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Nearest Neighbor Search (NNS)

Preprocess: a set D of 

points in Rd

Query: given a new point q, 

report a point pD with the 

smallest distance to q
q

p



Motivation

 Generic setup:

Points model objects (e.g. images)

Distance models (dis)similarity measure

 Application areas: 

machine learning, data mining, speech 

recognition, image/video/music clustering, 

bioinformatics, etc…

 Distance can be: 

Euclidean, Hamming, ℓ∞, 

edit distance, Ulam, Earth-mover distance, etc…

 Primitive for other problems:

 find the closest pair in a set D, MST, clustering…

p

q



Plan for today

1. NNS for basic distances

2. NNS for advanced distances: embeddings

3. NNS via product spaces



2D case

Compute Voronoi diagram

Given query q, perform 

point location

Performance:

Space: O(n)

Query time: O(log n)



High-dimensional case

 All exact algorithms degrade rapidly with the 

dimension d

When d is high, state-of-the-art is unsatisfactory:

Even in practice, query time tends to be linear in n

Algorithm Query time Space

Full indexing O(d*log n) nO(d) (Voronoi diagram size)

No indexing 

– linear scan

O(dn) O(dn)



Approximate NNS

r-near neighbor: given a new 

point q, report a point pD s.t.

||p-q||≤rcr
as long as there exists

a point at distance ≤r q

r
p

cr



Approximation Algorithms for NNS

A vast literature:

With exp(d) space or Ω(n) time: 

[Arya-Mount-et al], [Kleinberg‟97], [Har-Peled‟02],…

With poly(n) space and o(n) time: 
[Kushilevitz-Ostrovsky-Rabani‟98], [Indyk-Motwani‟98], 

[Indyk‟98, „01], [Gionis-Indyk-Motwani‟99], [Charikar‟02], 

[Datar-Immorlica-Indyk-Mirrokni‟04], [Chakrabarti-

Regev‟04], [Panigrahy‟06], [Ailon-Chazelle‟06], [A-

Indyk‟06]…



The landscape: algorithms

ρ=1/c2+o(1) [AI‟06]

ρ=O(1/c2) [AI‟06]

n4/ε2
+nd O(d*log n) c=1+ε [KOR‟98, IM‟98]

n1+ρ+nd dnρ ρ≈1/c [IM‟98, Cha‟02, DIIM‟04]

nd*logn dnρ ρ=2.09/c [Ind‟01, Pan‟06]

Space: poly(n).

Query: logarithmic

Space: small poly 

(close to linear). 

Query: poly 

(sublinear).

Space: near-linear.

Query: poly 

(sublinear).

Space Time Comment Reference

ρ=1/c2+o(1) [AI‟06]

n1+ρ+nd dnρ ρ≈1/c [IM‟98, Cha‟02, DIIM‟04]



Locality-Sensitive Hashing

Random hash function g: 
RdZ s.t. for any points p,q:

If ||p-q|| ≤ r,  then Pr[g(p)=g(q)]

is “high” 

If ||p-q|| >cr, then Pr[g(p)=g(q)]

is “small”

Use several hash

tables

q

p

“not-so-small”

||p-q||

Pr[g(p)=g(q)]

r cr

1

P1

P2

: nρ, where ρ s.t.

[Indyk-Motwani’98]



Example of hash functions: grids

 Pick a regular grid:

Shift and rotate randomly

Hash function:

g(p) = index of the cell of p

Gives ρ ≈ 1/c

p

[Datar-Immorlica-Indyk-Mirrokni’04]



State-of-the-art LSH

2D

p

p
Rt

Regular grid → grid of balls
p can hit empty space, so take 

more such grids until p is in a ball

Need (too) many grids of balls
Start by reducing dimension to t

 Analysis gives

Choice of reduced dimension t?
Tradeoff between
# hash tables, n, and

Time to hash, tO(t)

Total query time: dn1/c2+o(1)

[A-Indyk’06]



x

Proof idea

 Claim: , where

P(r)=probability of collision when ||p-q||=r

 Intuitive proof:

 Let‟s ignore effects of reducing dimension

P(r) = intersection / union

P(r)≈random point u beyond the dashed line

 The x-coordinate of u has a nearly Gaussian 

distribution 

→ P(r)  exp(-A·r2)

pq
r

q

P(r)

u

p



The landscape: lower bounds

ρ=1/c2+o(1) [AI‟06]

ρ=O(1/c2) [AI‟06]

n4/ε2
+nd O(d*log n) c=1+ε [KOR‟98, IM‟98]

n1+ρ+nd dnρ ρ≈1/c [IM‟98, Cha‟02, DIIM‟04]

nd*logn dnρ ρ=2.09/c [Ind‟01, Pan‟06]

Space: poly(n).

Query: logarithmic

Space: small poly 

(close to linear). 

Query: poly 

(sublinear).

Space: near-linear.

Query: poly 

(sublinear).

Space Time Comment Reference

no(1/ε2) ω(1) memory lookups [AIP‟06]

ρ≥1/c2 [MNP‟06, OWZ‟10]

n1+o(1/c2) ω(1) memory lookups [PTW‟08, PTW‟10]



Challenge 1:

Design space partitioning of Rt that is

efficient: point location in poly(t) time

qualitative: regions are “sphere-like”

[Prob. needle of length 1 is cut]

[Prob needle of length c is cut]

≥

c2



NNS for ℓ∞ distance

 Thm: for ρ>0, NNS for ℓ∞
d with

O(d * log n) query time

n1+ρ space

O(lg1+ρ lg d) approximation

 The approach:
A deterministic decision tree
Similar to kd-trees

Each node of DT is “qi < t”

One difference: algorithms goes 
down the tree once

(while tracking the list of possible 
neighbors)

 [ACP‟08]: optimal for decision 
trees!

q2<3 ?q2<4 ?

Yes No

q1<3 ?

Yes No

q1<5 ?

[Indyk’98]



Plan for today

1. NNS for basic distances

2. NNS for advanced distances: embeddings

3. NNS via product spaces



What do we have?

Classical ℓp distances:

Hamming, Euclidean, ℓ∞

ρ≈1/c2 [AI‟06]

n1+ρ +nd dnρ ρ=1/c [IM‟98, Cha‟02, DIIM‟04]

ρ≥1/c2 [MNP06,OZW10,PTW‟08‟10]

Hamming (ℓ1)

Euclidean (ℓ2)

ρ≥1/c [MNP06,OZW10,PTW‟08‟10]

n1+ρ O(d log n) c≈logρlog d [I‟98]

optimal for decision trees [ACP‟08]

ℓ∞

Space Time Comment Reference

How about other distances, like edit distance?

ed(x,y) = number of substitutions/insertions/

deletions to transform string x into y



NNS via Embeddings

 An embedding of M into a host 

metric (H,dH) is a map f : M→H

has distortion A ≥ 1 if  x,y  M

dM(x,y) ≤ dH(f(x),f(y)) ≤ A*dM(x,y)

Why?

If H is Euclidean space, then obtain 

NNS for the original space M !

 Popular host: H = ℓ1

f
f



Embeddings of various metrics

 Embeddings into ℓ1

Metric Upper bound

Edit distance over {0,1}d 2Õ(√log d)

[OR05]

Ulam (edit distance between 

permutations)

O(log d)

[CK06]

Block edit distance Õ(log d)

[MS00, CM07]

Earth-mover distance

(s-sized sets in 2D plane)

O(log s)

[Cha02, IT03]

Earth-mover distance

(s-sized sets in {0,1}d)

O(log s*log d)

[AIK08]

Challenge 2:

Improve the distortion of embedding

edit distance into ℓ1



OK, but where‟s the barrier?



A barrier: ℓ1 non-embeddability

 Embeddings into ℓ1

Metric Upper bound

Edit distance over {0,1}d 2Õ(√log d)

[OR05]

Ulam (edit distance between 

permutations)

O(log d)

[CK06]

Block edit distance Õ(log d)

[MS00, CM07]

Earth-mover distance

(s-sized sets in 2D plane)

O(log s)

[Cha02, IT03]

Earth-mover distance

(s-sized sets in {0,1}d)

O(log s*log d)

[AIK08]

Lower bound

Ω(log d)

[KN05,KR06]

Ω̃(log d)

[AK07]

4/3

[Cor03]

Ω(log1/2 s)

[NS07]

Ω(log s)

[KN05]



Other good host spaces?

What is “good”:

is algorithmically tractable

is rich (can embed into it)

(ℓ2)
2=real space with distance: ||x-y||2

2

Metric Lower bound into ℓ1

Edit distance over {0,1}d Ω(log d)

[KN05,KR06]

Ulam (edit distance 

between orderings)

Ω̃(log d)

[AK07]

Earth-mover distance

(s-sized sets in {0,1}d)

Ω(log s)

[KN05]

(ℓ2)
2, host with v. good LSH 

(sketching l.b. via 

communication complexity)̃

[AK‟07]

[AK‟07]

[AIK‟08]

(ℓ2)
2 ℓ∞, etc



Plan for today

1. NNS for basic distances

2. NNS for advanced distances: embeddings

3. NNS via product spaces



d∞,1

d1

…
Meet a new host

Iterated product space, Ρ22,∞,1=

L°

(`2)2

L¯

`1
`®1

L¯

`1
`®1`
®
1

x = (x1; : : : xa) 2 R®

d1(x; y) =
P®

i=1 jxi ¡ yij

x = (x1; : : : x¯) 2 `®1 £ `®1 £ : : : `®1
d1;1(x; y) = max

¯
i=1 d1(xi; yi)

x = (x1; : : : x°) 2
L¯

`1
`®1 £

L¯

`1
`®1 £ : : :

L¯

`1
`®1

d22;1;1(x; y) =
P°

i=1(d1;1(xi; yi))
2

β

α

γ

d1

…

d∞,1

d1

…

d∞,1
d22,∞,1



Why  Ρ22,∞,1                         ?

 Because we can…

 Embedding: …embed Ulam into Ρ22,∞,1 with 
constant distortion 
(small dimensions)

NNS: Any t-iterated product space has NNS on 
n points with
(lg lg n)O(t) approximation 

near-linear space and sublinear time

Corollary: NNS for Ulam with O(lg lg n)2

approximation
cf. each ℓp part has logarithmic lower bound!

edit distance between permutations
[A-Indyk-Krauthgamer‟09, Indyk‟02]



Embedding into

Theorem: Can embed Ulam metric into 
Ρ22,∞,1 with constant distortion 

Dimensions: α=β=γ=d

Proof intuition

Characterize Ulam distance “nicely”:

“Ulam distance between x and y equals the number 

of characters that satisfy a simple property”

“Geometrize” this characterization



Ulam: a characterization

 Lemma: Ulam(x,y) approximately 

equals the number characters a

satisfying:

there exists K≥1 (prefix-length) s.t.

the set of K characters preceding a in x

differs much from

the set of K characters preceding a in y

123456789

123467895

Y[5;4]

X[5;4]

x=

y=

E.g., a=5; K=4



Ulam: the embedding

“Geometrizing” characterization:

Gives an embedding

123456789

123467895

Y[5;4]

X[5;4]



A view on product metrics:

Give more computational view of embeddings

Ulam characterization is related to work in the 

context of property testing & streaming

[EKKRV98, ACCL04, GJKK07, GG07, EJ08]

P

Q

sum (ℓ1)

max (ℓ∞)

sum of squares (ℓ2
2) edit(P,Q)



Challenges 3,…

Embedding into product spaces?
Of edit distance, EMD…

NNS for any norm (Banach space) ?
Would help for EMD (a norm)

A first target: Schatten norms (e.g., trace of a 
matrix)

Other uses of embeddings into product 
spaces?

Related work: sketching of product spaces 
[JW‟09, AIK‟08, AKO]



Some aspects I didn‟t mention yet

 NNS for spaces with low intrinsic dimension:

 [Clarkson‟99], [Karger-Ruhl‟02], [Hildrum-Kubiatowicz-Ma-
Rao‟04], [Krauthgamer-Lee‟04,‟05], [Indyk-Naor‟07],…

 Cell-probe lower bounds for deterministic and/or exact 
NNS:

 [Borodin-Ostrovsky-Rabani‟99], [Barkol-Rabani‟00], [Jayram-
Khot-Kumar-Rabani‟03], [Liu‟04], [Chakrabarti-Chazelle-Gum-
Lvov‟04], [Pătraşcu-Thorup‟06],…

 NNS for average case:

 [Alt-Heinrich-Litan‟01], [Dubiner‟08],…

 Other problems via reductions from NNS:

 [Eppstein‟92], [Indyk‟00],…

 Many others !



Summary of challenges

1. Design qualitative, efficient 

space partitioning

2. Embeddings with improved distortion: 

edit into ℓ1

3. NNS for any norm: e.g. trace norm?

4. Embedding into product spaces: say, of 

EMD


