
COMS 4995-8: Advanced Algorithms (Spring’21) Feb 18, 2021

Lecture 12: Max-Flow Algorithms

Instructor: Alex Andoni Scribes: Davepriyan Gunaratnam, Gauri Narayan

1 Overview

Today we will explore 3 algorithms that improve on the run time of the original Ford-Fulkerson algorithm.

2 Review

Algorithm 1: Ford-Fulkerson algorithm

Result: Max flow from s to t

Initialize: set flow f := ~0 and Gf = G while ∃ s→ t path P ∈ Gf do

let δ = mine∈P cfe > 0;

for every e = (u, v) ∈ P do

if (u, v) is F-edge then

fuv := fuv + δ;

else

fvu := fvu − δ;
end

end

Reconstruct Gf ;

end

2.1 Run time of the Ford-Fulkerson Algorithm:

Consider a graph G where the capacities on all edges are integers.

Claim: FF runtime is O(|f∗| ·m) where m is number of edges and |f∗| is the maximum flow.

Proof. Consider the fact that δ > 0 in each iteration by the way we define the residual graph Gf . Since

all capacities are integers in the original graph, each time we find an augmenting path and compute a new

δ, it must necessarily be integer as well. Since the integrality of δ and all capacities in Gf is maintained

at all times, at every iteration δ ≥ 1. Thus the total number of iterations is the upper bounded by the

max flow |f∗| since we improve by at least 1 unit in each iteration. Finally, each iteration takes O(m)

time using BFS or DFS so total time is O(|f∗| ·m).

Problem: We can easily construct a worst case scenario in which this algorithm will increase the

flow by exactly 1 unit per iteration. Below is an example of this. If the augmenting path the algorithm

finds in every iteration from s to t is the path that that uses the middle edge with capacity 1, then in

1

each iteration we increase the flow by exactly 1. The middle edge capacity causes δ = 1 each time. Thus

our run time will be 1,000,000 iterations in this example.

Ultimately this is not a polynomial time algorithm because of its dependence on the size of the

maximum flow. We want an algorithm that has run time that is polynomial in n,m, log(U) where U is

the maximum capacity edge in G

3 Algorithm 1: Max-Width Path

3.1 Idea

Until now, we have not identified a particular way to pick the augmenting path in Gf . In this solution,

each time we pick an augmenting path we choose the one that gives us the largest δ

3.2 Run time Analysis

We’d like to try to bound the number of iterations. Suppose our current flow is f . Define our remaining

value v as

v := |f∗| − |f |

Claim 1. δ ≥ v/m

Proof. Gf has a maximum flow value equal to the remaining value, which is v Let the maximum flow

on the residual graph Gf be named φ∗f . Thus |φ∗f | = v Using Flow Decomposition Theorem we can

decompose the residual max flow φ∗f as follows:

φ∗f =
∑k

i=1 |fpi |+
∑l

j=1 |fcj | where pi’s represent the paths from s to t and cj ’s represent the cycles

=⇒ |φ∗f | =
∑k

i=1 |fpi | ≤ k · |fp| ≤ k · δ since the cycles do not contribute to the flow value |fp| is the

augmenting path in Gf with the maximum δ

=⇒ v = |φ∗f | ≤ k · δ =⇒ δ ≥ v/k ≥ v/m

Thus, after augmenting with this path p, the value remaining is ≤ v−v/m = v(1−1/m) since we have

increased the flow by δ. Notice that this implies that in every iteration the value remaining decreases by

at least a factor of 1− 1/m.

After t iterations of this, the remaining flow is: |f∗| − |f | ≤ |f∗| · (1 − 1/m)t Since all quantities are

integer |f∗| · (1− 1/m)t < 1 =⇒ |f∗| · (1− 1/m)t = 0

|f∗|·(1−1/m)t ≤ m·U ·e−t/m where U is the max capacity set t = m·ln(mU)+1 then |f∗|·(1−1/m)t < 1

Thus t = O(m · ln(mU)) where t is the number of iterations needed The total time required is: t·[time to

find the maximum δ path] We can compute the maximum δ path in two ways: 1. Dynamic Programming

2

(Dijkstra’s Algorithm) 2. Binary search We can do binary search on the value δ of the max-width path

P. In order to test whether ∃P with δ(P) > θ (where θ is a threshold in the binary search) we can simply

drop all edges in Gf that have capacity less than θ and check if ∃ s→t path. Finally the binary search

will converge on the threshold θ = δ. Thus the time to do this procedure is O(m · log(U))

The total time required is: O(m · ln(mU)) ·O(m · log(U)) =⇒ O(m2 · log(U) · log(mU))

4 Algorithm 2: Scaling

4.1 Algorithm

The idea behind this algorithm is to greedily approximate the graph’s edge capacities, by starting with

each capacity’s most significant bits, and scaling the graph up until the least significant bits of the edge

capacities have been included.

We start by setting the number of scaling iterations to be

b = dlog2(U)e

And Gi to be a modification of graph G with the capacities ci(e) being equal to the i most significant

bits of c(e).

ci(ej) = b
cej

2b−1
c

Therefore, Gb = G.

The full algorithm is

Algorithm 2: Scaling

Initialize: set flow b := dlog2(U)e and f0 = 0 for i = 0, ..., b do
find max flow f i in Gi using FF algorithm, starting from flow 2f i−1;

end

returnf b

4.2 Correctness

The scaling algorithm is correct. We can show this by proving that each flow 2 · f i−1 is a valid flow, and

therefore f b is the max flow, since it is computed for the full capacities of each edge.

Claim 2. Flow 2 · f i−1 is a valid flow in Gi.

Proof. By induction.

Base case: Initialize flow=0.

Inductive Hypothesis: Assume 0 ≤ f i−1 ≤ ci−1(e) and f i−1 satisfies flow conservation.

Inductive step:

By flow conservation of the inductive hypothesis, 0 ≤ 2f i−1(e) ≤ 2ci−1(e).

Because of how we defined ci, we know that 2ci−1(e) ≤ ci(e).
Therefore, flow conservation holds since 2f i−1(e) ≤ ci(e).
And so 2f i−1 is a valid flow in Gi.

3

4.3 Runtime

We know that the number of scaling iterations is b = dlog2(U)e.
The time for each scaling iteration is equal to the time to run FF in Gi starting from 2f i−1. This is

upper bounded by the max flow in the residual graph Gi
2f i−1 , multiplied by m.

Claim 3. The remaining flow in Gi is ≤ m

Proof. 2F i−1 is max flow in graph with capacity 2ci−1(e).

We know that

ci(e) ∈ {2ci−1(e), 2ci−1(e) + 1}

We can use the Max-flow Min-cut Theorem, which states that ∀f,∀s
1)

|f | ≤ c(s)

2)

max
f
|f | = min

s
c(s)

Using part 2) of the theorem, there exists an s-t cut on Gi−1 such that

|f i−1| = ci−1(s)

We know that

ci(s) ≤ 2ci−1(s) + (#edges s→ s̄)

≤ 2|f i−1|+m

Using part 1) of the theorem,

|f i| ≤ 2|f i−1|+m

|f i| − 2f i−1 ≤ m

Since |f i| − 2f i−1 is the remaining flow in graph Gi when starting with flow 2f i−1, we have proven

our claim.

Therefore, the total runtime is O(b ∗m ∗m) = O(logU ·m ·m) = O(m2log(U))

5 Algorithm 3: Shortest Paths

The idea behind this algorithm is to use the Ford-Fulkersen algorithm, but choosing P to be the shortest

path in Gf each time. We c

5.1 Real RAM Model

We will assume that we are working with the Real RAM model, in which all registers/cells in memory

contain real numbers. We can further assume that we can perform the following operations in constant

runtime:

4

1. Add/Delete

2. Multiplication/Division

3. Max/Min

5.2 Correctness

Proof of correctness follows from the proof of correctness of the original Ford-Fulkerson algorithm, since

we are essentially just replacing all nonzero capacities with 1.

5.3 Runtime

We can show that the runtime is O(m2n) time total.

Definition 4. df (u, v) = dGf
(u, v) is the shortest path in Gf from u to v.

Claim 5. Fix flow f . Let P be the shortest path augmenting f to f ′. Then,

dp′(s, v) ≥ df (s, v)

Proof. By contradiction:

Setting

A = {v : df ′(s, v) < df (s, v)} 6= 0

v = min
v∈A

df ′(s, v)

Consider the shortest path P in Gf ′ from s to v. Then, with w being the node immediately preceding

v, since w /∈ A,

df ′(s, w) ≥ df (s, w)

⇒ df (s, v) > df ′(s, v) = df ′(s, w) + 1 ≥ df (s, w) + 1

Therefore,

df (s, v) > df (s, w) + 1

This implies that that

(w, v) /∈ Gf

since (w, v) ∈ Gf implies that df (s, v) ≤ df (s, w) + 1, which contradicts the above inequality.

Therefore, we know

(w, v) ∈ Gf ′

This means that the shortest augmenting path in Gf would pass from v → w.

However, this is a contradiction to the above inequality df (s, v) > df (s, w) + 1.

Proof of runtime to be concluded next lecture.

5

