
COMS 4995-8: Advanced Algorithms (Spring’21) Jan 14, 2021

Lecture 2: Approximate Counting, Intro to Hashing

Instructor:Alex Andoni Scribes:Akshat Agarwal, Julia Martin

1 Recap

To exactly count up to n we cannot do better than Ω(log n) space.
Hence, we were trying to device an approximate algorithm to count up to n which uses space o(log n).
Introduced Morris’ Algorithm which is an Approximate and Randomized algorithm for doing just that.

2 Morris’ Algorithm Continued

Approximate and Randomized counting algorithm with reduced space usage:
- Initialize X = 0

- onButtonPress: X =

{
X, with probability 1− 2−X

X + 1 with probability 2−X

- Estimate: n̂ = 2X − 1

Note:
- The bigger X becomes, the less likely it is to increment

Doubt 1: Is it a good estimator?

• n̂ is a Random Variable
• Our Goal is to get n̂ as close to n as possible
• A good start to achieve this goal could be to make sure that the expected value of n̂ is n

Claim 1. Yes, it is good. E[n̂] = n

Proof. Define Xn as the value of counter X after n button presses, and with X0 initialized to 0. We want
the show that E[n̂] = E[2Xn − 1] = n. We will prove by induction.

Base case: for n = 0, X0 = 0; E[2X0 − 1] = 0

Inductive Step: Assume for inductive hypothesis that E[2Xn−1 − 1] = n− 1

We want to show E[2Xn − 1] = n.
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We have:

E[2Xn − 1] = EXn,Xn−1,...,X1 [2Xn − 1]

= EXn−1,...,X1 [EXn [2Xn − 1]]

= EXn−1,...,X1 [2−Xn−1(2Xn−1+1 − 1) + (1− 2−Xn−1)(2Xn−1 − 1)]

= EXn−1,...,X1 [2− 2−Xn−1 + 2Xn−1 − 1− 1 + 2−Xn−1 ]

= EXn−1,...,X1 [2Xn−1 ]

= E[(2Xn−1 − 1) + 1]

= (n− 1) + 1 (by inductive hypothesis)

= n

Doubt 2: Did we save space?

• Did the hassle pay off?
• Now we want to prove that the number of bits necessary to denote n has improved from log(n)

Claim 2. Yes we saved space. The number of bits taken by X, i.e. log(X), is of the order of log(log(n))
with probability ≥ 90%

Proof. Apply the Markov Bound on n̂, we know E[n̂] = n:

Pr[n̂ > 10n] ≤ n

10n
= 0.1

=⇒ Pr[2Xn − 1 ≤ 10n] ≥ 0.9

Now when 2Xn − 1 ≤ 10n (this happens with 90% probability)

=⇒ 2Xn ≤ 10n+ 1

=⇒ log log 2Xn ≤ log log (10n+ 1)

=⇒ logXn ≤ log log (10n+ 1)

Hence we get, Pr[logX = O(log log n)] ≥ 0.9

Doubt 3: How far below the actual n can our estimator n̂ be?

• Using Markov Bounds we saw that 90% of times n̂ ≤ 10n

• With High Probability, our guess will be above n by no more than a constant factor multiple
• Now we want to check how low below the actual n can our guess be.
• We will find this using Chebyshev bounds. But for that we first need the Variance of n̂
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Claim 3. Var[n̂] ≤ 3
2n(n+ 1) + 1 = O(n2)

Proof. We know,

Var[n̂] = Var[2Xn − 1]

= E[(2Xn − 1)2]− E[(2Xn − 1)]2

= E[(2Xn − 1)2]− n2

= E[22Xn ] + 1− 2E[2Xn ]︸ ︷︷ ︸
n+1

−n2

︸ ︷︷ ︸
≤0

(−n2 − 2n− 1 ≤ 0)

≤ E[22Xn ]

Inductive hypothesis: E[22Xn ] ≤ 3
2n(n+ 1) + 1

Base case: n = 0 : E[20] = 1 ≤ 1

Assume the inductive hypothesis for E[22Xn−1 ]

Now we want to compute the expectation:

E[22Xn ] = EXn,Xn−1,...,X1 [22Xn ]

= EXn−1,...,X1 [EXn [22Xn ]]

= EXn−1,...,X1 [2−Xn−1(22(Xn−1+1)) + (1− 2−Xn−1)(22Xn−1)]

= EXn−1,...,X1 [4 · 2Xn−1 + 22Xn−1 − 2Xn−1 ]

= EXn−1,...,X1 [3 · 2Xn−1 + 22Xn−1 ]

= E[3 · 2Xn−1 + 22Xn−1 ]

= 3 · E[2Xn−1 ]︸ ︷︷ ︸
n, by Claim 1

+ E[22Xn−1 ]︸ ︷︷ ︸
≤ 3

2
(n−1)n+1

≤ 3

2
n(n+ 1) + 1

= O(n2)

Claim 4. Using the Chebyshev bound, we can find a lower bound and a tighter upper bound, such that:
n̂ ∈ [n− 5n, n+ 5n]

Proof. So far, we have:
E[n̂] = n

Var[n̂] ≤ 3

2
n(n+ 1) + 1 ≤ 2n2

3



Apply the Chebyshev Bound on n̂

Pr[|n̂− E(n̂)| > λ] ≤ Var[n̂]

λ2

Pr[|n̂− n| > λ] ≤ 2n2

λ2

We approximately want this probability to be ≤ 0.1, therefore:

2n2

λ2
= 0.1

2n2 ≤ 0.1λ2

λ ≥
√

20n

Enough to have λ = 5n, We have:
Pr[|n̂− n| > 5n] ≤ 0.1

With Probability 90%:
n̂ ∈ [n− 5n, n+ 5n]

Doubt 4: Is this good enough?

• The upper bound is still fine. But the lower bound suggests that there is a high probability that
we might end up with negative values of n.
• Can we do better?

GOAL: n̂ ∈ [n− εn, n+ εn]; for small ε > 0

• Basically, n̂ ∈ (1± ε)n
• ε will be a small quantity like 0.1, suggesting a 10% error margin
• For this we will see Morris+ Algorithm

3 Morris+ Algorithm

- Take k counters, compute i.i.d.
- Press button for each counter completely independently {x_1,x_2,...,x_k}
- Each of them is Morris Algorithm with counter xi, {i = 1,...,k}

Estimator n̂k is equal to the average of estimators {x1,...,xk}

Claim 5. E[n̂k] = n
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Proof. Note: 2xi − 1 = n

E[n̂k] = E[
1

k

k∑
i=1

(2xi − 1)] = E[
1

k

k∑
i=1

n] = n

Claim 6. Space is O(kloglogn) with probability ≥ 90%. No counter is larger and occupying more than
logn space

Claim 7. var[n̂k] = 1
kvar[n̂] (variance of one counter)

Proof.

var[n̂k] = var[
1

k

k∑
i=1

(2xi − 1)] =
1

k2 var[
k∑

i=1

(2xi − 1)] =
1

k2

k∑
i=1

var[(2xi − 1)] =
1

k
var[n̂]

Goal: Want n̂ = (1± ε)n
Chebyshev: P [(n̂k − n)>εn] ≤ var[n̂k]

ε2n2 ,ε2n2 ≤ 0.1

var[n̂k] ≤ 0.1ε2n2

var[n̂]

k
≤ 0.1ε2n2

k ≥ var[n̂]

0.1ε2n2

It is enough to require k = 2n2
0.1ε2n2 = 20

ε2
= Θ( 1

ε2
) So, it is enough to repeat Morris Algorithm 1

ε2

times Theorem: Morris + Algorithm can achieve (1± ε) approximation with 90% probability using space
O( loglogn

ε2
)

4 Hashing

Problem: Dictionary, data structure problem Given a large, fixed universe U of items Given set SεU, |S| =
n, preprocess S into data structure such that it can answer: "Is xεS?"

Solution:
1. Given S, iterate over S → O(n) runtime
2. Binary search → O(logn) → querytime log n, space: O(n)
3. Full-index: Store a table T of size |U| with {T_i} = 1 iff iεS → query time = O(1) and space = O(|U|)

Can we combine for O(1) query time and O(n) space? This is what hashing tries to do. If we use
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IP addresses, each with 32 bits, as an example: |U| = 232 = all possible IPs, all binary strings of length
32 Hashing says U is large but the set in our data structure is small, so we reduce U

U (h) → 1,...,m

Property ?: h: U → [m] satisfies: ∀ i ε S and given x we have: h(i) = h(x) iff i = x.

Solution to dictionary problem:
1. Compute h(i), i ε S to reduce universe from U to m
2. Store table {T_j} = 1 iff j = h(i), i ε S
3. At query x, check if T_h(x) = 1

Solution performance: space = O(m) and query time = O(1) to query table + time to compute h(x)

Solution 4: pick h randomly and hope that our property ? holds with good probability
Define: Collision h(i) = h(x) ? says that they should only collide if i = x, then solution 4 should be
correct
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