
COMS 4995-8: Advanced Algorithms (Spring’21) Jan 26, 2021

Lecture 5: Heavy Hitters

Instructor: Alex Andoni Scribes: Joseph Yang (zy2431), Hanna Kartynnik (hk3129)

1 Announcements

• A new TA for the course, office hour will be posted later on courseworks.

• Homework 1 will be due on Thursday, right before class.

2 Recap

Recall from last time, we talked about streaming and sketching algorithms. The basic model of a

streaming problem is: we have a stream of objects x1, x2, . . . , xm, and for example they come from some

universe of numbers from 1 to n. Namely, x1, x2, . . . , xm ∈ [n].

Goal: estimate the number of distinct objects in the stream.

Algorithm: Bottom-k algorithm, using a hash function h : [n]→ [0, 1]. It is enough to set k = Θ(1/ε2)

for a (1± ε)-approximation, supposing d� 1/ε2. Here, recall from last lecture, d is the number of unique

objects in the stream.

Example 1. n is the number of different IP (n = 232).

Additional Remarks

1. Since the output of the hash function is any real number on the [0, 1] interval, the number of buckets

of our hash function is uncountable (one bucket for one real number), which is impossible to store. So

we need to modify the hash function to h : [n]→
{

0, 1, . . . ,M −1
}

or h : [n]→
{

0, 1
M ,

2
M . . . , M−1M

}
for some M large enough.

The only tiny issue is: when we use real number outputs, the probability that h(x) = h(y) for

random x and y is actually 0. But if we switch to discrete values, the probability of collision

is nonzero now. Suppose there are n different items in the stream, if we pick M = n3, then

E[#collisions] ≤ n2

M = 1
n . So if we have M sufficiently large, the number of collisions would be very

few, in expectation.

2. In the Bottom-k algorithm, the hash function has to be fully random. In fact, it is possible to use

hash functions with “limited randomness” to achieve what we want.

Definition 2. Let H be a family of hash functions. H is k-wise independent if for any a1, a2, . . . , ak ∈{
0, 1

M , . . . ,
M−1
M

}
, and for any x1, . . . , xk ∈ [n] (all xi’s are distinct), and any hash function h ∈ H,

we have Pr[h(xi) = ai,∀i = 1, . . . , k] = 1
Mk .
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Remark: if H is 2-wise independent, then it’s universal.

Remark: ∀k ≥ 2, we can construct k-wise independent hash function class H of size log |H| ≤
O(k · log n).

Theorem 3 (Thorup ’13). For the Bottom-k algorithm, it’s enough to use 2-wise independent hash

function.

The idea behind k-wise independent is: whenever we consider probability, we consider the probabil-

ity over at most k objects at the same time. To better illustrate what this means: when we compute

expectation, we often take one random variable; when we compute something like variance, we take

two random variables. In the bottom-k algorithm, we consider k variables at the same time.

3 Most Frequent Object Problem

Suppose we are still working with a stream of objects, namely x1, x2, . . . , xm ∈ [n]. What is the most

frequent object?

Definition 4. We define the frequency vector f ∈ Rn+ as the following: for any dimension fx of the

vector f , it represents how many times the object x has appeared in the stream.

One quick observation would be ||f ||1 =
∑

x fx = m = length of the stream. Here, ||f ||1 is simply the

1-norm of the vector f , since fx ∈ R+ (i.e. all fx ≥ 0).

Problem Revision: we would like to find x where fx is maximal among all dimensions of the fre-

quency vector f .

Simple Solution: Simply store the vector f explicitly. This needs O(n) space, which is too large.

Theorem

• We can’t store the exact frequency vector f with less space.

• We can’t use 2-approximation for this problem, even with randomization.

Here’s a bad case: all items appear once, except exactly 1 item appears twice. In order to de-

tect whether an item is a new item or an item we have seen, we must know every item that has

appeared so far. So 2-approximation is ineffective for this problem.

Relaxed Version of the Problem: report items which are sufficiently frequent.

Definition 5. Suppose φ ∈ (0, 1), item x ∈ [n] is a φ-heavy hitter if fx ≥ φ ·
∑

y fy = φ ·m. In other

words, the frequency of item x is at least φ fraction of the entire length of the stream.

New Goal: find all items such that are φ-HH (heavy hitters). Acceptable space complexity depends

on φ.
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4 The CountMin Algorithm

Basic Idea: to get some estimate f̂x for fx.

In order to reduce space needed to store the vector, we need to reduce the number of dimensions in

the vector. In other words, we need to “transform” the original frequency vector f which has n dimen-

sions, to a vector S which has w dimensions, such that w < n. There could be collisions, since we are

reducing from something bigger to something smaller, but we’ll take that as trade-off of less space needed.

An intuitive idea would be: we use a hash function h : [n] → [w] to try to store the information of

f in S.

Suppose fi1 , fi2 , fi3 are the dimensions in f that were assigned to the same bucket i by the hash function,

then we would like to store the sum of fi1 , fi2 , fi3 in the ith dimension of vector S, namely Si. This is

because we want the value stored in Si also change whenever any one of fi1 , fi2 , fi3 changes.

Algorithm 1: Bucket-Algorithm

Result: approximated count of how many times object x appears in the stream (for each x ∈ [n])

Initial: Set S[1] = S[2] = · · · = S[w] = 0, in other words, S is just the zero vector with w

dimensions;

for each time we see an object x in the stream do
S[h(x)]← S[h(x)] + 1

end

return estimators f̂x = S[h(x)] (for each x ∈ [n])

We want to prove that this estimator f̂x is good.

Observation 6. It is easy to see that f̂x ≥ fx. Our estimator takes into account the occurrences of x

and other elements for which their hash value is equal to h(x). So the estimator must be at least fx.

The estimator f̂x can be much larger than the actual frequency fx if many other items also fall into

the same bucket as x. Let us show that the estimator is not too large.

Claim 7. Prh[f̂x > fx + εφm] ≤ 0.1 as long as w ≥ Ω( 1
εφ).

Intuition. We care about φ-heavy hitters, i.e about frequencies fx which are at least φm. Intuitively,

the approximation comes from the fact that we will never be able to be precisely sure whether the item’s

frequency is slightly more than this threshold φm or slightly less. Generally speaking, we need to be able

to detect fx whose magnitude is about φm. Note that εφm is an additive error.
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Proof. We assume that h is a fully random hash function. Let us find Eh[f̂x]:

Eh[f̂x] = Eh

∑
y∈[n]

1[h(x) = h(y)] · fy


= Eh

fx +
∑
y 6=x

1[h(x) = h(y)] · fy


= fx +

∑
y 6=x

fy Pr[h(x) = h(y)]︸ ︷︷ ︸
1
w

≤ fx +

∑
y fy

w

= fx +
m

w

We can rewrite it as E[f̂x−fx] ≤ m/w. f̂x−fx is a positive random variable and we can use Markov’s

inequality:

Pr
[
f̂x − fx > 10 · m

w

]
≤ 0.1.

In order to get the result from the claim statement, we need for 10m/w to be equal to εφm, which

we can achieve by setting w = 10
εφ .

Algorithm 2: The φ-heavy hitter algorithm

Result: all φ-heavy hitters in the stream

for each x ∈ [n] do

Compute f̂x from S

if f̂x ≥ φm then
Report x as φ-HH

end

Corollary 8.

• If fx ≥ φm, the algorithm reports x as a φ-heavy hitter (fx ≥ φm implies f̂x ≥ φm).

• If fx < φm− εφm = (1− ε)φm, the algorithm doesn’t report x as a φ-heavy hitter with at least 90%

probability.

By Claim ??, f̂x is less than fx + εφm with greater than 90% probability. Hence, if fx < φm− εφm,

Pr[f̂x < fx + εφm < φm] ≥ 0.9.

The issue of this algorithm: with 10% probability some non-HH x’s are reported as HH’s. It is

not just theoretical issue, it will actually happen. We have a very large frequency vector f and we map

a large number of n items into a relatively small vector S of size w � n. Say we have a frequent item

x that falls into a bucket h(x). In expectation, a fraction of 1/w of all other items in the stream will
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also fall into the bucket h(x), so we cannot distinguish which one contributed to the “heaviness” of this

bucket.

1 x yi yj n

f :

1 h(x) w

S :

In fact, all y’s such that h(y) = h(x) will be considered heavy and that’s an issue because there are a

lot of items. How can we solve such an issue? We can make sure there are no collisions but then we need

w to be Ω(n) which does not save the space. That’s why we will do something different.

4.1 Full CountMin algorithm

The idea is to repeat the “basic idea” (the Bucket algorithm) L = O(log n) times.

Algorithm 3: Full CountMin algorithm

Result: approximated count of how many times x appears in the stream (for each x ∈ [n])

Initialize Si[1..w], hi : [n]→ [w], ∀i = 1..L

for each time we see an object x in the stream do
Si[hi(x)]← Si[hi(x)] + 1, ∀i = 1..L

end

return estimators f̂x ← min1≤i≤L Si[hi(x)] (for each x ∈ [n])

The reason we return the minimum is that all the estimators are biased towards one side since they return

frequencies larger than the actual frequencies. Thus, the minimum estimator for x ∈ [n] is closest to the

true value. Let us analyze the algorithm.

Claim 9. For w = 10
εφ , L = O(log n), we have

f̂x − fx ≤ εφm

for all x ∈ [n] with probability at least 1− 1/n.

Proof. By Claim ??, for any fixed i ∈ [L],

Prhi [Si[hi(x)]− fx > εφm] <
1

10
.
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For a fixed x ∈ [n],

Prh1,...,hL [f̂x − fx > εφm] =
L∏
i=1

Prhi [Si[hi(x)]− fx > εφm]

≤
(

1

10

)L
= e−L ln 10 =

1

n2
,

as long as L = 2 lnn
ln 10 = O(log n). (The first equality holds since the hash functions are independent and

each Si[hi(x)] is greater or equal to their common lower bound f̂x.) Hence

Pr[∃x s.t. f̂x − fx > εφm] ≤
by union bound

∑
x∈[n]

Pr[f̂x − fx > εφm] ≤ n · 1

n2
=

1

n
.

We conclude that the fraction of items incorrectly reported as heavy hitters drops to 1/n.

The space needed for Full CountMin algorithm is O(Lw) words (that count up to m) which implies

O( lognεφ ) words for φ-HH (up to 1± ε approximation, see Corollary ??).

Observation 10 (change of the model). Consider a situation where we have a network with several

routers f1, f2, f3. Suppose we have a separate stream for each router. Assume we are interested in the

entire frequency vector f for the network, not frequency vectors per router. Note that f = f1 + f2 + f3

which implies fx = f1x + f2x + f3x for any x ∈ [n]. How can we compute a sketch that is able to estimate

f̂x for all x ∈ [n]?

Solution. Each router computes a CountMin sketch of its frequency vector (using the same hash func-

tions) and then we sum them all up. In particular, a CM sketch of some x is a vector from RLw. Each

coordinate in Si is a linear combination of the coordinates of the frequency vector f . The CM sketch can

be written in the form A · f where A is a matrix of size Lw×n (A(i,j),x = 1 iff hi(x) = j, i ∈ [L], j ∈ [w],

x ∈ [n]). This is another way to write the sketch function. So the sketch can be described as a linear

operation to be applied to the frequency vector.

Af1︸︷︷︸
sketch at router 1

+Af2 +Af3 = A(f1 + f2 + f3)︸ ︷︷ ︸
sketch of frequency vector f1+f2+f3

.

We conclude that CountMin is a linear sketch.

Questions for the next lecture: what are the potential issues of the φ-HH algorithm? How can they

be fixed?
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