
COMS 4995-8: Advanced Algorithms (Spring’21) March 25, 2021

Lecture 20: Ellipsoid Algorithm and Gradiant Descent

Instructor: Alex Andoni Scribes: Greg Marzo, Alex Yao

1 Introduction

In this lecture, we 1) conclude our discussion of the Ellipsoid Algorithm for tackling linear programming

and 2) begin our exploration of gradient descent.

2 Ellipsoid Algorithm

To recap from the previous class, we left off discussing the feasibility problem which is defined as follows:

Given F , {x ∈ Rn : Ax ≤ b}, return some x ∈ F if the set is non-empty or report that F = ∅.

To address this problem using the Ellipsoid Algorithm, we first address the approximation version

of the feasibility problem: Given F from the feasibility problem as well as ε > 0, return some x ∈ F if

the set is non-empty or report that vol(F) < ε. If ε = exp(−poly(n,m)B), essentially ε is exponentially

small, this is enough to solve the non-approximate version.

We first define key terms used in the algorithm.

Definition 1 (Ball). Fix r > 0, a ball

Br(y) = {x ∈ Rn : ||x− y|| ≤ r}

Definition 2 (Axis-Aligned Ellipsoid). Fix λ1, ..., λn, r > 0, an axis-aligned ellipsoid

Er,λ(y) = {x :
n∑
i=1

(
xi − yi
λi

)2 ≤ r2}

Definition 3 (General Ellipsoid). Fix r > 0, rank n matrix A ∈ Rn×n, a general ellipsoid

Er,A(y) = {x+ y : xTATAx ≤ r2}
= {x+ y : ||Ax||22 ≤ r2}

Alternatively,

Er,A(y) = {x+ y : || Λ︸︷︷︸
diagonal matrix

unitary rotation matrix︷︸︸︷
R x||22 ≤ r2}

2.1 Algorithm Idea

1. Start with a starting ellipsoid E0 such that F ⊆ E0.

1

2. Iterate and compute Et for timestep t such that

(a) F ⊆ Et

(b) vol(Et) < vol(Et−1)

3. Terminate when the center y is in the target region F or when vol(Et) < ε.

2.2 Exact Algorithm

Algorithm 1: Ellipsoid Algorithm

Result: Report x ∈ F , or that vol(F) < ε

Start with E0 ⊇ F , where E0 = (ball) Br(y0) of sufficient radius r and center y0.

for t = 0, ..., T do

if yt ∈ F then
we are done: report x = yt

else
∃ some violated constraint i: Aiy

t > bi
Define Et+1, yt+1 = smallest ellipsoid containing Et ∩ {Aix ≤ bi}
if vol(Et+1) < ε then

we are done: report vol(F) < ε

end

end

end

Figure 1: F ⊆ Et ∩ {Aix ≤ bi} ⊂ Et

2.3 Analysis

We note that correctness of this algorithm follows by definition. If the algorithm terminates, it is correct.

Now, we turn to the runtime analysis. Specifically, how many iterations (T) will this algorithm take?

Claim 4. vol(Et+1) ≤ vol(Et) · (1− 1
2n)

2

Proof. The proof is omitted from lecture since we did not show how to compute the exact update for

Et+1, yt+1. However, there are update methods that obtain the bound in this claim.

As a result of Claim 4, we know

vol(ET) ≤ vol(E0) · (1− 1

2n
)T

≤ (2R)n︸ ︷︷ ︸
ball volume bound

·(1− 1

2n
)T

In the worst case where we run until the volume is less than ε,

(2R)n · (1− 1

2n
)T ≤ ε

−n log 2R+ T · θ(1)

2n
≥ log

1

ε

T ≥ θ(n)[log
1

ε
+ n · poly(n,m) ·B]

of iterations ≈ θ(n log
1

ε
+ poly(n,m) ·B)

Given our approximate algorithm, it is enough to take ε = exp(−poly(n,m)B) to solve our original

non-approximate feasibility problem. The resulting overall runtime is poly(n,m,B).

Remark 5. The only ”access” needed to the input constraints Ax ≤ b is through a ”separation oracle”.

Definition 6 (Separation Oracle). SOF : Given y ∈ Rn, report y ∈ F or return some violated constraint

hyperplane Ax = b such that F and y are on opposite sides.

The maximum number of calls we may need to make to SOF = θ(n) · [log 1
ε + n logR]. Note there

is no dependency on the number of constraint equations. In some cases, we can write separation oracles

that work on linear problems with exponential number of constraints in only polynomial time, resulting

in an overall polynomial runtime.

3 Gradient Descent

Switching gears to address the optimization of finding the minimum of a function f(x), we define 2 variants

of the optimization problem:

• Unconstrained optimization:

minx∈Rnf(x)

• Constrained optimization:

minx∈Rn

x∈F
f(x)

3

A constrained optimization can be reduced to unconstrained by defining a new function g as:

g(x) =

{
f(x) x ∈ F
+∞ x /∈ F

where it is enough to solve for the minimum of g(x) as an unconstrained optimization problem.

3.1 Setting up Gradient Descent

In our Gradient Descent process, the basic idea is that we start with a x0 ∈ Rn and on each iteration

from t = 0...T , compute some new xt+1 based on the previous xt via some function f

Naturally, 2 key questions arise:

1. How will we find a new xt+1 from xt?

2. How many iterations T will it take to find the global minimization of minx∈Rnf(x)?

If we assume that f(x) is a ”nice” function, meaning that if we move a slight amount δ ∈ Rn from

x ∈ Rn, the function’s gradient won’t change too drastically, we can use the Taylor Expansion to expand

function f(x) like so:

f(x+ δ) ≈ f(x) +∇f(x)ᵀδ + δᵀ∇2f(y)δ

where y ∈ [x, x+ δ]

Here, was also define the gradient and the Hessian as follows:

Definition 7. ∇f(x) = (∂f∂x1 (x), ∂f∂x2 (x), ...) ∈ Rn

Definition 8. ∇2f(x) is some matrix size n× n where

entryi,j =
∂2f

∂xi∂xj
(x)

3.2 Finding δ

To recap what we have established, we update xt+1 to be xt + δ. Here, suppose we establish ‖δ‖ ≤ ε.
We can find the best δ using the following form:

δ = argmin‖δ‖≤εf(x) +∇f(x)ᵀδ + δᵀ∇2f(y)δ

A question arises now on how do we estimate δᵀ∇2f(y)δ? There are two options we can do.

3.2.1 Option 1

f(x+ δ) ≈ f(x) +∇f(x)ᵀδ +O(ε2)

We can take advantage of the fact that O(ε2) << ∇f(x)ᵀδ and effectively ignore the O(ε2) term. Thus:

δ = argmin‖δ‖≤εf(x) +∇f(x)ᵀδ

= argmin‖δ‖≤ε∇f(x)ᵀδ

= η(−∇f(x))

4

where here, ‖η −∇f(x)‖ = ε and η = ε
‖∇f(x)‖

In context of the Gradient Descent Algorithm, xt+1 = xt − η∇f(x)

3.2.2 Option 2

Definition 9. β-smooth: Set β > 0. We call f β-smooth if:

∀x, y ∈ Rn : ‖∇f(x)−∇f(y)‖ ≤ β‖x− y‖
⇔ ∀δ ∈ Rn : δᵀ∇2f(x)δ ≤ β‖δ‖2

⇔ max eigenvalue of ∇2f(x) ≤ β

We can derive the optimization of δ for Gradient Descent in the following way:

f(x+ δ) ≈ f(x) +∇f(x)ᵀδ + δᵀ∇2f(y)δ

≤ f(x) +∇f(x)ᵀδ + β
‖δ‖2

2

and δ now gets set as:

δ = argminδf(x) +∇f(x)ᵀδ + β
‖δ‖2

2

= argminδ∇f(x)ᵀδ +
β

2
‖δ‖2

= argminη:δ=η∇f(x) − η‖∇f(x)‖2 +
β

2
η2‖∇f(x)‖2

= argminη:δ=η∇f(x)η(
β

2
η − 1)

Thus, the optimal solution becomes η = 1
β and the optimal δ becomes δ = − 1

β∇f(x)

In context of the Gradient Descent algorithm,

f(x+ δ) ≤ f(x)− 1

β
‖∇f(x)‖+

β

2

1

β2
‖∇f(x)‖2

= f(x)− 1

2β
‖∇f(x)2‖

5

