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1 Overview

We will continue the context about Gradient Descent

The object function:

Let f : Rn → R

min
x∈Rn

f(x)

2 Smoothness, convexity

Theorem 1. Taylor Expansion:

f(x+ δ) = f(x) +∇f(x)T · δ +
1

2
δT · ∇2f(y) · δ

Notice y is some point nearby x.

Definition 2. f is β-smooth: λmax∇2f(y) ≤ β

Then we can use Taylor Expansion to get the folowing upper bound on f(x+ δ):

f(x+ δ) ≤ f(x) +∇f(x)T · δ +
1

2
β||δ||2

We want δ which minimizes the later quantity:

δ , argminδ∈Rnf(x) +∇f(x)T · δ +
β

2
||δ||2

= argminδ∈Rn∇f(x)T (−η · ∇f(x)) +
β

2
η2||∇f(x)||2

= argminδ∈Rn ||∇f(x)||2(−η +
β

2
η2)

= argminδ∈Rn

β

2
η2 − η

= − 1

β
· ∇f(x)

(1)
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Now we can use δ = − 1
β∇f(x) to get the upper bound on f(x+ δ):

f(x+ δ) ≤ f(x) +∇f(x)T
(
− 1

β
∇f(x)

)
+
β

2
‖ − 1

β
∇f(x)‖2

= f(x) + ‖∇f(x)‖2
[
− 1

β
+

1

2β

]
= f(x)− 1

2β
‖∇f(x)‖2

(2)

if ∇f(x) 6= 0, we can have f(x+δ) < f(x). It means that we are making progress and we can quantify

how much progress we are making.

When ∇f(x) = 0(we are not making any progress), we have following situations:

1. Global min, which is our goal

2. Local min

3. Global/local max, can be usually solved (escaped) by some random perturbations

4. Saddle point, in some directions it increases, in some other directions it decreases, or may stay at

constant. Can be usually solved by some random perturbations.

Only the first situation is what we want, but it is usually easy to get out of situation 3 and 4 by some

random perturbations.

In general, dealing with local minimum is a hard problem. It is non-convex optimization.

To avoid local minimum, we need another assumption: f(x) is convex.
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Definition 3. f is convex iff λmin∇2f(y) ≥ 0

Fact 4. f is convex iff ∀x, y ∈ Rn, α ∈ [0, 1], there’s

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Claim 5. if f(x) is a convex function, then ∇f(x) = 0 implies x is global minimum

Proof: Fix x such that ∇f(x) = 0, using Taylor Expansion, we can have

f(x+ δ) = f(x) +∇f(x)T δ +
1

2
δT∇2f(y)δ ≥ f(x)

It means that at any other point x+ δ, f is at least f(x), which implies that x is a global minimum.

Assumption 6. If f is convex

∇f(xt) = 0

=⇒ xt is global minimum

∇f(xt) 6= 0 =⇒ f(xt+1) ≤ f(xt)− 1

2β
‖∇f(x)‖2

=⇒ gradient descent is making progress

Next, we need to consider how far we are from the optimal solution.

Goal: find some x′ such that

f(x′)− f(x∗) ≤ ε

where x∗ is the global minimum and x′ is the ε− approximate solution

We want to relate how far we are from the optimal solution to how many progress we are making.

That is relate f(x′)− f(x∗) to ‖∇f(x)‖:

f(x∗) = f(x+ x∗ − x)

= f(x) +∇f(x)T (x∗ − x) + (x∗ − x)T∇2f(y)(x∗ − x)

≥ f(x) +∇f(x)T (x∗ − x)

(3)

After rearranging, we have:

∇f(x)T (x− x∗) ≥ f(x)− f(x∗)

f(x)− f(x∗) ≤ ‖∇f(x)‖ · ‖x− x∗‖

‖∇f(x)‖ ≥ f(x)− f(x∗)

‖x− x∗‖

(4)

For example: if xt s.t. f(xt)− f(x∗) > ε =⇒ ‖∇f(x)‖ ≥ ε
‖x−x∗‖

Theorem 7. f(xT )− f(x∗) ≤ ε after T = O(β · D2

ε ) iterations, where D , max
x:f(x)≤f(x0)

‖x− x∗‖

Proof. Let 4t = f(xt)− f(x∗) > ε

‖∇f(xt)‖ ≥ 4t

‖xt − x∗‖
≥ 4t

D
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Let T1 = #iterations until 4T1 ≤
40

2

Before reaching t = T1:

‖∇f(xt)‖ ≥ 40/2

D

In each iteration, f(xt)− f(x∗) drops by ≥ 1
2β · ‖∇f(xt)‖2 ≥ 1

2β ·
42

0
4D2 =

42
0

8D2β

=⇒ T1 ≤
40/2

42
0/8D

2β
=

4D2β

40

Let T2 = #iterations until 4T1+T2 ≤
4T1
2 . Similarly, T2 ≤ 4D2β

4T1
= 4D2β · 2

40

T3 : T3 ≤ 4d2β · 4

40

...

Tk : Tk ≤ 4D2β · 2k

40
=⇒ f(xT1+T2+···+Tk)− f(x∗) ≤ 40

2k
≤ ε

We set k so that at time T = T1 + T2 + · · ·+ Tk, value:

f(xT )− f(x∗) ≤ ε,

i.e., ε/2 ≤ ∆0/2
k ≤ ε. Total time:

T = T1 + T2 + · · ·+ Tk

= 4D2β ·
[

1

40
+

2

40
+ · · · 2k

40

]
= 4D2β ·

[
1

40
+

2

40
+ · · · 2

ε

]
≤ 4D2β · 4

ε

(5)

since the sum is geometrically increasing. Now, we have proved that when T ≤ O(β · D2

ε ), f(xT )−f(x∗) ≤
ε

Here is an example where lack of smoothness is bad:
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Definition 8. α− strongly convex for α > 0 iff λmin
(
∇2f(y)

)
≥ α

5


