98],
Indyk’98, ‘01], [Gionis-Indyk-Motwani’99], [Charikar'02],
Datar-Immorlica-Indyk-Mirrokni’04], [Chakrabarti-
Regev’'04], [Panigrahy’06], [Ailon-Chazelle’06], [A-
Indyk’06]...




The landscape: algorithms

Space: poly(n).
Query: logarithmic

Space: small poly
(close to linear).

Query: poly
(sublinear).

Space: near-linear.

Query: poly
(sublinear).

Space |Time Comment | Reference

n¥e?+nd | O(d*log n) | c=1+¢ [KOR'98, IM'98]

n*f+nd | dnP p=1/c [IM’'98, Cha’02, DIIM’04]
p=1/c2+o(1) | [Ar06]

nd*logn | dn® p=2.09/c [Ind’01, Pan’06]
p=0(1/c?) |[AI06]




Locality-Sensitive Hashing

[Indyk-Motwani’98]

Random hash function g:
Rd—7 s.t. for any points p,q:

If{lp-all = r, then Prig(p)=0(a)] wT—TeTTe
is “high” “not-so-small”

It|[p-qll >cr, then Pr(g(p)=9(q)] ®eTc T e

IS “small” o P
A
Use several hash Prig(0)=g(a)]
tables: n°, where p s.t. 1
Py
__log 1/P1
P = Tog 1/P5 P, IIF:QII

r Cr




Example of hash functions: grids

[Datar-Immorlica-Indyk-Mirrokni’04]

Pick a regular grid:

Shift and rotate randomly

Hash function:
g(p) = index of the cell of

Gives p = 1/c
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State-of-the-art LSH

[A-Indyk’06]

Regular grid — grid of balls L1 1 |
p can hit empty space, so take

00@,

OO
more such grids until pisinaball OO
OO

Need (too) many grids of balls
Start by reducing dimension to t




Proof idea

Claim: p &~ 1/c?  where
__ log1/P(r)
P = log1/P(cr)
P(r)=probability of collision when ||p-q||=r
Intuitive proof:
Let's ignore effects of reducing dimension
P(r) = intersection / union
P(r)=random point u beyond the dashed line
The x-coordinate of u has a nearly Gaussian
distribution
— P(r) = exp(-A-r?)
_ Ar?2 __ 1
P= A(cr)2 — 2




The landscape: lower bounds

Space |Time Comment | Reference

Space: poly(n).  ['har?ing | O(d*log n) | c=1+¢ [KOR'98, IM'98]

Query: logarithmic

n°@e) | w(1) memory lookups | [AIP’06]

Space: small poly 101 g Tane 0=1/c [IM'98, Cha'02, DIIM04]
(clos.,e to linear). e TG
Query: poly p=1/c*+o(1) | [AI'06]
(sublinear). p=1/c? [MNP’06, OWZ’10]
nl+o/c?) | w(1) memory lookups | [PTW’08, PTW’10]
Space: near-linear. nd*logn | dnP p=2.09/c [Ind’01, Pan’06]
Query: poly p=0(1/c2) |[AI06]

(sublinear).




Challenge 1.

Design space partitioning of R! that is
efficient: point location in poly(t) time
qualitative: regions are “sphere-like”

[Prob. needle of length 1 is cut]¢’
>

[Prob needle of length c is cut]




NNS for £_ distance

[Indyk’98] @

Thm: for p>0, NNS for £.¢ with ° o
O(d * log n) query time
nl* space ® ® o o
O(lg,., Ig d) approximation

The approach:

A deterministic decision tree

Similar to kd-trees
Each node of DT is “g; < t”

One difference: algorithms goes @ @
down the tree once

(while tracking the list of possible ves No
neighbors) @
[ACP’08]: optimal for decision
trees!




Plan for today

1. NNS for basic distances
2. NNS for advanced distances: embeddings

3. NNS via product spaces




What do we have?

Classical Ep distances:
Hamming, Euclidean, {.,

How about other distances, like edit distance?

Hammif al(x,y) = number of substitutions/insertions/

deletions to transform string x into y S 101

Euclidean (¢,) p=1/c? [AI'06]
p=1/c? [MNP06,0ZW10,PTW’08’10]
. [nite O(dlog n) | c=log,log d | [I'98]
optimal for decision trees [ACP’08]




NNS via Embeddings

An embedding of M into a host
metric (H,d,) isamap f: M—H
has distortion A= 1ifV x,y e M
dy(x.y) < dy(f(x),f(y)) < A*dy(x,y)
Why?
If H is Euclidean space, then obtain
NNS for the original space M !

Popular host: H = {;




Embeddings of various metrics

Embeddings into £,

Metric Upper bound

Edit distance over {0,1}¢ 20(V/ogd)
[ORO05]

Ulam (edit _

bermutatio Challenge 2:

Block edit ¢

Improve the distortion of embedding

Earth-movd €dit distance into {;

(s-sized sets in 2D plane) [Cha02, ITO3]
Earth-mover distance O(log s*log d)
(s-sized sets in {0,1}9) [AIKO8]




OK, but where’s the barrier?




A barrier: £, non-embeddability

Embeddings into £,

Metric Upper bound Lower bound
Edit distance over {0,1}¢ 20(VIog d) Q(log d)
[ORO5] [KNO5,KR06]

Ulam (edit distance between | O(log d) Q(log d)
permutations) [CKO6] [AKO7]
Block edit distance O(log d) 4/3

[MS00, CMO7] [Cor03]
Earth-mover distance O(log s) Q(log’? s)
(s-sized sets in 2D plane) [Cha02, ITO3] INSO7]
Earth-mover distance O(log s*log d) Q(log s)
(s-sized sets in {0,1}9) [AIKO8] [KNOS5]




Other good host spaces?

What is "good”:
IS algorithmically tractable
IS rich (can embed into it)

(22)2, etc |-
v X
X v

(£,)°=real space with distance: |[x-y||,?

Metric Lower bound into\
Edit distance over {0,1}¢ | Q(log d)

[KNO5,KR06]
Ulam (edit distance Q(log d)
between orderings) [AKO7]
Earth-mover distance Q(log s)
(s-sized sets in {0,1}9) [KNOS]

(£,)?, host with v. good LSH
(sketching l.b. via
communication complexity)

[AK'07]
[AK'07]

[AIK’08]




Plan for today

1. NNS for basic distances
2. NNS for advanced distances: embeddings

3. NNS via product spaces




Meet a new host

lterated product space, ®; ., 4=

€y

~ — r = (x1,...24) 2 R
di(x,y) =D 1T i Yil

[ r = (x1,... )2€a£€a£ AT
doo,l(xay) ma'Xz 1d1(xzayz)

i}x:(ml,. 587)2@5 CED, (E...D, 15

d22 0o 1(x,y) = i— 1(doo 1 (s, y@))2




Why @, D, 2

[A-Indyk-Krauthgamer’09, Indyk’02]

edit distance between permutations

Because we can... 7

Embedding: ...embed Ulam into &,, .. ; with
constant distortion

(small dimensions)

NNS: Any t-iterated product space has NNS on
n points with

(Ig Ilg n)°® approximation

near-linear space and sublinear time

Corollary: NNS for Ulam with O(lg Ig n)?
approximation

cf. each £, part has logarithmic lower bound!




Embedding into &

N
(£2)2

S

Dy {5

Theorem: Can embed Ulam metric into
P55 4 WIth constant distortion

Dimensions: a=p=y=d

Proof intuition

Characterize Ulam distance “nicely”:

“Ulam distance between x and y equals the number
of characters that satisfy a simple property”

“Geometrize” this characterization




Ulam: a characterization

E.g.,a=5; K=4
: X[5;4
Lemma: Ulam(x,y) approximately | [A’ ]
equals the number characters a x={ 123456789
satlsfylng:_ y123267895
there exists K=1 (prefix-length) s.t. —
the set of K characters preceding a in x Y[5:4]

differs much from
the set of K characters preceding ainy

| X [a; K]AY [a; K]| > K
1T E.g. 1y =(1,1,1,1,0,0,0,0,0)

HlX[a;K] - 1Y[a;K]H1 > K




Ulam: the embedding X5

123456789
"Geometrizing” characterization: 123467805
Y[5:4]
d 1 xtax] — ypaxlln )
Ul ’ ~ ma Qa, ] Y[CL,K]
i, y) E__:l (Kzl?.(.d 2K

Gives an embedding

f(x) = ((%1X[Q;K])K=l---d)a=1...d - @?@2 of




A view on product metrics:

S

252)2 S

Dy {5

Give more computational view of embeddings

Ulam characterization is related to work in the
context of property testing & streaming

[EKKRV98, ACCL04, GJKKO07, GGO7, EJOS]

sum of squares (£,?)

max (£..) @
sum (£,) ?‘0\
N

Q

\




Challenges 3,...

Embedding into product spaces?
Of edit distance, EMD...

NNS for any norm (Banach space) ?
Would help for EMD (a norm)

A first target: Schatten norms (e.g., trace of a
matrix)

Other uses of embeddings into product
spaces?

Related work: sketching of product spaces
[JW’09, AIK'08, AKO]




Some aspects | didn’t mention yet

NNS for spaces with low intrinsic dimension:

[Clarkson’99], [Karger-Ruhl’'02], [Hildrum-Kubiatowicz-Ma-
Rao’04], [Krauthgamer-Lee'04,05], [Indyk-Naor'07],...

Cell-probe lower bounds for deterministic and/or exact
NNS:

[Borodin-Ostrovsky-Rabani’99], [Barkol-Rabani’00], [Jayram-
Khot-Kumar-Rabani’'03], [Liu’04], [Chakrabarti-Chazelle-Gum-
Lvov’'04], [Patrascu-Thorup’06],...

NNS for average case:
[Alt-Heinrich-Litan'01], [Dubiner'08],...

Other problems via reductions from NNS:
[Eppstein’92], [Indyk’00]....

Many others !




Summary of challenges

1. Design qualitative, efficient
space partitioning

2. Embeddings with improved distortion:

edit into £, y

3. NNS for any norm: e.g. trace norm?,

4. Embedding into product spaces: say, of

EMD
D, D 65




