
COMS 4995-8: Advanced Algorithms (Spring’21) Apr 6, 2021

Lecture 23: Interior Point Method

Instructor: Alex Andoni Scribes: Shrihan Pasikanti, Nikhil Cherukupalli

1 Introduction

In today’s lecture, we dive into the concept of the interior point method by applying the previously visited

principles of convexity and Newton’s Method.

2 Interior Point Method for Linear Programs

In this section, we try to solve the following problem:

min cTx

s.t. Ax ≤ b

We take K to be the set of acceptable values. That is, K := {x : Ax ≤ b}.

Definition 1.

f(x) =

{
cTx if x ∈ K
+∞ if x 6∈ K

The problem is that f may not be sufficiently smooth on the boundary ∂K.

Definition 2.

F (x) =

{
<∞ if x ∈ K
+∞ if x 6∈ K

We want F (x)→∞ as x→ ∂K. We will define this function in detail later so that it has the aforemen-

tioned property.

Definition 3 (Barrier Function). Let’s define:

fη(x) = ηcTx+ F (x)

where η is a scalar s.t. η > 0

Using our new definitions, we can restate the original problem.

New goal: Optimize fη(x) (i.e find min
xεR

fη(x))
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Now, we take

F (x) : = lg

m∏
i=1

1

bi −Aix

=

m∑
i=1

lg
1

bi −Aix

=

m∑
i=1

− lg(bi −Aix)

where Ai denotes the i-th row of matrix i.

Definition 4. x∗η = arg min
x

fη(x) = arg min
x

{ηcTx+ F (x)}

Claim 5. fη(x) is convex

Proof. It is sufficient to show that the Hessian matrix (∇2fη) is positive semi-definite, which implies that

all its eigenvalues (λi ≥ 0).

We know:

fη(x) = ηcTx+ F (x)

∇fη(x) = ηcT +
∑ Ai

bi −Aix

∇2fη(x) =
∑ ATi Ai

(bi −Aix)2

Now, consider an arbitrary vector y ,

yT∇2fη(x).y =
∑ yTATi Ai.y

(bi −Aix)2

=
∑ ||Aiy||22

(bi −Aix)2

≥ 0

Hence, the Hessian is positive semi-definite and therefore, fη(x) is convex.

Definition 6 (Slack Variable). ξ := (bi −A− ix)2
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Remark 7. If A is a full-rank matrix (vol(k) > 0), then λmin (∇fη(x)) > 0, implying that fη(x) is

strongly convex.

Definition 8 (Analytic Center). x∗0 is the analytic center of K if x∗0 = argminx∈Kfo(x)

We observe that x∗η is a continuous function w.r.t. η.

Definition 9 (Central Path). The set {x∗η : η > 0} is the central path of f .

Algorithm 0: We solve x∗η when η is a very large number

1. Recall that Gradient Descent depends on condition number (κ) of F , which could be very large.

2. Newton’s method is much faster but requires a “warm” start.

Algorithm 1: The main idea here is to walk along the central path as η increases from η ≈ 0 to a very

large value of η.

1. Start at x∗η0for η0 > 0 such that [x∗η0 ≈ x
∗
0]. Note here we assume that we know x∗0

2. For each iteration t : let ηt+1 = ηt.(1 + α), for some small value α > 0. Then, compute x∗ηt+1
using

Newton’s method with a warm start setting the initial value to x∗ηt

3. Terminate once ηt is “sufficiently large enough”. Return x∗ηtf
for where ηtf is the stopping point.

Fact 10. The value x∗ηi+1
is within the convergence radius of x∗ηi (i.e there is only a minor perturbation

between them).

Algorithm 2: Here we present an optimization of Algorithm 1.

For each iteration t : ηt+1 = ηt.(1 + α) , we don’t need to compute the optimal value of x∗ηt+1
’s for each

intermediate ηt+1. In fact, each time we take a Newton’s step, we are already in the radius of convergence.

So, we are merely trying to approximate x∗ηt+1
in this algorithm, which results in a cruder approximation

of the central path but also uses fewer steps.
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3 Analysis of the Terminal Condition

Here we examine some properties of the terminal condition ηT .

Claim 11.

cTx∗η − cTx∗ ≤ m/η

Before proving the claim, let us make a brief aside.

First, set ε = m
ηT

. Then, (1 + α)ηT0 = m
ε So, T = O(

lg m
εη0
α ). Note that it suffices to take α = 1

Poly(n,m) .

Now, let us prove the claim.

Proof. By definition of x∗η: the gradient convex function ∇fη(x∗) = 0. Then,

⇐⇒ ηc+∇F (x∗η) = 0

−∇F (x∗η)

η
= c

So, we need to show that:

∇F (x∗η)
T

η

(
x∗ − x∗η

)
≤ m

η

Take any x, y ∈ K. Then,

∇F (x)T (y − x) =
m∑
i=1

Ai
bi −Aix

(y − x)

=
m∑
i=1

Aiy −Aix
bi −Aix

=
m∑
i=1

bi −Aix− (bi −Aiy)

bi −Aix

= m−
m∑
i=1

bi −Aiy
bi −Aix

≤ m

Then, if we set x = x∗η, y = x∗ and divide the expression above by η, our result is proven.

Therefore, the assumed value of T = O(
lg m
εη0
α ) is correct.
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4 Analysis of Starting Point

Here we analyze the process to compute the true analytical center.

We can obviously compute x∗η0 from x∗0 by Newton’s method as long as η0 is sufficiently small. Suppose

we have any x′ ∈ K :

Claim 12. ∀ x′ ∈ K \ ∂K (i.e. x′ strictly inside the boundary of K), ∃ η, c′ such that:

x′ = arg min
x

(
ηc′x+ F (x)

)
Proof. The gradient at point x′ = 0. So,

∇
(
ηc′x+ F (x)

) (
x′
)

= 0

=⇒ ηc′ +∇F (x′) = 0

=⇒ − ∇F (x′)

η
= c′

So, we can merely fix η = 1 and find c′.

Algorithm:

1. Given x′ , we compute c′ = −∇F (x′) with η = 1.

2. Walk the central path back, and decrease ηt+1 = ηt.(1− α) by taking Newton’s step. This roughly

approximates x∗0 (i.e. the true analytical center).

3. Stop at t = T large enough so that we are close enough to x∗0

Remark 13. To find a feasible x′, we solve a different linear program LP ′ to min t subject to the con-

straints Aix ≤ bi + t.

For this LP ′, a feasible solution can be: x = 0, t = max
i

(−bi)

Remark 14. It is enough to set α := Θ
(

1√
m

)

In the next lecture, we will prove Remark 14, and proceed to talk about Multiplicative Weights Update

and then switch to Large Scale Models.
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