
COMS 4995-8: Advanced Algorithms (Spring’21) Apr 8, 2021

Lecture 24: Multiplicative Weights Update

Instructor: Alex Andoni Scribes: Arkadiy Saakyan as5423, Andrew Schreiber ajs2409

1 Setting

Imagine the following setting: There are n experts advising to buy or sell a stock at time t. Let f ti = 1

if the expert i is wrong at time t, and 0 otherwise. Let T be the total number of observations.

Definition 1. Goodness of expert:

Let mt
i = number of errors by expert i at time t.

Let M t = total number of errors at time t.

Best expert i = arg mini∈[n]m
T
i

Goal: bound MT as a function of best expert prediction. Ideally, MT ≤ mT
best.

2 Examples of bad algorithms

1. Choosing majority. Suppose the following scenario, n = 3: Here we incur T errors even though there

expert 1 B B B
expert 2 B B B
expert 3 S S S
true S S S

is an expert that is always correct!

2. Following yesterday. Suppose the following scenario, n = 2: Since the yesterday’s correct expert is

expert 1 B S B S

expert 2 S B S B

true B B B B

always wrong on the current day, we end up being wrong every day!
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3 Weighted Majority Algorithm

Algorithm 1: Weighted Majority Algorithm

initialize w0
i = 1;

for t = 1 . . . T do

σtB =
∑

i:B w
t
i ;

σtS =
∑

i:S w
t
i ;

if σtB > σtS then

buy at t;

else

sell at t;

end

for i = 1 . . . n do

f ti = 1 if i is wrong;

wt+1
i = wti(1− ε · f ti )

end

end

Theorem 2. ∀i ∈ [n] : MT ≤ 2(1 + ε) ·mt
i + 2 lnn

ε

Proof. We will use the idea of a ”potential”.

Let Φt =
∑

i∈[n]w
t
i

Want: mT
i ≤ ΦT+1 ≤MT

1. ΦT+1 ≥ wT+1
i = 1 · (1− εf ti )m

T
i

2. ΦT+1 ≤ n(1− ε
2)M

T

To see that 2 is true, suppose we make an error at time t.

Then σcorr ≤ σwrong
Then

∑
i:corr w

t
i ≤

∑
i:wrong w

t
i

Then we have that

Φt+1 =
∑
i:corr

wti +
∑

i:wrong

wti(1− ε)

≤ ΦT − ε
∑

i:wrong

wti

≤ Φt − ε

2
· Φt

= Φt(1− ε

2
)

By 1 and 2, we have that

(1− ε)mTi ≤ ΦT+1 ≤ n(1− ε

n
)M

T
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We know that n(1− ε
n)M

T ≤ n · e−
ε
2
MT

We also know that ln 1− ε ≥ −ε− ε2
Therefore,

mT
i (−ε− ε2) ≤ lnn− ε

2
MT

Hence, we have that

ε

2
MT ≤ ε(1 + ε) ·mT

i + lnn

=⇒ MT ≤ 2(1 + ε) ·mT
i +

2 lnn

ε

4 MWU: Multiplicative Weights Update Algorithm

In the Weighted Majority Algorithm we used f ti to be a binary flag indicating if expert i was wrong

at time t (1 indicating incorrect). Let us now redefine f ti ∈ [−1,+1] s.t. f measures to what degree a

particular expert was right or wrong (-1 being the most correct, 1 being the most incorrect). Let:

mt
i =

∑
j≤t

f ji

Multiplicative Weights Update Algorithm: Same as Weighted Majority Algorithm except choose to follow

expert i randomly, proportional to its weight. More Formally:

pi =
wti
Φt
, pt = (pt1, p

t
2, . . . , p

t
n)

wt+1
i = wti(1− εf ti )

Its worth explicitly noting that the fact that f can give negative values means when experts get things

right we increase their weights, as opposed to the old algorithm where we could only decrease or keep the

weights the same.

Theorem 3. MT , E[# errors we make] =
∑T

t=1 E[f ti ] =
∑T

t=1

∑n
i=1 p

t
if
t
i =

∑
t〈pt, f t〉

Then: MT ≤ mt
i + εT + ln(n)

ε .

Proof. Let: Φt =
∑

iw
t
i

1. ΦT+1 ≥ wT+1
i =

∏T
t=1(1− εf ti )
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2. Φ1 = n

Φt+1 =
n∑
i=1

wti(1− εf ti )

=
n∑
i=1

wti − ε
n∑
i=1

wtif
t
i

=
n∑
i=1

wti − ε
n∑
i=1

wti
Φt
f tiΦ

t

= Φt − ε · Φt · 〈pt, f t〉
= Φt(1− ε · 〈pt, f t〉)

Thus we have: ΦT+1 = Φ1 ·
∏T
t=1(1− ε · 〈pt, f t〉). Thus:

ΦT+1 ≤ n
T∏
t=1

e−ε·〈p
t,f t〉 = n · e−ε

∑
t〈pt,f t〉 = n · e−εMT

So combining 1 and 2 we have: ∏
t

(1− εf ti ) ≤ n · e−εM
T

∑
t

ln(1− εf ti ) ≤ ln(n)− εMT

And now trying to lower bound the left side we have:∑
t

ln(1− εf ti ) ≥
∑
t

−εf ti − ε2(f ti )2 ≥
∑
t

−εf ti − ε2 ≥ −ε ·mt
i − ε2 · T

Thus combining the previous equations we have:

−ε ·mt
i − ε2· ≤ ln(n)− εMT

MT ≤ mT
i + ε · T +

ln(n)

ε

Since this is true ∀i ∈ [n] =⇒ MT ≤ minim
T
i + ε · T + ln(n)

ε

Remark: if f ti ≥ 0 =⇒ MT ≤ (1 + ε)mT
i + ln(n)

ε
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