
COMS 4995-8: Advanced Algorithms (Spring’21) Feb 23, 2021

Lecture 13: Max Flow, Spectral Graph Theory

Instructor: Alex Andoni Scribes: Yuanchu Dang, Yunfeng Guan

1 Introduction

In the last lecture, we explored 3 algorithms that improve on the run time of the original Ford-Fulkerson

algorithm. Today we will continue on Ford-Fulkerson, and also get started on the foundational concepts

of Spectral Graph Theory as well.

2 Max Flow Continuation

In this section, we will continue from the last lecture and finish the last bit of the Ford-Fulkerson shortest

path algorithm and obtain a few extensions from it.

Denote df (s, v) as the distance from s to v in Gf (the residual graph).

Claim 1. Fix f . Let P be the shortest augmenting path in Gf , and f ′ be the flow after augmenting P ,

we would have

df ′(s, v) ≥ df (s, v)

Proof. Let A = {v : df ′(s, v) < df (s, v)} and v = minv∈A df ′(s, v). From the premise, A 6= ∅.

Let w be the preceding node of v in P , then

df ′(s, v) = df ′(s, w) + 1

Since df ′(s, v) < df (s, v) and df ′(s, w) ≥ df (s, w), we have

df (s, v) ≥ df (s, w) + 2

However, if there exists w → v in Gf , it must be

df (s, v) ≤ df (s, w) + 1

This implies in Gf , path P goes from v to w, and in turn that

df (s, w) = df (s, v) + 1

which results in a contradiction with df (s, v) ≥ df (s, w) + 2 that we obtained previously.

Claim 2. For ∀v ∈ V , df (s, v) ≤ n.
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Claim 3. For every edge v → w, it can be saturated at most n
2 times.

Proof. During a saturating event, if v → w is on the (shortest) augmenting path P , then we have

df (s, w) = df (s, v) + 1

At the same time, as v → w is saturated, in the next residual graph Gf ′ , v → w does not exist.

Before edge v → w is saturated again, it must be created first, which means that a shortest path P ′

must go from w → v in some Gf ′′ for f ′′.

This implies that

df ′′(s, v) = df ′′(s, w) + 1

≥ df (s, w) + 1 (Claim 1)

= df (s, v) + 1 + 1

= df (s, v) + 2

i.e. there are at most n
2 saturations of v → w.

Claim 4. In every step of the FF algorithm, at least 1 edge is saturated.

In conclusion, for run time analysis, we have:

• Number of iterations in FF: m · n2 .

• Total time: O(mn
2 ·m) = O(m2n).

There are also improved run time results from a few other references:

• O(m1.5 log n logU) (up to the 90s).

• O(m
√
n logU) (Lee and Sidford [LS15]).

• O(m4/3 · (log n)O(1)) for U = O(1) (Kathuria, Liu and Sidford [KLS20]).

3 Spectral Graph Theory

In this section, we mainly focus on undirected graph G = (V,E).

Definition 5. Adjacency matrix AG of graph G is an n× n matrix with elements

(AG)ij =

{
1 if(i, j) ∈ E
0 otherwise

Observation 6. For undirected graph G, AG is symmetric.

Definition 7. Degree matrix DG of graph G is an n× n diagonal matrix with elements

(DG)ii = degree(i)
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4 Random Walks / Diffusion

4.1 Diffusion equation

Think of a walker walking randomly in G, who at every time step, takes a step to a (uniformly) random

neighbor.

Definition 8. xt ∈ R+ is the probability distribution of the walker’s position after t steps.

Starting from the initial position x0 = (1, 0, · · · , 0), the evolution of xt is dictated by diffusion operator

W , in the form xt+1 = Wxt.

From the statement of random walk process, we have

xt+1
j =

∑
(i,j)∈E

xti
degree(i)

in which xti is the probability that the walker is in position i at time step t.

Therefore, we can see W is in fact an n× n matrix with elements

Wji =
1

degree(i)
(AG)ji

Further it can be written as

W = AGD
−1
G

Here we have some remarks:

1) xt = Wxt−1 = · · · = W tx0

2) In the evolution process xt+1 = AGD
−1
G xt, D−1G xt can be seen as a special vector indicating how much

fraction node i gives to each of its neighbor.

3) W is not necessarily symmetric even if AG is symmetric.

4.2 Stationary distribution

Definition 9. The stationary distribution for a random walk process is the vector x∗ ∈ Rn
+ s.t. Wx∗ = x∗.

Two questions centering on stationary distribution are:

1) What is x∗? Does it exist? Is it unique if existence is guaranteed?

2) When t→∞, does xt converge? If so, is x∗ the limit point?

5 Spectral Decomposition/Theory of symmetric matrices

5.1 Eigenvector and eigenvalue

Definition 10. Let M be an n × n matrix. A non-zero vector v ∈ Rn is called an eigenvector of M if

Mv = λv. λ is the corresponding eigenvalue of v.
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From the definition we have the observation that for any eigenvector/eigenvalue pair (v, λ), Mv =

λv ⇒ (M − λI)v = 0.

It further implies that the determinant det(M − λI) = 0. Since the determinant is a polynomial of

λ of degree n (in fact a summation of products of n items from M − λI), this equation has precisely n

roots (counting multiplicities).

In addition we have the following fact:

Fact 11. If M is a real symmetric matrix, then all n roots of det(M − λI) = 0.

5.2 Spectral Theorem

Theorem 12. For any n× n matrix M , there exist n eigenvalue/eigenvector pairs (λi, vi) such that

1) ‖vi‖ = 1

2) vi · vj = 0 for i 6= j

3) Mvi = λivi

Here are some remarks on spectral theorem.

1) The eigenvalues λ1, · · · , λn are unique. (By convention, eigenvalues are named in the order λ1 ≥ · · · ≥
λn)

2) The eigenvectors are not necessarily unique.

If λi are distinct, then the corresponding eigenvectors v1, · · · , vn must be unique (up to negativity, i.e.

vi and −vi are the only two eigenvectors corresponding to λi).

Otherwise, it is not the case. For example, given λi = λi+1, apart from vi, vi+1,
1√
2
(vi + vi+1),

1√
2
(vi−

vi+1) can also be two valid eigenvectors.

3) M can be expressed as the sum of outer products of eigenvectors.

M =

n∑
i=1

λiv
T
i vi

Some examples of spectral decomposition:

1) M = 0, then λi = 0, i = 1, · · · , n. Any basis in Rn is a valid set of eigenvectors.

2) M = I, then λi = 1, i = 1, · · · , n. Any basis in Rn is a valid set of eigenvectors.

Further, since we proved that n eigenvectors form a basis of Rn, any vector x ∈ Rn can be expressed

as a linear combination of them.

x =

n∑
i=1

αivi

Then the result of M being applied to x is just the summation of scaled eigenvectors.

Mx = M

n∑
i=1

αivi =

n∑
i=1

αi(Mvi) =

n∑
i=1

λiαivi

4



5.3 Rayleigh Quotient

Definition 13. ∀x 6= 0, Rayleigh Quotient R(x) is a function mapping from Rn to R:

R(x) =
xTMx

||x||2
=
xTMx

xTx

Observation 14. For ∀ eigenvector vi,

R(vi) =
vTi Mvi
||vi||2

=
vTi λivi
||vi||2

= λi

From the observation, we can easily derive the following theorems.

Theorem 15.

max
x 6=0

R(x) = λ1 (maximum eigenvalue)

min
x 6=0

R(x) = λn (minimum eigenvalue)

Theorem 16.

λi = max
x 6=0

x⊥v1,v2,...,vi−1

R(x)

e.g.

λ2 = max
x 6=0
x⊥v1

R(x)

This observation in fact shows a different way to compute eigenvalue without finding the roots of

determinant.

But it is worth noting that only eigenvalues are obtained. The corresponding eigenvectors still need

to be computed by solving (M − λI)v = 0.
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