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Lecture 14: Random walks, largest eigenvalue

Instructor: Alex Andoni Scribes: Maryam Bahrani, Miranda Christ

1 Introduction

We apply spectral results from last class to characterize matrices corresponding to random walks in a

graph. In particular, we prove that the largest eigenvalue λ1 of a symmetric graph derived from the

adjacency matrix must equal 1. We also show that the second eigenvalue λ2 = 1 if and only if the graph

is disconnected.

2 Random walks in a graph G

We apply concepts from last class (namely the Spectral Theorem and the Rayleigh quotient) to analyze

random walks.

Let A = AG be an adjacency matrix for an undirected graph G on n vertices. Let D = DG be the

diagonal matrix of degrees of vertices of G. Let X0 be a starting distribution over [n], and let Xt be the

distribution at time t. That is, Xt
i is the probability that a random walk is at vertex i after t random

steps.

As shown last class,

Xt = (A ·D−1)t ·X0

We wish to apply the Spectral Theorem here to somehow characterize Xt; however, we can only apply

the theorem to a symmetric matrix. Letting Â = D−1/2 ·A ·D−1/2 (note that Â is symmetric), we have:

Xt = A ·D−1 ·A ·D−1 · · · · ·A ·D−1 ·X0

= A ·D−1/2 ·D−1/2 ·A ·D−1/2 ·D−1/2 · · · · ·D−1/2A ·D−1/2 ·D−1/2 ·X0

= D
1/2 · Ât ·D−1/2 ·X0

Letting Y t := D−1/2Xt, we have Y t = Ât · D−1/2 · X0 = Ât · Y 0. Observe that Â = D−1/2 · A · D−1/2 is

symmetric as desired. We can now apply the Spectral Theorem to Â, letting us write

Â =
∑
i

λiviv
T
i λ1 ≥ λ2 ≥ ... ≥ λn

where (λi, vi) are eigenvalue/eigenvector pairs, ‖vi‖ = 1 for all i, and vi · vj = 0 for i 6= j.

Fact 1.

• Ât =
∑n

i=1 λ
t
iviv

T
i since for all i 6= j, vi and vj are orthogonal.

• Y 0 =
∑n

i=1 αivi, where αi ∈ R and the αi’s are uniquely determined.
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• Y t =
∑n

i=1 λ
t
iαivi

Proof. We sketch a proof of the last fact, that Y t =
∑n

i=1 λ
t
iαivi. We first compute Y 1:

Y 1 = Â · Y 0

=

n∑
i=1

λiviv
T
i ·

n∑
j=1

αjvj

=
∑
i,j

λiαjviv
T
i vj

=
∑
i

λiαivi

where in the last step, we use the fact that for i 6= j, vi and vj are orthogonal, so vTi vj = 0. By inducting

on t and doing a similar calculation, again using the fact that vi and vj are orthogonal for i 6= j, it follows

that Y t =
∑

i λ
t
iαivi.

Observation 2.

• If λ1 > 1, then Yt diverges as t → ∞. Since Y t = D−1/2Xt, where Xt represents a probability

distribution, this cannot happen. The same issue arises if λ1 < −1. Thus λi ∈ [−1, 1] for all i.

• If λi ∈ (−1, 1), as t→∞, the value λtiαivi goes to zero.

Theorem 3. Let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalues of Â chosen according to the spectral theorem.

Then λ1 = 1.

Proof. We first show that λ1 ≥ 1. Recall that

λ1 = max
x 6=0

R(x)

where R(x) is the Rayleigh quotient of x. Thus to show that λ1 ≥ 1, it is sufficient to find an x such that

x 6= 0 and R(x) ≥ 1. Let x = (
√
d1,
√
d2, ...,

√
dn)T = D1/2 · 1, where 1 denotes the vector of all ones.

We will show that this choice of x indeed achieves R(x) = 1.
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Observe that A · 1 is a vector of the degrees of each vertex. We use this fact below.

R(x) =
xT Âx

‖x‖2

=
1
TD1/2D−1/2AD−1/2D1/2

1∑n
i=1 x

2
i

=
1
TA1∑n
i=1 di

=
1
t · [d1, ..., dn]T∑n

i=1 di

=

∑n
i=1 di∑n
i=1 di

= 1

Therefore, λ1 ≥ 1. It now suffices to show λ1 ≤ 1, completing the proof.

We show that for all x 6= 0, R(x) ≤ 1. Let x 6= 0.

R(x) =
xT Âx

‖x‖2

=
xTD−1/2AD1/2x

‖x‖2

=

(
x1√
d1
, ..., xn√

dn

)
A
(

x1√
d1
, ..., xn√

dn

)T
‖x‖2

=

∑
i,j Aij · xi√

di
· xj√

dj

‖x‖2

=

∑
(i,j)∈E

xi√
di
· xj√

dj

‖x‖2

Here we can apply the Cauchy-Schwarz inequality: for all vectors p, q, we have p ·q = ‖p‖·‖q‖·cos(p, q) ≤
‖p‖ · ‖q‖. We define p, q ∈ R2|E|, where for i, j such that Aij = 1, we let pij = xi√

di
and qij =

xj√
dj

. Thus

∑
(i,j)∈E

xi√
di
· xj√

dj

‖x‖2
≤

(∑
(i,j)∈E

(
xi√
di

)2)1/2

·

(∑
(i,j)∈E

(
xj√
dj

)2
)1/2

‖x‖2

=

∑
(i,j)∈E

x2
i

di

‖x‖2

=

∑
i x

2
i∑

i x
2
i

= 1.
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Thus R(x) ≤ 1 for all x 6= 0, and consequently λ1 ≤ 1. Since we previously showed λ1 ≥ 1, we have that

λ1 = 1 as desired.

Remark 1. If λ1 is unique, then its corresponding eigenvector v1 = (
√
d1,
√
d2, . . . ,

√
dn).

Remark 2. If R(x) = 1 for some vector x, then xi√
di

=
xj√
dj

for every edge (i, j).

Proof. Consider x such that R(x) = 1. Consider the λ1 ≤ 1 part of the proof above. The only inequality

there is due to Cauchy-Schwarz, which we can replace with the equality p · q = ‖p‖ · ‖q‖, to conclude

that R(x) = cos(p, q) for all x. Thus R(x) = 1 implies cos(p, q) = 1, that is p = αq for some positive real

number α. By definition of p and q, this implies that for every edge (i, j), we have

xi√
di

= α
xj√
dj

and by symmetry also

xj√
dj

= α
xi√
di
.

For both these equalities to hold simultaneously, it must be the case that α = 1. Therefore, xi√
di

=
xj√
dj

for every edge (i, j) as desired.

Remark 3. R(x) ≥ −1 for all x, with equality iff xi√
di

= − xj√
dj

for every edge i, j.

The following theorem connects the algebraic quantity λ2 to the combinatorial property of graph

connectivity. This is rather surprising as the two properties seem unrelated on the surface but is a

common theme in the Spectral graph theory, as we shall see in future lectures.

Theorem 4. λ2 = 1 if and only if G is disconnected.

Proof. We first show that if G is disconnected, then λ2 = 1. If G is disconnected, it can be thought of as

two non-empty graphs G1, G2 with no paths between them. Reordering the rows and columns of AG to

list the vertices of G1 first and the vertices of G2 second, we get the following block structure on AG

ÂG =

[
ÂG1 0

0 ÂG2

]

Suppose G1 has k vertices, and let (λi, vi), i = 1, 2, . . . , k be the eigenvalues and eigenvectors of ÂG1 .

Note that vi ∈ Rk. Furthermore, let (λi+k, vi+k), i = k + 1, . . . , n be the eigenvalues and eigenvectors of

ÂG2 , where vi+k ∈ Rn−k. Then the eigenvalues and eigenvectors of ÂG are (λi, v
′
i), i = 1, . . . , n, where

v′i =

{
(vi, 0, . . . , 0) if i ≤ k
(0, . . . , 0, vi) if i > k

By Theorem 3, the first eigenvalue of both ÂG1 and ÂG2 is equal to 1. So in particular, λ1 = 1, v′1 =

(v1, 0, . . . , 0) and λk+1 = 1, v′k+1 = (0, . . . , 0, vk+1) are both eigenvalue-eigenvector pairs of ÂG, where v′1
and v′k+1 are orthogonal, and thus λ2 = 1.
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We now show the other direction by contradiction. Suppose G is connected and λ2 = 1. Let v2 be

an eigenvector with eigenvalue λ2. We know that v2 ⊥ v1, so R(v2) = λ2 = 1. By Remark 2, this implies

that for every edge ij,
xi√
di

=
xj√
dj
.

Let β = x1√
d1

. Since G is connected, there is a path from vertex 1 to every other vertex i, and the chain of

equalities along each edge of this path implies xi√
di

= x1√
d1

= β for all vertices i. Put differently, xi =
√
di ·β

for every i ∈ [n]. Therefore, x = v1 · β, since v1 = (
√
d1, . . . ,

√
dn) by Remark 1. This contradicts the

assumption that v2 ⊥ v1, completing the proof.
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