COMS 4995-8: Advanced Algorithms (Spring'21)

Apr 6, 2021

Lecture 23: Interior Point Method

Instructor: Alex Andoni Scribes: Shrihan Pasikanti, Nikhil Cherukupalli

1 Introduction

In today's lecture, we dive into the concept of the interior point method by applying the previously visited principles of convexity and Newton's Method.

2 Interior Point Method for Linear Programs

In this section, we try to solve the following problem:

 $\min c^T x$
s.t. $Ax \le b$

We take K to be the set of acceptable values. That is, $K := \{x : Ax \le b\}$.

Definition 1.

$$f(x) = \begin{cases} c^T x & \text{if } x \in K \\ +\infty & \text{if } x \notin K \end{cases}$$

The problem is that f may not be sufficiently smooth on the boundary ∂K .

Definition 2.

$$F(x) = \begin{cases} < \infty & \text{if } x \in K \\ +\infty & \text{if } x \notin K \end{cases}$$

We want $F(x) \to \infty$ as $x \to \partial K$. We will define this function in detail later so that it has the aforementioned property.

Definition 3 (Barrier Function). Let's define:

$$f_{\eta}(x) = \eta c^T x + F(x)$$

where η is a scalar s.t. $\eta > 0$

Using our new definitions, we can restate the original problem. New goal: Optimize $f_{\eta}(x)$ (i.e find $\min_{x \in \mathbb{R}} f_{\eta}(x)$) Now, we take

$$F(x) := \lg \prod_{i=1}^{m} \frac{1}{b_i - A_i x}$$
$$= \sum_{i=1}^{m} \lg \frac{1}{b_i - A_i x}$$
$$= \sum_{i=1}^{m} - \lg (b_i - A_i x)$$

where A_i denotes the *i*-th row of matrix *i*.

Definition 4.
$$x_{\eta}^* = \operatorname*{arg\,min}_x f_{\eta}(x) = \operatorname*{arg\,min}_x \{\eta c^T x + F(x)\}$$

Claim 5. $f_{\eta}(x)$ is convex

Proof. It is sufficient to show that the Hessian matrix $(\nabla^2 f_\eta)$ is positive semi-definite, which implies that all its eigenvalues ($\lambda_i \geq 0$).

We know:

$$f_{\eta}(x) = \eta c^{T} x + F(x)$$
$$\nabla f_{\eta}(x) = \eta c^{T} + \sum \frac{A_{i}}{b_{i} - A_{i}x}$$
$$\nabla^{2} f_{\eta}(x) = \sum \frac{A_{i}^{T} A_{i}}{(b_{i} - A_{i}x)^{2}}$$

Now, consider an arbitrary vector \boldsymbol{y} ,

$$y^T \nabla^2 f_\eta(x) \cdot y = \sum \frac{y^T A_i^T A_i \cdot y}{(b_i - A_i x)^2}$$
$$= \sum \frac{||A_i y||_2^2}{(b_i - A_i x)^2}$$
$$\ge 0$$

Hence, the Hessian is positive semi-definite and therefore, $f_{\eta}(x)$ is convex.

Definition 6 (Slack Variable). $\xi := (b_i - A - ix)^2$

Remark 7. If A is a full-rank matrix (vol(k) > 0), then $\lambda_{\min}(\nabla f_{\eta}(x)) > 0$, implying that $f_{\eta}(x)$ is strongly convex.

Definition 8 (Analytic Center). x_0^* is the analytic center of K if $x_0^* = \arg \min_{x \in K} f_o(x)$

We observe that x_{η}^* is a continuous function w.r.t. η .

Definition 9 (Central Path). The set $\{x_{\eta}^* : \eta > 0\}$ is the central path of f.

Algorithm 0: We solve x_{η}^* when η is a very large number

- 1. Recall that Gradient Descent depends on condition number (κ) of F, which could be very large.
- 2. Newton's method is much faster but requires a "warm" start.

Algorithm 1: The main idea here is to walk along the central path as η increases from $\eta \approx 0$ to a very large value of η .

- 1. Start at $x_{\eta_0}^*$ for $\eta_0 > 0$ such that $[x_{\eta_0}^* \approx x_0^*]$. Note here we **assume** that we know x_0^*
- 2. For each iteration t: let $\eta_{t+1} = \eta_t \cdot (1 + \alpha)$, for some small value $\alpha > 0$. Then, compute $x^*_{\eta_{t+1}}$ using Newton's method with a warm start setting the initial value to $x^*_{\eta_t}$
- 3. Terminate once η_t is "sufficiently large enough". Return $x^*_{\eta_{t_f}}$ for where η_{t_f} is the stopping point.

Fact 10. The value $x_{\eta_{i+1}}^*$ is within the convergence radius of $x_{\eta_i}^*$ (i.e there is only a minor perturbation between them).

Algorithm 2: Here we present an optimization of Algorithm 1.

For each iteration $t : \eta_{t+1} = \eta_t \cdot (1 + \alpha)$, we don't need to compute the optimal value of $x_{\eta_{t+1}}^*$'s for each intermediate η_{t+1} . In fact, each time we take a Newton's step, we are already in the radius of convergence. So, we are merely trying to approximate $x_{\eta_{t+1}}^*$ in this algorithm, which results in a cruder approximation of the central path but also uses fewer steps.

3 Analysis of the Terminal Condition

Here we examine some properties of the terminal condition η_T .

Claim 11.

$$c^T x^*_\eta - c^T x^* \le m/\eta$$

Before proving the claim, let us make a brief aside. First, set $\epsilon = \frac{m}{\eta_T}$. Then, $(1 + \alpha)\eta_0^T = \frac{m}{\epsilon}$ So, $T = \mathcal{O}(\frac{\lg \frac{m}{\epsilon \eta_0}}{\alpha})$. Note that it suffices to take $\alpha = \frac{1}{Poly(n,m)}$.

Now, let us prove the claim.

Proof. By definition of x_{η}^* : the gradient convex function $\nabla f_{\eta}(x^*) = 0$. Then,

$$\iff \eta c + \nabla F(x_{\eta}^{*}) = 0$$
$$\frac{-\nabla F(x_{\eta}^{*})}{\eta} = c$$

So, we need to show that:

$$\frac{\nabla F(x_{\eta}^{*})^{T}}{\eta} \left(x^{*} - x_{\eta}^{*} \right) \leq \frac{m}{\eta}$$

Take any $x, y \in K$. Then,

$$\nabla F(x)^{T}(y-x) = \sum_{i=1}^{m} \frac{A_{i}}{b_{i} - A_{i}x}(y-x)$$
$$= \sum_{i=1}^{m} \frac{A_{i}y - A_{i}x}{b_{i} - A_{i}x}$$
$$= \sum_{i=1}^{m} \frac{b_{i} - A_{i}x - (b_{i} - A_{i}y)}{b_{i} - A_{i}x}$$
$$= m - \sum_{i=1}^{m} \frac{b_{i} - A_{i}y}{b_{i} - A_{i}x}$$
$$\leq m$$

Then, if we set $x = x_{\eta}^*, y = x^*$ and divide the expression above by η , our result is proven. Therefore, the assumed value of $T = \mathcal{O}(\frac{\lg \frac{m}{\epsilon \eta_0}}{\alpha})$ is correct.

4 Analysis of Starting Point

Here we analyze the process to compute the true analytical center.

We can obviously compute $x_{\eta_0}^*$ from x_0^* by Newton's method as long as η_0 is sufficiently small. Suppose we have any $x' \in K$:

Claim 12. $\forall x' \in K \setminus \partial K$ (i.e. x' strictly inside the boundary of K), $\exists \eta, c'$ such that:

7

$$x' = \operatorname*{arg\,min}_{x} \left(\eta c' x + F(x) \right)$$

Proof. The gradient at point x' = 0. So,

$$\nabla \left(\eta c' x + F(x)\right) (x') = 0$$
$$\implies \eta c' + \nabla F(x') = 0$$
$$\implies -\frac{\nabla F(x')}{\eta} = c'$$

So, we can merely fix $\eta = 1$ and find c'.

Algorithm:

- 1. Given x', we compute $c' = -\nabla F(x')$ with $\eta = 1$.
- 2. Walk the central path *back*, and decrease $\eta_{t+1} = \eta_t (1 \alpha)$ by taking Newton's step. This roughly approximates x_0^* (i.e. the true analytical center).
- 3. Stop at t = T large enough so that we are close enough to x_0^*

Remark 13. To find a feasible x', we solve a different linear program LP' to min t subject to the constraints $A_i x \leq b_i + t$.

For this LP', a feasible solution can be: $x = 0, t = \max_{i}(-b_i)$

Remark 14. It is enough to set $\alpha := \Theta\left(\frac{1}{\sqrt{m}}\right)$

In the next lecture, we will prove Remark 14, and proceed to talk about *Multiplicative Weights Update* and then switch to *Large Scale Models*.