
COMS 4995-8: Advanced Algorithms (Spring’21) Mar 18, 2021

Lecture 18: Linear Programming Continued

Instructor: Alex Andoni Scribes: Shengtan Mao, Yanhao Li

1 Systems of linear equations

Given a matrix A ∈ Rm×n, b ∈ Rm, we want to find x ∈ Rn such that

Ax = b.

1.0.1 When n 6= m or detA = 0

Let S be the set of linearly independent columns from A. We write it as

S = {S1, S2, . . . , Sk} ⊂ Rm

Let S̄ = {S1, . . . , Sk, Sk+1, . . . , Sm} be the completion of S to a basis. Consider

[
S̄1, . . . , S̄m

] [x′
y

]
= b

where x′ are the entries of the vector x that will multiply with the columns of A and y are the entries

that will multiply with the columns that form the completion. Since b ∈ Span(S), there exists a unique

x′ such that [
S̄1, . . . , S̄k

] [
x′
]

= b.

This implies y = 0 because y would have contributed to the value of b if it was non-zero. Let x =

(x1, . . . , xn) such that

xi =

{
x′i, if Si is the ith column of A

0, otherwise.

Then we have a unique solution to

Ax = b.

2 No solution to Ax = b

We want to be able to find a witness or certificate that there is no solution. The following claim, a variant

of the Farkas’ lemma, tells us that proving no solution is equivalent to solving another linear system of

equations.

Claim 1. Ax = b has no solution if and only if there exists a y ∈ Rm such that yTA = 0 and yT b 6= 0.
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Proof. First we suppose Ax = b has no solution. This implies

b /∈ {Ax : x ∈ Rn} = Span(Col(A)).

Let ProjAb be the projection of b on space Span(Col(A)). Let y , b − ProjAb. Then we have y ⊥
Span(Col(A)), so yTA = 0. But we also have,

yT b = yT (y + ProjAb) = ||y||2 6= 0.

Note that since y is non-zero, it can be rescaled so that yT b = 1.

Now suppose there exists a y ∈ Rm such that yTA = 0 and yT b 6= 0. We proceed by contradiction

and suppose there exists x ∈ Rn such that Ax = b. We then have

0 = 0x = (yTA)x = yT (Ax) = yT b 6= 0.

Which is a contradiction.

Note that we can find y by solving the following system of equations:

[
AT

bT

]
y =


0
...

0

1

 ∈ Rn+1.

3 Back to linear programming

Let c, x ∈ Rn, and A ∈ Rm×n, b ∈ Rm. Consider the two formulations of linear programming. The

general form is

minimize cTx such that Ax ≥ b,

and the standard form is

maximize cTx such that Ax = b where x ≥ 0.

Note these two forms are equivalent by considering −min(−cT )x.

We fix x+, x− ∈ (R) where x+, x− ≥ 0 and x+ − x− = x. Ax ≥ b if and only if A(x+ − x−) ≥ b. For

each constraint, we have [
Ai −Ai

] [x+
x−

]
≥ bi

where Ai is the ith row of the matrix. We introduce new slack variables ξi ≥ 0 so that

Ai(x
+ − x−) ≥ bi if and only if Ai(x

+ − x−)− ξi = bi.

We derived the form:

maximize cT (x+ − x−) such that A(x+ − x−)− ξ = b where x+, x−, ξ ≥ 0.
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3.1 Basic definitions for linear programming

Definition 2. An inequality is tight if the equality holds.

Definition 3. A real vector x ∈ V is a convex combination of y1, ..., yn ∈ V if there exists α1, ..., αn ≥ 0

in R such that

x =
n∑

i=1

αiy
i ,

n+1∑
i=1

αi = 1.

Definition 4. A solution x ∈ F , where F = {x : Ax = b, x ≥ 0}, is a basic feasible solution if it is not a

convex combination of other points in F ;

Fact 5. Basic feasible solutions are vertices of the polytope F .

Claim 6. If x∗ is a linear programming solution to a system of n equations that is feasible and bounded,

then there exists an optimal solution that is a basic feasible solution.

Proof. Suppose x∗ is not a basic feasible solution. Then there are less than n tight linearly independent

constraints. Let C be the space defined by these n − 1 tight linearly independent constraints. Then

dimC ≥ 1. So there exists a direction d ∈ Rn, d 6= 0 such that

x∗ + αd ∈ C,∀α ∈ R.

Consider a small ε > 0, Then x∗ ± εd ∈ C. Note that C take care of all the tight constraints on x∗ All

other constraints have the form xi > 0. This implies there exists a small enough ε > 0 such that x∗ ± εd
is still feasible. Now we consider

cT (x∗ ± εd) = cTx∗ ± εcTd.

Since x∗ is optimal, cTd = 0. One of the directions decreases some coordinates of x∗, we want to push as

much as allowed so that some coordinate of x∗ ± εd becomes 0. This makes one more constraint tight.

We iterate this process until we have n tight linearly independent constraints. We have found a basic

feasible solution.

As a summary, x is a vertex if and only if x it is basic feasible solution if and only if x has n tight

linearly independent constraints.

3.2 Enumerate all vertices

This was covered in the lecture 17.
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3.3 Simplex Algorithm:

Algorithm 1

1: Choose x0 ∈ F , starting vertex, t = 0
2: while true do
3: Take N(xt) = vertices neighboring xt(Vertices s.t. differ from xt in only 1 tight constraint.)
4: Choose y ∈ N(xt) s.t. cT y < cTxt

5: if y exists then
6: Set xt+1 = y
7: t = t+ 1
8: else
9: return xt

10: end if
11: end while

N(x) means the neighborhood of x. Since in high dimensional space we might provide more choices

and more options to go to a better position, how can we choose y?

Pivoting rule:

To solve the problem of choosing y, firstly, we need to know how to find the starting point x0 ∈ F .

It’s a common trick that to find a starting point for this, we will solve another linear programming which

is easier to initialize. We have a general form that:

minimize c>x

subject to Ax ≤ b

For finding a feasible vertex point, we just care about the Ax ≤ b constraint.

To achieve this, we want to minimize t subject to the constraint that

Ax− t · 1 ≤ b

Note that for optimal t that t > 0, the original LP is infeasible, which means F = ∅.
For optimal t that t ≤ 0, x is a starting vertex.

Thus, we can initialize this by setting x = 0 and t = −mini bi.

Remark 7. Taking y∗ which has the best improvement is not optimal. In other words, being greedy(go

to the neighbor that improves the objective function best) is not necessarily the best strategy.

Remark 8. Simplex Algorithm takes exponential time for worst pivoting rules that we know.

Remark 9. In practice, Simplex Algorithm works well.

Conjecture 10. {Hirsch Conjecture ′57}: For any starting vertex in polytope F and any other optimal

vertex V , there exists a shortest path of length which is poly(n,m).

The Hirsch Conjecture provides a really tight upper bound (≤ m−n) for the shortest path. However,

it is disproved in {Santos ′10}.
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Smoothed Analysis {Spielman-Teng ′00s}:
Consider the instance of LP:

minimize c>x

subject to Ax ≤ b

Consider the instance′:

A′ = A+ gaussian noise

b′ = b+ gaussian noise

(c can remain as is.) Then Apply Simplex Algorithm (with a specific pivot rule) on

minimize c′>x

subject to A′x ≤ b′

which runs in polynomial time.
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