COMS 4995-8: Advanced Algorithms (Spring'21)

Feb 25, 2021

Lecture 14: Random walks, largest eigenvalue

Instructor: Alex Andoni Scribes: Maryam Bahrani, Miranda Christ

1 Introduction

We apply spectral results from last class to characterize matrices corresponding to random walks in a graph. In particular, we prove that the largest eigenvalue λ_1 of a symmetric graph derived from the adjacency matrix must equal 1. We also show that the second eigenvalue $\lambda_2 = 1$ if and only if the graph is disconnected.

2 Random walks in a graph G

We apply concepts from last class (namely the Spectral Theorem and the Rayleigh quotient) to analyze random walks.

Let $A = A_G$ be an adjacency matrix for an undirected graph G on n vertices. Let $D = D_G$ be the diagonal matrix of degrees of vertices of G. Let X^0 be a starting distribution over [n], and let X^t be the distribution at time t. That is, X_i^t is the probability that a random walk is at vertex i after t random steps.

As shown last class,

$$X^t = (A \cdot D^{-1})^t \cdot X^0$$

We wish to apply the Spectral Theorem here to somehow characterize X^t ; however, we can only apply the theorem to a symmetric matrix. Letting $\hat{A} = D^{-1/2} \cdot A \cdot D^{-1/2}$ (note that \hat{A} is symmetric), we have:

$$\begin{aligned} X^{t} &= A \cdot D^{-1} \cdot A \cdot D^{-1} \cdot \dots \cdot A \cdot D^{-1} \cdot X^{0} \\ &= A \cdot D^{-1/2} \cdot D^{-1/2} \cdot A \cdot D^{-1/2} \cdot D^{-1/2} \cdot \dots \cdot D^{-1/2} A \cdot D^{-1/2} \cdot D^{-1/2} \cdot X^{0} \\ &= D^{1/2} \cdot \hat{A}^{t} \cdot D^{-1/2} \cdot X^{0} \end{aligned}$$

Letting $Y^t := D^{-1/2}X^t$, we have $Y^t = \hat{A}^t \cdot D^{-1/2} \cdot X^0 = \hat{A}^t \cdot Y^0$. Observe that $\hat{A} = D^{-1/2} \cdot A \cdot D^{-1/2}$ is symmetric as desired. We can now apply the Spectral Theorem to \hat{A} , letting us write

$$\hat{A} = \sum_{i} \lambda_{i} v_{i} v_{i}^{T} \quad \lambda_{1} \ge \lambda_{2} \ge \dots \ge \lambda_{n}$$

where (λ_i, v_i) are eigenvalue/eigenvector pairs, $||v_i|| = 1$ for all *i*, and $v_i \cdot v_j = 0$ for $i \neq j$.

Fact 1.

- $\hat{A}^t = \sum_{i=1}^n \lambda_i^t v_i v_i^T$ since for all $i \neq j$, v_i and v_j are orthogonal.
- $Y^0 = \sum_{i=1}^n \alpha_i v_i$, where $\alpha_i \in \mathbb{R}$ and the α_i 's are uniquely determined.

•
$$Y^t = \sum_{i=1}^n \lambda_i^t \alpha_i v_i$$

Proof. We sketch a proof of the last fact, that $Y^t = \sum_{i=1}^n \lambda_i^t \alpha_i v_i$. We first compute Y^1 :

$$Y^{1} = \hat{A} \cdot Y^{0}$$
$$= \sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T} \cdot \sum_{j=1}^{n} \alpha_{j} v_{j}$$
$$= \sum_{i,j} \lambda_{i} \alpha_{j} v_{i} v_{i}^{T} v_{j}$$
$$= \sum_{i} \lambda_{i} \alpha_{i} v_{i}$$

where in the last step, we use the fact that for $i \neq j$, v_i and v_j are orthogonal, so $v_i^T v_j = 0$. By inducting on t and doing a similar calculation, again using the fact that v_i and v_j are orthogonal for $i \neq j$, it follows that $Y^t = \sum_i \lambda_i^t \alpha_i v_i$.

Observation 2.

- If $\lambda_1 > 1$, then Y_t diverges as $t \to \infty$. Since $Y^t = D^{-1/2}X^t$, where X^t represents a probability distribution, this cannot happen. The same issue arises if $\lambda_1 < -1$. Thus $\lambda_i \in [-1, 1]$ for all i.
- If $\lambda_i \in (-1, 1)$, as $t \to \infty$, the value $\lambda_i^t \alpha_i v_i$ goes to zero.

Theorem 3. Let $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ be the eigenvalues of \hat{A} chosen according to the spectral theorem. Then $\lambda_1 = 1$.

Proof. We first show that $\lambda_1 \geq 1$. Recall that

$$\lambda_1 = \max_{x \neq 0} R(x)$$

where R(x) is the Rayleigh quotient of x. Thus to show that $\lambda_1 \ge 1$, it is sufficient to find an x such that $x \ne 0$ and $R(x) \ge 1$. Let $x = (\sqrt{d_1}, \sqrt{d_2}, ..., \sqrt{d_n})^T = D^{1/2} \cdot \mathbb{1}$, where $\mathbb{1}$ denotes the vector of all ones. We will show that this choice of x indeed achieves R(x) = 1.

Observe that $A \cdot 1$ is a vector of the degrees of each vertex. We use this fact below.

$$\begin{aligned} R(x) &= \frac{x^T \hat{A} x}{\|x\|^2} \\ &= \frac{\mathbbm{1}^T D^{1/2} D^{-1/2} A D^{-1/2} D^{1/2} \mathbbm{1}}{\sum_{i=1}^n x_i^2} \\ &= \frac{\mathbbm{1}^T A \mathbbm{1}}{\sum_{i=1}^n d_i} \\ &= \frac{\mathbbm{1}^t \cdot [d_1, \dots, d_n]^T}{\sum_{i=1}^n d_i} \\ &= \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n d_i} \\ &= 1 \end{aligned}$$

Therefore, $\lambda_1 \geq 1$. It now suffices to show $\lambda_1 \leq 1$, completing the proof. We show that for all $x \neq 0$, $R(x) \leq 1$. Let $x \neq 0$.

$$R(x) = \frac{x^T \hat{A}x}{\|x\|^2}$$

= $\frac{x^T D^{-1/2} A D^{1/2} x}{\|x\|^2}$
= $\frac{\left(\frac{x_1}{\sqrt{d_1}}, \dots, \frac{x_n}{\sqrt{d_n}}\right) A\left(\frac{x_1}{\sqrt{d_1}}, \dots, \frac{x_n}{\sqrt{d_n}}\right)^T}{\|x\|^2}$
= $\frac{\sum_{i,j} A_{ij} \cdot \frac{x_i}{\sqrt{d_i}} \cdot \frac{x_j}{\sqrt{d_j}}}{\|x\|^2}$
= $\frac{\sum_{(i,j) \in E} \frac{x_i}{\sqrt{d_i}} \cdot \frac{x_j}{\sqrt{d_j}}}{\|x\|^2}$

Here we can apply the Cauchy-Schwarz inequality: for all vectors p, q, we have $p \cdot q = \|p\| \cdot \|q\| \cdot \cos(p, q) \le \|p\| \cdot \|q\|$. We define $p, q \in \mathbb{R}^{2|E|}$, where for i, j such that $A_{ij} = 1$, we let $p_{ij} = \frac{x_i}{\sqrt{d_i}}$ and $q_{ij} = \frac{x_j}{\sqrt{d_j}}$. Thus

$$\frac{\sum_{(i,j)\in E} \frac{x_i}{\sqrt{d_i}} \cdot \frac{x_j}{\sqrt{d_j}}}{\|x\|^2} \le \frac{\left(\sum_{(i,j)\in E} \left(\frac{x_i}{\sqrt{d_i}}\right)^2\right)^{1/2} \cdot \left(\sum_{(i,j)\in E} \left(\frac{x_j}{\sqrt{d_j}}\right)^2\right)^{1/2}}{\|x\|^2}$$
$$= \frac{\sum_{(i,j)\in E} \frac{x_i^2}{d_i}}{\|x\|^2}$$
$$= \frac{\sum_i x_i^2}{\sum_i x_i^2}$$
$$= 1.$$

Thus $R(x) \leq 1$ for all $x \neq 0$, and consequently $\lambda_1 \leq 1$. Since we previously showed $\lambda_1 \geq 1$, we have that $\lambda_1 = 1$ as desired.

Remark 1. If λ_1 is unique, then its corresponding eigenvector $v_1 = (\sqrt{d_1}, \sqrt{d_2}, \dots, \sqrt{d_n})$.

Remark 2. If R(x) = 1 for some vector x, then $\frac{x_i}{\sqrt{d_i}} = \frac{x_j}{\sqrt{d_j}}$ for every edge (i, j).

Proof. Consider x such that R(x) = 1. Consider the $\lambda_1 \leq 1$ part of the proof above. The only inequality there is due to Cauchy-Schwarz, which we can replace with the equality $p \cdot q = ||p|| \cdot ||q||$, to conclude that $R(x) = \cos(p, q)$ for all x. Thus R(x) = 1 implies $\cos(p, q) = 1$, that is $p = \alpha q$ for some positive real number α . By definition of p and q, this implies that for every edge (i, j), we have

$$\frac{x_i}{\sqrt{d_i}} = \alpha \frac{x_j}{\sqrt{d_j}}$$

and by symmetry also

$$\frac{x_j}{\sqrt{d_j}} = \alpha \frac{x_i}{\sqrt{d_i}}.$$

For both these equalities to hold simultaneously, it must be the case that $\alpha = 1$. Therefore, $\frac{x_i}{\sqrt{d_i}} = \frac{x_j}{\sqrt{d_j}}$ for every edge (i, j) as desired.

Remark 3. $R(x) \ge -1$ for all x, with equality iff $\frac{x_i}{\sqrt{d_i}} = -\frac{x_j}{\sqrt{d_j}}$ for every edge i, j. The following theorem connects the algebraic quantity λ_2 to the combinatorial property of graph

The following theorem connects the algebraic quantity λ_2 to the combinatorial property of graph connectivity. This is rather surprising as the two properties seem unrelated on the surface but is a common theme in the Spectral graph theory, as we shall see in future lectures.

Theorem 4. $\lambda_2 = 1$ if and only if G is disconnected.

Proof. We first show that if G is disconnected, then $\lambda_2 = 1$. If G is disconnected, it can be thought of as two non-empty graphs G_1, G_2 with no paths between them. Reordering the rows and columns of A_G to list the vertices of G_1 first and the vertices of G_2 second, we get the following block structure on A_G

$$\hat{A}_G = \begin{bmatrix} \hat{A}_{G_1} & 0\\ 0 & \hat{A}_{G_2} \end{bmatrix}$$

Suppose G_1 has k vertices, and let (λ_i, v_i) , i = 1, 2, ..., k be the eigenvalues and eigenvectors of \hat{A}_{G_1} . Note that $v_i \in \mathbb{R}^k$. Furthermore, let (λ_{i+k}, v_{i+k}) , i = k + 1, ..., n be the eigenvalues and eigenvectors of \hat{A}_{G_2} , where $v_{i+k} \in \mathbb{R}^{n-k}$. Then the eigenvalues and eigenvectors of \hat{A}_G are (λ_i, v'_i) , i = 1, ..., n, where

$$v'_{i} = \begin{cases} (v_{i}, 0, \dots, 0) & \text{if } i \le k \\ (0, \dots, 0, v_{i}) & \text{if } i > k \end{cases}$$

By Theorem 3, the first eigenvalue of both \hat{A}_{G_1} and \hat{A}_{G_2} is equal to 1. So in particular, $\lambda_1 = 1, v'_1 = (v_1, 0, \dots, 0)$ and $\lambda_{k+1} = 1, v'_{k+1} = (0, \dots, 0, v_{k+1})$ are both eigenvalue-eigenvector pairs of \hat{A}_G , where v'_1 and v'_{k+1} are orthogonal, and thus $\lambda_2 = 1$.

We now show the other direction by contradiction. Suppose G is connected and $\lambda_2 = 1$. Let v_2 be an eigenvector with eigenvalue λ_2 . We know that $v_2 \perp v_1$, so $R(v_2) = \lambda_2 = 1$. By Remark 2, this implies that for every edge ij,

$$\frac{x_i}{\sqrt{d_i}} = \frac{x_j}{\sqrt{d_j}}.$$

Let $\beta = \frac{x_1}{\sqrt{d_1}}$. Since G is connected, there is a path from vertex 1 to every other vertex i, and the chain of equalities along each edge of this path implies $\frac{x_i}{\sqrt{d_i}} = \frac{x_1}{\sqrt{d_1}} = \beta$ for all vertices i. Put differently, $x_i = \sqrt{d_i} \cdot \beta$ for every $i \in [n]$. Therefore, $x = v_1 \cdot \beta$, since $v_1 = (\sqrt{d_1}, \ldots, \sqrt{d_n})$ by Remark 1. This contradicts the assumption that $v_2 \perp v_1$, completing the proof.