
COMS 4995-8: Advanced Algorithms (Spring’21) Mar 16, 2021

Lecture 17: Linear Programming

Instructor: Alex Andoni Scribes: Xingjian Zhao, Viren Bajaj

1 Linear Programming

Let’s state the problem of Linear Programming (LP) that was introduced last time. In the general form

of LP, we are given

A ∈ Rm×n,b ∈ Rm, c ∈ Rn and unknown x = [x1, ..., xn] ∈ Rn

And we have to minimize the objective function

min cTx

such that

Ax > b

In this set up,

• Ax > b⇔ (A1x > b1 ∧ ... ∧ Amx > bm)

• n is the number of variables

• m is the number of constraints

Remarks:

Notice that this form can covers the case where we want to maximize the objective function and captures

all linear constraints. This is because of following equivalence relations:

1. max
x

[f(x)] = −min
x

[−f(x)]

2. Aix 6 bi ⇔ (−Ai)x > −bi

3. Aix = bi ⇔ (Aix 6 bi ∧ Aix > bi)

LP is a very powerful method since many problems can be reduced to it. For example, the ’max-flow’

problem we saw in class previously.

1.1 Example: Max-Flow via LP

Lets briefly restate the problem in a manner that resembles our set up for LP.

The unknowns are the edge flow variables f(u, v) ∈ R, (u, v) ∈ E

1

And we want to maximize the objective function:

max

 ∑
u:(s,u)∈E

f(s, u)

−
 ∑
u:(u,s)∈E

f(u, s)

Subject to the constraints:

f(u, v) > 0, ∀(u, v) ∈ E

f(u, v) 6 cu,v, ∀(u, v) ∈ E ∑
v:(u,v)∈E

f(u, v)

−
 ∑
v:(v,u)∈E

f(v, u)

 = 0, ∀v 6= s, t

Here the number of variables equals the number of edges which is m.

The number of constraints equals m+m+ (n− 2) = 2m+n− 2, where n is the number of nodes and

m is the number of edges, since the first two constraints are on each edge and the third constraint is on

every node except for the source (s) and the sink (t).

Looking at the objective function we can deduce c ∈ Rm, cu,v ∈ {±1, 0}. The right hand sides of the

constraint equations make up b. This puts the problem in the form of LP.

Our objective is to talk about the algorithm design for an LP solver. To achieve this goal, we must

first talk about the structure of solutions to LP.

2 Structure of Solutions to LP

Definition 1. Feasible set: set of all values of x that satisfies all the constraints.

F = {x : Ax > b}
= {x :A1x > b1,

A2x > b2,

·
·
Amx > bm}

Notice that each constraint {Aix = bi} forms a hyper-plane that splits the space into two half spaces,

with our solution lying in the half space {xi : Aix > bi}. The intersection of all m half spaces forms a

polytope, which is the feasible set F . An example of the polytope and F can be seen in Fig 1.

The nature of F determines the fate of the solution to LP, x∗. Based on the problem definition, one of

the following three scenarios may occur:

1. F = ∅ ⇒ No solution exists because the problem has conflicting constraints. (e.g. adding x1 ≤ 1

to example in Fig 1)

2. F is unbounded (e.g. remove x1 ≤ 2 from example in Fig 1)

2

Figure 1: Geometric illustration of an LP Problem and Algorithm 1.

⇒

{
The solution is infinite (e.g., if optimization was max x1 + x2 → x1 =∞, x2 = 0), or

The solution is finite (e.g., if optimization was min x1 + x2 → x1 = 0, x2 = 1)

3. F is finite (bounded) ⇒ The solution must be finite.

Now let’s look into finding solutions to LP.

3 Finding Solutions to LP

In this section we are trying to answer the question: given an objective function f(x) = cTx, how do we

find the optimal value(s) for x that minimize (or maximize) the objective function?

Our first attempt to come up with a algorithm will be one that doesn’t create a very realistic algorithm

because it is difficult to implement. However, it will help us understand what solutions look like and

conceptually lead us to more practical algorithms.

Algorithm 1

input A ∈ Rm×n,b ∈ Rm, c ∈ Rn.

1: Guess v = min cTx such that Ax > b. Notice, by construction, v = cTx.

2: Consider the hyperplane Hv = {x : cTx = v}
3: Take v to be a very large value.

4: Decrease v continuously until Hv ∩ F 6= φ. In other words, move the hyperplane Hv towards the

polytope F until they touch.

5: return any x∗ ∈ Hv, each of which is an optimal solution.

3

A geometric illustration of this algorithm can be found in Fig 1.

This algorithm is difficult to implement because we have to continuously decrease v and check whether

Hv intersects F .

Notice that the first instance the hyperplane Hv intersects the feasible set F will be at a corner or

vertex of the polytope F . We formally define a corner below.

Definition 2. A corner/vertex of a polytope is defined by a linear system of n (the dimension of the

space) equations of the form:

Ai1x = bi1

Ai2x = bi2

·
·
Ainx = bin

Definition 3. For some x ∈ F , if Aix = bi, the ith constraint is tight.

Thus the optimal solution x∗ is in the corner of the polytope means that it is defined by the solution

to a system of n tight constraints. Thus the number of optimal solutions can potentially be n, because

we can take n different hyperplanes.

Based on this discussion, we can design an implementable but inefficient algorithm for solving LP as

follows.

Algorithm 2

input A ∈ Rm×n,b ∈ Rm, c ∈ Rn.

1: Try all possible corners/vertices.

• Try every
(
m
n

)
sets S = {i1, ...in}.

• Solve

Ai1x = bi1

Ai2x = bi2

·
·
Ainx = bin

Let the solution be xS .

2: Consider the hyperplane Hv = {x : cTx = v}
3: Check if xS is feasible by checking if AxS > b is satisfied.

4: return min cTxS for an xS that is feasible.

4

Runtime:

The runtime of this algorithm is = number of corners of the polytope ∗
(time to solve the system of n equations+

time to check feasibility of xS+

computing the optimal value cTxS)

=

(
m

n

)
([time to solve Asx = b] +m · n+ n)

Notice that
(
m
n

)
≈ mn, which is very slow. Also note that it is not immediately clear that the time taken

to write down a solution to the linear program can be done efficiently. For instance, if a solution involved

the number pi, or other transcendental numbers, it might take some time to write down the solution.

First, let’s look at the time taken to solve a system of linear equations.

3.1 Time to solve a system of linear equations

Given Ax ∈ b, A ∈ Rmxn, b ∈ Rm and unknown x ∈ Rn, we want to solve Ax = b.

3.1.1 Special case: A is a square matrix (n = m)

First, we define a well known theorem from linear algebra.

Theorem 4. The following are equivalent:

1. A is invertible (A−1exists)

2. det(A) 6= 0

3. Columns of A are linearly independent

4. Rows of A are linearly independent

5. Ax = b has a unique solution. This also means, x = A−1b.

Some helpful relations:

1. det(A) =
∑

π:[n]→[n] sign(π)
∏n
i=1Ai,π(i), where π is a permutation.

2. xi = det(Ai)
det(A) , where Ai is A with the ith column replaced with the vector b.

Corollary 5. Suppose Aij , bj are all integer, described by B bits, then the solution xi is rational and

needs only O(nlogn+Bn) bits to describe.

Proof. Using helpful relation 1, we can see that to describe xi we need log(max value of det(Ai)) +

log(max value of det(A)) bits.From helpful relation 2, we can see that |det(A)| ≤ n!(2B)n. This is because

there are n! many permutations, the max value of each Aij of length B bits is 2B, which is multiplied n

times. Since n! can be upper bounded by nn, we can say |det(A)| ≤ nn2Bn. This implies the number of

bits needed to describe xi = O(log(nn2Bn)) = O(nlogn+Bn).

5

This runtime bound on a solution of a system linear equations also translates to the runtime bound

for solutions for linear programs.

Notice that since it takes at least time n to write down xi, it will take time at least n2 to write down

any solution to a system of linear equations, and therefore any LP. This time is non-trivial.

3.1.2 General case: A is rectangular (n 6= m or det(A) = 0)

Before we tackle this case we look at some more definitions.

Definition 6. col(A) = set of columns of A ⊂ Rm

Definition 7. span(col(A)) = {y ∈ Rm : ∃x ∈ Rn|y =
∑n

i=1 xiAi = Ax}

Note that span(col(A)) is the space of all possible vectors that equal Ax. This is important because

we want to solve the equation Ax = b. Therefore

• if b /∈ span(col(A)) then there is no solution, and

• if b ∈ span(col(A)) then one or more solutions exist.

Now, given a solution exists, how do we find it?

Consider the following sets.

Definition 8. S = set of linearly independent vectors from col(A)

Definition 9. S̄ = completion of S to a basis

Thus, span(S) = span(col(A)) ⊆ Rm and |S̄| = m.

We can index entries of S̄ and write S = {S̄1, . . . , S̄m}. Now, if we solve

[
S̄1, . . . , S̄m

] [x′
y

]
= b

where x′ are the entries of the vector x that will multiply with the columns of A, and y are the entries

that will multiply with the columns that form the completion, i.e. S̄\S.

Since S̄ is a basis of Rm, there exists a unique solution to the equation above

[
x′

y

]
Then our solution to the system of equations becomes:

x∗i =

{
x′i, if if col i of A is in S

0, otherwise

The remaining portion of this topic will be covered in the next lecture.

6

