
COMS 4995-8: Advanced Algorithms (Spring’21) Jan 28, 2021

Lecture 6: Heavy Hitters and Frequency Moments

Instructor: Alex Andoni Scribes: Ilica Mahajan, Cassandra Marcussen

1 Overview of Lecture

Today’s lecture is a continuation of our discussion about streaming and sketching algorithms. We start by

discussing heavy hitters and improvements to the Count Min Algorithm. Then, the lecture progresses to a

discussion of computing frequency moments of a stream and the Tug-of-War algorithm for approximating

the second frequency moment.

2 Continuing Heavy Hitters

2.1 Overview of Heavy Hitters and the Count Min Algorithm

Last lecture, we discussed heavy hitters. Let fx be the frequency of x, and x ∈ [n]. We say x is a φ-Heavy

Hitter (HH) if fx ≥ φ and
∑

y fy = φm. (For example, n = 232 for the case of IP addresses).

Last lecture, we discussed the Count Min Algorithm, which is a linear sketch of fx, the frequency

of x. We recall that a linear sketch is a sketch that can be represented as Af , where A is a random matrix

that the algorithm chooses. The size of the sketch for the Count Min Algorithm is: O( lognεφ ) words.

The Count Min Algorithm returns a set H ⊆ [n] such that with probability ≥ 1− 1
n :

1. If x is a φ-Heavy Hitter, then x ∈ H.

2. If x is not a (1− ε) · φ-Heavy Hitter, then x 6∈ H.

We note that for an x not in these two cases, there is no guarantee of whether x is in H or not.

As a side note, how many bits are there for a “word?” There are O(log(m)) bits. Using the Morris

Algorithm, we can do even better, approximately O(log(log(m))).

The Count Min Algorithm outputs an estimator, which we call f̂x for a given x. We calculate the

estimator in the following way: f̂x = miniSi[hi(x)], where Si is one of the arrays that we initialize for the

Full Count Min Algorithm. We find and output the set H with the algorithm by checking iteratively if

for each x ∈ [n], f̂x ≥ φ ·m. If this is satisfied, we add x to H.

What is the issue with this algorithm? The time taken by this is at least n, which is the size of

the universe of items. This is a problem, since this n is potentially way too large! For example, if we are

considering the space of all IP addresses, this n is of size 234. Space is at least logarithmic with n but

time is most certainly not.
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2.2 Improvement to Count Min Algorithm

Given properties of the set H above, what is max |H|?

|H| ≤ 1

φ(1− ε)
.

The reason this is the maximum size for our set H is that any φ-Heavy Hitter takes up a φ-fraction

of the stream. Different Heavy Hitters will take up different φ-fractions of the streams. Similarly, any

(1 − ε) · φ-Heavy Hitter takes up a (1 − ε) · φ-fraction of the stream. So, the number of different heavy

hitters must be ≤ 1
(1−ε)·φ .

Note that n >> m, i.e. the size of the universe is much larger than the length of the stream. Since

our algorithm takes time n, we have a new goal in mind.

Goal: To compute φ-Heavy Hitters in time much less than n.

Theorem 1. We can get the same guarantees as the Count Min Algorithm (on the set H), using:

1. O( log
2n
φ ) time to find φ-Heavy Hitters.

2. O( log
2n

ε·φ ) space, in words.

We note that the time to find the φ-Heavy Hitters is an improvement from the O(n) runtime of the

Count Min Algorithm. However, the new space guarantee is larger.

We will now present the building blocks for the proof of this theorem. This theorem uses Count Min

as a black-box and uses one trick to speed up the finding of Heavy Hitters. We think of this like a binary

search to find the Heavy Hitters.

Definition 2 (Dyadic Interval). Assume n is a power of 2. A dyadic interval on [n] is an interval

[i · 2l + 1, (i+ 1)2l], where i is an integer such that i ∈ {0, ..., n
2l
− 1}, and l = {0, 1, ..., log2n}.

We will develop the Fast Count Min algorithm, which stores log2n+1 sketches that are each Count

Min. In particular, we let Count Min with index l, denoted CMl be the Count Min Algorithm whose

universe consists of items:

[1, 2l], [2l + 1, 2 · 2l], ..., [i · 2l + 1, (i+ 1)2l], ....

In other words, the universe of CMl is composed of the dyadic intervals at level l. For CMl, we define

the frequency of a dyadic interval [i · 2l + 1, (i+ 1)2l] as:

f[i·2l+1,(i+1)2l] = sum of the frequencies of the leaves in the interval.

We can represent the Count Mins at each level using a binary tree. As pictured below, each level of

the binary tree corresponds to a Count Min whose universe consists of different dyadic intervals.
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Figure 1: A representation of the Fast Count Min algorithm, where each level l of the binary tree is its
own parallel stream, and corresponds to a Count Min.

We can think of our logn + 1 Count Min instances for [n] as having logn + 1 parallel streams.

Each stream is its own Count Min sketch, independent of the other streams. As we consider Count Min

instances over more granular dyadic intervals, we can more closely identify (in terms of number of bits)

our heavy hitters. The point is that we are trying to resolve the issue of identifying potential candidates

to be a Heavy-Hitter, and can do so using a recursive algorithm where we more closely identify our

heavy-hitters using our Count Min instances CMl for increasing l.

Observation 3. Fix a diadic interval I = I1 ∪ I2. Then the frequency of I, i.e. f(I) is:

f(I) = f(I1) + f(I2).

Observation 4. Fix a diadic interval I = I1 ∪ I2. If I1 or I2 is a φ-Heavy Hitter, then I is a φ-Heavy

Hitter.

Proof. For every level l,
∑

I fI = m, where I is the dyadic interval at level l. So, basically we have

the summation of frequencies at the bottom and if I1 is not a HH then fI1 ≥ φm then trivially, fI =

fI1 + fI2 ≥ φm
Basically, if a node is a HH then the parent will be a HH too, and the parent is a HH in its own

stream.

Below is a visualization of Observation 4.
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Figure 2: A representation of the property that if a node is a heavy hitter, the its parent will be a heavy
hitter. Recursively, this implies that the entire path to a heavy hitter consists of heavy hitters.

Note: Before introducing the improved algorithm to find all of the φ-Heavy Hitters, we review three

facts we know about our binary tree representing diadic intervals:

1. For a node of level l in the tree, we can check if the node is a φ-Heavy Hitter for CMl.

2. At every level of the binary tree, we have ≤ 1
(1−ε)φ Heavy Hitters. This is because every level is a

stream, and for each stream a (1− ε) · φ-Heavy Hitter takes up a (1− ε) · φ-fraction of the stream.

3. If a node is a φ-Heavy Hitter, then its parent is too.

We introduce the following algorithm to find all the Heavy Hitters:
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Algorithm 1: Fast Count Min Algorithm

Result: a data structure using O( log
2n

ε·φ ) words of space, O( log
2n
φ2

) estimation time for f̂I .

HH(node v):

1. If v is leaf and a Heavy Hitter, add v to H, return

2. Let c1 and c2 be the children of v.

3. If c1 is a Heavy Hitter, return HH(c1).

4. If c2 is a Heavy Hitter, return HH(c2).

Remember that the root is always a HH and the interval of the root is [n]. This is because f[n] = m ≥
φ ·m. Also, we check if v, c1, and c2 are Heavy Hitters by using the Count Min of their corresponding

levels.

2.2.1 Analysis of the Fast Count Min Algorithm

Space: O(log(n)) Count Min sketches which gives O( log
2n
εφ ).

Estimation Time: On each level, we have ≤ 1
(1−ε)·φ Heavy Hitters. Our estimation time is found as

follows:

# calls to HH est. of f̂I = (num. levels of binary tree)·(2 children of each node)·(max num. of HHs per level)

≤ O(logn) · 2 · 1

(1− ε) · φ

Hence, overall the time is O( log
2n
φ ).

3 Frequency Moments and the Tug-of-War Algorithm

3.1 Frequency Moments

We now move to a discussion of the frequency moments of a stream. Before, in our discussion of Heavy

Hitters, we were primarily motivated by wanting to find items of maximum frequency. In doing so, we

wanted to compute ||f∞|| = maxxfx.

We now broaden our discussion to consider other norms of f . We can define of p-norm ||fp|| as:

Definition 5 (p-norm). The p-norm of the frequency vectors fx of the stream is defined as:

||fp|| := (
∑
x

fpx)1/p.

In particular, we see that ||f1|| =
∑

x fx = m, where m is the length of the stream. We see that

||f2|| = (
∑

x f
p
x)1/p. This quantity, ||f2||, will be the main focus of our discussion in this section.

Based on the p-norm, we also define frequency moments.
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Definition 6 (p-th Frequency Moment). The p-th frequency moment is defined as:

Fp := ||fp||p =
∑
x

fpx .

In particular, we see that F2 := ||f2||2 =
∑

x f
2
x .

As a side note, the most natural norms to consider will be the 2-norm and the ∞-norm (correspond-

ingly, we look at the second and infinite frequency moments). The 2-norm is the most important and

mathematically the “nicest”. This is because it corresponds to Euclidean geometry, or the geometry of

the real world. It is also the only norm that has an inner product. While the 1-norm corresponds to

singletons, the 2-norms corresponds to pairs and relationships between items. We also will see that the

2-norm is interesting and special in a lot of applications. For example, it has applications in least square

regression. Also, in the context of random variables, we see that the standard deviation is the 2-norm of

deviation from the average.

3.1.1 Motivating the Tug-of-War Algorithm

We now ask: how can we compute F2 or ||f2||? We consider the following example. Suppose we have two

frequency vectors, f1 = (1, 1, ..., 1) and f2 = (1, 1, ..., 1,
√
n, 1, ...1). The F2 norm of f1 is n. The F2 norm

of f2 is 2n− 1. Unfortunately, we cannot distinguish f1 from f2 using Count Min unless space is O(
√
n).

Why? This is because the one term
√
n in f2 is a 1√

n
-Heavy Hitter. Our Count Min algorithm may map

a lot of values with frequency 1 in the same bucket as this element, particularly if we map to a small

table. In the extreme case, for example, if we have only one bucket, the frequencies of 1 overwhelm the√
n frequency, and it will be tough to distinguish our two frequency vectors. We’ll need a table of at least

space
√
n then.

This motivates the following idea: we can multiply all of our frequencies in a frequency vector by a

random sign (i.e. by +1 or −1). We do this because the sum of n random ±1 values has expectation 0,

and a deviation of ≈
√
n. So, our sum of n random ±1 values will not be too far from 0. If we have any

outlying frequencies, or nonrandom frequencies, then these will influence our new sum. For example, for

f2 = (1, 1, ..., 1,
√
n, 1, ...1) from our example above, our new sum multiplied with random signs will be

proportional to ≈ ±
√
n. This is the motivation behind the main “trick” that the Tug-of-War Algorithm

relies on.

3.2 Tug-Of-War Algorithm

Algorithm 2: Tug-of-War Algorithm

Result: an estimator for the second moment z2.

1. Initialize z = 0.

2. Get a hash function, σ : [n] −→ {±1}, note that it should be random whether or not we get a +1 or

-1.

3. Sketch: z =
∑

x σxfx, and at seeing an item x, z is updated: z := z + σx

4. Output the estimator for the second moment: z2.
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Analysis: Is the estimator even a good one?

Claim 7. E[z2] = F2.

Proof.

E[z2] = E[(
∑
x

(σxfx))2]

= E[
∑
x,y

σxσyfxfy]

=
∑
x,y

E[σxσy]fxfy.

Notice here that if x = y, E[σxσy] will be 1, and if they are not equal, E[σxσy] will be 0. So,∑
x,y

E[σxσy]fxfy =
∑
x

fxfx = F2.

Claim 8. V ar[z2] ≤ O(F 2
2 ).

Proof. V ar[z2] = E[z4]− (E[z2])2.

We can drop the second term here since it is proportional to the first term. So, continuing,

−→= E[(
∑
x

σxfx)4]

=
∑

fxfyfpfq · E[σxσyσpσq]

Again, let’s think about what happens when x = y = p = q or two pairs, versus when none of them are

equal or there is only one pair. In the latter case, the expected value would equal 0. But, if there are two

pairs, or x = y = p = q, then it will not be 0. There are 3 ways for that to occur.

V ar[z2] =
∑
x

f4x + 3 ·
∑
x,y

f2xf
2
y

= (
∑

fx)2 + 3 · (
∑
x

(fx)2)2.

Thus, we have shown that:

E[z2] = F2

V ar[z2] ≤ 4 · F 2
2

And using Chebyshev,

Pr

[
|z2 − F2| > 3 ·

√
4F 2

2

]
≤ 1

9

and z2 = F2 ± 6F2 with probability ≥ 8
9 .
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3.3 Tug-Of-War+ Algorithm

To get a better, more concentrated approximation (i.e. for a (1 + ε)-factor approximation, we use a

technique we have seen before and just repeat the Tug-of-War algorithm k = θ( 1
ε2

) times. This is exactly

what the Tug-of-War+ algorithm, introduced below, will do.

Algorithm 3: Tug-of-War+ Algorithm

Result: an estimator z2.

1. Keep k = θ( 1
ε2

) counters z1, ....zk.

Each zi :=
∑

x σ
i
xfx, where σi : [n]→ {±1} is i.i.d. random.

2. Output the estimator: z2 = 1
k

∑k
i=1 z

2
i .

Claim 9. E[z2] = F2.

Proof. This will overall be the same proof as for the Tug-of-War algorithm, also using properties such

linearity of expectation as we did in Lecture 1.

Claim 10. V ar[z2] ≤ 1
k · 4 · (F2)

2.

Proof. Same proof structure as the proof of the Variance of the random variable X for the Morris

Algorithm from Lecture 1.

Claim 11. The Tug-of-War+ algorithm provides a (1± ε)-approximation of F2 with probability ≥ 8/9.

Proof. We recall Chebyshev’s inequality, which tells us that for a random variable X:

Pr[|X − E[X]| > λ] ≤ V ar[X]

λ2
.

We set λ = 3 ·
√
V ar[X] ≤ 3 ·

√
1
k · 4 · (F2)2. Thus, by Chebyshev’s inequality, we get:

Pr

[
|X − E[X]| > 3 ·

√
1

k
· 4 · (F2)2

]
≤

1
k · 4 · (F2)

2

9 · 1k · 4 · (F2)2
≤ 1

9
.

Thus, our “bad event” that z2 = F2 ± 6√
k
F2 = F2 · (1 ± 6√

k
) occurs with probability ≤ 1

9 . We can

therefore set k = 36
ε2

to get our desired result.

We have therefore found that the Tug-of-War+ algorithm estimates the second frequency moment

with up to a (1±ε)-factor with probability ≥ 8/9. That is, our estimator z2 = (1±ε) ·F2 with probability

≥ 8/9.
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