COMS 4995-8: Advanced Algorithms (Spring'21)

Jan 14, 2021

Lecture 2: Approximate Counting, Intro to Hashing

Instructor: Alex Andoni

Scribes: Akshat Agarwal, Julia Martin

1 Recap

To exactly count up to n we cannot do better than $\Omega(\log n)$ space.

Hence, we were trying to device an approximate algorithm to count up to n which uses space $o(\log n)$. Introduced Morris' Algorithm which is an Approximate and Randomized algorithm for doing just that.

2 Morris' Algorithm Continued

Approximate and Randomized counting algorithm with reduced space usage:

- Initialize X = 0
- onButtonPress: $X = \begin{cases} X, \text{ with probability } 1 2^{-X} \\ X + 1 \text{ with probability } 2^{-X} \end{cases}$
- Estimate: $\hat{n} = 2^X 1$

Note:

- The bigger X becomes, the less likely it is to increment

Doubt 1: Is it a good estimator?

- \hat{n} is a Random Variable
- Our Goal is to get \hat{n} as close to n as possible
- A good start to achieve this goal could be to make sure that the expected value of \hat{n} is n

Claim 1. Yes, it is good. $\mathbb{E}[\hat{n}] = n$

Proof. Define X_n as the value of counter X after n button presses, and with X_0 initialized to 0. We want the show that $\mathbb{E}[\hat{n}] = \mathbb{E}[2^{X_n} - 1] = n$. We will prove by induction.

Base case: for n = 0, $X_0 = 0$; $E[2^{X_0} - 1] = 0$ Inductive Step: Assume for inductive hypothesis that $E[2^{X_{n-1}} - 1] = n - 1$ We want to show $E[2^{X_n} - 1] = n$. We have:

$$\begin{split} E[2^{X_n} - 1] &= E_{X_n, X_{n-1}, \dots, X_1}[2^{X_n} - 1] \\ &= E_{X_{n-1}, \dots, X_1}[E_{X_n}[2^{X_n} - 1]] \\ &= E_{X_{n-1}, \dots, X_1}[2^{-X_{n-1}}(2^{X_{n-1}+1} - 1) + (1 - 2^{-X_{n-1}})(2^{X_{n-1}} - 1)] \\ &= E_{X_{n-1}, \dots, X_1}[2 - 2^{-X_{n-1}} + 2^{X_{n-1}} - 1 - 1 + 2^{-X_{n-1}}] \\ &= E_{X_{n-1}, \dots, X_1}[2^{X_{n-1}}] \\ &= E[(2^{X_{n-1}} - 1) + 1] \\ &= (n - 1) + 1 \qquad \text{(by inductive hypothesis)} \\ &= n \end{split}$$

Doubt 2: Did we save space?

• Did the hassle pay off?

• Now we want to prove that the number of bits necessary to denote n has improved from log(n)

Claim 2. Yes we saved space. The number of bits taken by X, i.e. log(X), is of the order of log(log(n)) with probability $\geq 90\%$

Proof. Apply the **Markov Bound** on \hat{n} , we know $\mathbb{E}[\hat{n}] = n$:

$$\Pr[\hat{n} > 10n] \le \frac{n}{10n} = 0.1$$

$$\implies$$
 $\Pr[2^{X_n} - 1 \le 10n] \ge 0.9$

Now when $2^{X_n} - 1 \le 10n$ (this happens with 90% probability)

$$\implies 2^{X_n} \le 10n + 1$$
$$\implies \log \log 2^{X_n} \le \log \log (10n + 1)$$
$$\implies \log X_n \le \log \log (10n + 1)$$

Hence we get, $\Pr[\log X = O(\log \log n)] \ge 0.9$

Doubt 3: How far below the actual n can our estimator \hat{n} be?

- Using Markov Bounds we saw that 90% of times $\hat{n} \leq 10n$
- With High Probability, our guess will be above n by no more than a constant factor multiple
- Now we want to check how low below the actual n can our guess be.
- \bullet We will find this using Chebyshev bounds. But for that we first need the Variance of \hat{n}

Claim 3. $\mathrm{Var}[\hat{n}] \leq \frac{3}{2}n(n+1) + 1 = O(n^2)$

Proof. We know,

$$Var[\hat{n}] = Var[2^{X_n} - 1] = \mathbb{E}[(2^{X_n} - 1)^2] - \mathbb{E}[(2^{X_n} - 1)]^2 = \mathbb{E}[(2^{X_n} - 1)^2] - n^2 = \mathbb{E}[2^{2X_n}] + 1 - 2 \underbrace{\mathbb{E}[2^{X_n}]}_{n+1} - n^2 \underbrace{(-n^2 - 2n - 1 \le 0)}_{\le 0} \le \mathbb{E}[2^{2X_n}]$$

Inductive hypothesis: $\mathbb{E}[2^{2X_n}] \leq \frac{3}{2}n(n+1) + 1$ Base case: n = 0: $\mathbb{E}[2^0] = 1 \leq 1$ Assume the inductive hypothesis for $\mathbb{E}[2^{2X_{n-1}}]$

Now we want to compute the expectation:

$$\begin{split} E[2^{2X_n}] &= E_{X_n, X_{n-1}, \dots, X_1}[2^{2X_n}] \\ &= E_{X_{n-1}, \dots, X_1}[E_{X_n}[2^{2X_n}]] \\ &= E_{X_{n-1}, \dots, X_1}[2^{-X_{n-1}}(2^{2(X_{n-1}+1)}) + (1-2^{-X_{n-1}})(2^{2X_{n-1}})] \\ &= E_{X_{n-1}, \dots, X_1}[4 \cdot 2^{X_{n-1}} + 2^{2X_{n-1}} - 2^{X_{n-1}}] \\ &= E_{X_{n-1}, \dots, X_1}[3 \cdot 2^{X_{n-1}} + 2^{2X_{n-1}}] \\ &= E[3 \cdot 2^{X_{n-1}} + 2^{2X_{n-1}}] \\ &= 3 \cdot \underbrace{\mathbb{E}}[2^{X_{n-1}}]_{n, \text{ by Claim } 1} + \underbrace{\mathbb{E}}[2^{2X_{n-1}}]_{\leq \frac{3}{2}(n-1)n+1} \\ &\leq \frac{3}{2}n(n+1) + 1 \\ &= O(n^2) \end{split}$$

Claim 4. Using the Chebyshev bound, we can find a lower bound and a tighter upper bound, such that: $\hat{n} \in [n - 5n, n + 5n]$

Proof. So far, we have:

$$E[\hat{n}] = n$$
$$\operatorname{Var}[\hat{n}] \leq \frac{3}{2}n(n+1) + 1 \leq 2n^2$$

Apply the **Chebyshev Bound** on \hat{n}

$$\Pr[|\hat{n} - \mathbb{E}(\hat{n})| > \lambda] \le \frac{\operatorname{Var}[\hat{n}]}{\lambda^2}$$
$$\Pr[|\hat{n} - n| > \lambda] \le \frac{2n^2}{\lambda^2}$$

We approximately want this probability to be ≤ 0.1 , therefore:

$$\frac{2n^2}{\lambda^2} = 0.1$$
$$2n^2 \le 0.1\lambda^2$$
$$\lambda > \sqrt{20n}$$

Enough to have $\lambda = 5n$, We have:

$$\Pr[|\hat{n} - n| > 5n] \le 0.1$$

With Probability 90%:

$$\hat{n} \in [n - 5n, n + 5n]$$

Doubt 4: Is this good enough?

• The upper bound is still fine. But the lower bound suggests that there is a high probability that we might end up with negative values of n.

• Can we do better?

GOAL: $\hat{n} \in [n - \epsilon n, n + \epsilon n]$; for small $\epsilon > 0$

- Basically, $\hat{n} \in (1 \pm \epsilon)n$
- ϵ will be a small quantity like 0.1, suggesting a 10% error margin
- For this we will see Morris+ Algorithm

3 Morris+ Algorithm

- Take k counters, compute i.i.d.
- Press button for each counter completely independently $\{x_1,x_2,...,x_k\}$
- Each of them is Morris Algorithm with counter $x^i, \, \{i=1, ..., k\}$

Estimator \hat{n}^{k} is equal to the average of estimators $\{x^{1},...,x^{k}\}$

Claim 5. $E[\hat{n}^k] = n$

Proof. Note: $2^{x^i} - 1 = n$

$$E[\hat{n}^k] = E[\frac{1}{k}\sum_{i=1}^k (2^{\mathbf{x}^i} - 1)] = E[\frac{1}{k}\sum_{i=1}^k n] = n$$

Claim 6. Space is O(kloglogn) with probability $\geq 90\%$. No counter is larger and occupying more than logn space

Claim 7. $var[\hat{n}^k] = \frac{1}{k}var[\hat{n}]$ (variance of one counter)

Proof.

$$var[\hat{n}^{k}] = var[\frac{1}{k}\sum_{i=1}^{k}(2^{x^{i}}-1)] = \frac{1}{k^{2}}var[\sum_{i=1}^{k}(2^{x^{i}}-1)] = \frac{1}{k^{2}}\sum_{i=1}^{k}var[(2^{x^{i}}-1)] = \frac{1}{k}var[\hat{n}]$$

Goal: Want $\hat{n} = (1 \pm \varepsilon)n$ Chebyshev: $P[(\hat{n}^k - n) > \varepsilon n] \le \frac{var[\hat{n}^k]}{\varepsilon^2 n^2}, \varepsilon^2 n^2 \le 0.1$

$$\begin{aligned} var[\hat{n}^{k}] &\leq 0.1\varepsilon^{2}n^{2} \\ \frac{var[\hat{n}]}{k} &\leq 0.1\varepsilon^{2}n^{2} \\ k &\geq \frac{var[\hat{n}]}{0.1\varepsilon^{2}n^{2}} \end{aligned}$$

It is enough to require $k = \frac{2n^2}{0.1\varepsilon^2 n^2} = \frac{20}{\varepsilon^2} = \Theta(\frac{1}{\varepsilon^2})$ So, it is enough to repeat Morris Algorithm $\frac{1}{\varepsilon^2}$ times *Theorem*: Morris + Algorithm can achieve $(1 \pm \varepsilon)$ approximation with 90% probability using space $O(\frac{\log \log n}{\varepsilon^2})$

4 Hashing

Problem: Dictionary, data structure problem Given a large, fixed universe U of items Given set $S \epsilon U$, |S| = n, preprocess S into data structure such that it can answer: "Is $x \epsilon S$?"

Solution:

- 1. Given S, iterate over $S \to O(n)$ runtime
- 2. Binary search $\rightarrow O(logn) \rightarrow$ querytime log n, space: O(n)
- 3. Full-index: Store a table T of size |U| with $\{T_i\} = 1$ iff $i \in S \rightarrow \text{query time} = O(1)$ and space = O(|U|)

Can we combine for O(1) query time and O(n) space? This is what hashing tries to do. If we use

IP addresses, each with 32 bits, as an example: $|U| = 2^{32}$ = all possible IPs, all binary strings of length 32 Hashing says U is large but the set in our data structure is small, so we reduce U

 $U(h) \rightarrow 1,...,m$

Property \star : h: $U \to [m]$ satisfies: $\forall i \in S$ and given x we have: h(i) = h(x) iff i = x.

Solution to dictionary problem:

- 1. Compute h(i), $i \in S$ to reduce universe from U to m
- 2. Store table {T_j} = 1 iff j = h(i), $i \in S$
- 3. At query x, check if $T_h(x) = 1$

Solution performance: space = O(m) and query time = O(1) to query table + time to compute h(x)

Solution 4: pick *h* randomly and hope that our property \star holds with good probability **Define**: Collision $h(i) = h(x) \star$ says that they should only collide if i = x, then solution 4 should be correct