Lecture 9: Random walks, and the largest eigenvalue

1 Introduction

In the previous lecture,we introduced the random walk, spectral graph theory and rayleigh quotient, today we continue the topic of random walk, we will apply spectral decomposition and drive some properties of diffusion and eigenvalues, and we will investigate the relationship between eigenvalue and graph connectivity.

2 Remainder

- we can apply spectral decomposition to a symmetric graph matrix $\mathrm{M}: \mathrm{M}=\sum_{i=1}^{n} \lambda_{i} v_{i} v_{i}^{T}$, where $v_{1}, v_{2}, \ldots, v_{n}$ are n orthonormal eigenvectors such that $\left\|v_{i}\right\|=1$ and $v_{i}^{T} v_{j}=0 \forall i \neq j$.
- rayleigh quotient is defined as $\mathrm{R}(\mathrm{x})=\frac{x^{t} M x}{\|x\|^{2}}$ and $\mathrm{R}\left(v_{i}\right)=\lambda_{i} \forall v_{i}$.

3 Diffusion/ Random walk

Let $x^{0}\left(\in R^{n}\right)=$ distribution over vertices in G .

$$
\begin{gather*}
x^{t}=W\left(x^{t-1}\right)=A D^{-1} x^{t-1}(t \geq 1) \\
x^{t}=A D^{-1} \cdot A D^{-1} \cdots x^{0}=\left(A D^{-1}\right)^{t} \cdot x^{0} \tag{1}
\end{gather*}
$$

If $\left(\mathrm{AD}^{-1}\right)$ is symmetric (eg, when D is diagonal of the same number, equivalently all degrees are exactly equal)
e.g. when d-regular:

$$
\begin{aligned}
A D^{-1} & =\frac{1}{d} A, M=A D^{-1}=\sum \lambda_{i} v_{i} v_{i}^{T} \\
M^{2} & =\left(\sum_{i} \lambda_{i} v_{i} v_{i}^{T}\right) \cdot\left(\sum_{j} \lambda_{j} v_{j} v_{j}^{T}\right) \\
& =\sum_{i} \lambda_{i} v_{i}\left(v_{i}^{T} v_{i}\right) v_{i}^{T} \lambda_{i}=\sum_{i=1}^{n} \lambda_{i}^{2} v_{i} v_{i}^{T}
\end{aligned}
$$

In general:

$$
M^{t}=\sum_{i=1}^{n} \lambda_{i}^{t} v_{i} v_{i}^{T} \text { (by induction) }
$$

when AD^{-1} is not symmetric, we can analyze a related matrix.

$$
\begin{aligned}
x^{t} & =A D^{-1} \cdot A D^{-1} \cdots x^{0}=\left(A D^{-1}\right)^{t} \cdot x^{0} \\
& =A D^{-1 / 2} D^{-1 / 2} A D^{-1 / 2} \cdots D^{-1 / 2} x^{0}
\end{aligned}
$$

Definition 1. $\hat{A}=D^{-1 / 2} A D^{-1 / 2}$
Note: $\hat{A_{i, j}}=\frac{A_{i, j}}{\sqrt{d_{i}} \sqrt{d_{j}}}$
Definition 2. $y^{t}=D^{-1 / 2} x^{t}$
From the definition 1,2 and equation(1), we have:

$$
\begin{equation*}
y^{t}=\hat{A}^{t} \cdot y^{0} . \tag{2}
\end{equation*}
$$

Apply spectral decomposition for \hat{A} :

$$
\begin{aligned}
\hat{A} & =\sum_{n} \lambda_{i} v_{i} v_{i}^{T}, \hat{A}^{t}=\sum \lambda_{i}^{t} v_{i} v_{i}^{T} \\
y^{0} & =\sum_{i=1}^{n} \alpha_{i} v_{i}, \alpha_{i} \in R,\left\|y^{0}\right\|_{2}^{2}=\sum \alpha_{i}^{2} \\
y^{t}=\hat{A}^{t} y^{0} & =\left(\sum_{i=1}^{n} \lambda_{i}^{t} v_{i} v_{i}^{T}\right)\left(\sum_{j=1}^{n} \alpha_{j} v_{j}\right) \\
& =\sum_{i, j} \lambda_{i}^{t} v_{i} v_{i}^{T} \alpha_{j} v_{j} \\
& =\sum_{i} \lambda_{i}^{t} \alpha_{i} v_{i}
\end{aligned}
$$

Claim 3.

$$
\begin{aligned}
& \text { If } \lambda_{i}<1 \Longrightarrow \text { term } \lambda_{i}^{t} \alpha_{i} v_{i} \text { disappears as } t \rightarrow \infty \\
& \text { If } \lambda_{i}>1 \Longrightarrow \lambda_{i}^{t} \text { diverges }
\end{aligned}
$$

Thus, intuitively, we must have:

$$
\begin{aligned}
1)\left|\lambda_{i}\right| \leq 1 & \forall i \\
2)\left|\lambda_{i}\right| & =1 \quad \exists i
\end{aligned}
$$

Theorem 4. $\lambda_{1}=1$
Proof. 1) $\lambda_{1} \geq 1\left(\right.$ recall $\left.\lambda_{1}=\max R(x)(x \neq 0)\right)$
Let $x=\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right)^{T}$:

$$
\begin{aligned}
R(x) & =\frac{x^{T} \cdot \widehat{A} \cdot x}{\|x\|_{2}^{2}} \\
& =\frac{x^{T} \cdot D^{-1 / 2} \cdot A \cdot D^{-1 / 2} \cdot x}{\sum_{i=1}^{n} d_{i}} \\
& =\frac{\mathbb{1}_{n}^{T} \cdot A \cdot \mathbb{1}}{\sum_{i=1}^{n} d_{i}} \\
& =\frac{\mathbb{1}_{n} \cdot\left[d_{1}, d_{2}, \ldots, d_{n}\right]^{T}}{\sum_{i=1}^{n} d_{i}} \\
& =1
\end{aligned}
$$

$\Longrightarrow \lambda_{1} \geq R(x)=1$
2) $\lambda_{1} \leq 1 \Leftrightarrow R(x) \leq 1 \forall x \neq 0$

$$
\begin{aligned}
R(x) & =\frac{x^{T} \widehat{A} x}{\|x\|_{2}^{2}} \\
& =\frac{\sum_{i j \in E} \frac{A_{i j}}{\sqrt{d_{i}} \sqrt{d_{j}}} \cdot x_{i} x_{j}}{\|x\|_{2}^{2}} \\
& =\frac{\sum_{i j \in E} \frac{x_{i}}{\sqrt{d_{i}}} \cdot \frac{x_{j}}{\sqrt{d_{j}}}}{\|x\|_{2}^{2}} \\
& \leq \frac{\left(\sum_{i j \in E}\left(\frac{x_{i}}{\sqrt{d_{i}}}\right)^{2}\right)^{1 / 2} \cdot\left(\sum_{i j \in E}\left(\frac{x_{j}}{\sqrt{d_{j}}}\right)^{2}\right)^{1 / 2}}{\|x\|_{2}^{2}}(\text { Cauchy }- \text { Schwartz }) \\
& =\frac{\left(\sum_{i} \frac{x_{i}^{2}}{d_{i}} \cdot d_{i}\right)^{1 / 2} \cdot\left(\sum_{j} \frac{x_{j}^{2}}{d_{j}} \cdot d_{j}\right)^{1 / 2}}{\|x\|_{2}^{2}} \\
& =1
\end{aligned}
$$

Cauchy-Schwartz: $p^{T} \cdot q \leq\|p\|^{2} \cdot\|q\|^{2}$
Remarks:

1. since $v_{1}=\operatorname{argmax} R(x) \Rightarrow v_{1}=\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right.$) (unique iff $\lambda_{2}<1$)
2. $R(x)=1$ iff CS is tight for x iff $\exists \alpha>0$ s.t. $\frac{x_{i}}{\sqrt{d_{i}}}=\frac{x_{j}}{\sqrt{d_{j}}} \cdot \alpha, \frac{x_{i}}{\sqrt{d_{i}}} \cdot \alpha=\frac{x_{j}}{\sqrt{d_{j}}}$ (vector p is a rescale of vector q)
$\Rightarrow \alpha=+1$

Similarly $R(x) \geq-1$ always (using $p \cdot q \geq-\|p\| \cdot\|q\|$), and $R(x)=-1$ iff the above holds with
$\alpha=-1\left(\frac{x_{i}}{\sqrt{d_{i}}}=-\frac{x_{j}}{\sqrt{d_{j}}}\right)$
Applying to our diffusion/random walk example: Recall $y^{t}=\sum \alpha_{i} \lambda_{i}^{t} v_{i}$.
Given $\lambda_{1}=1$ if $\left|\lambda_{2}\right|, \ldots,\left|\lambda_{n}\right|<1 \Rightarrow \lim _{t \rightarrow \infty} y^{t}=\alpha_{1} \cdot \lambda_{1}^{t} \cdot v_{1}=\alpha_{1} v_{1}$
where $v_{1}=\frac{1}{\sum_{d_{i}}}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{n}}\right)$ is the unique eigenvector with $\left.\lambda_{1}\right)$
Note that also $\alpha_{1}=v_{1}^{T} \cdot y^{0}=\sum_{i} x_{i}^{0}=1$ (by the assumption that x^{0} is distribution). Hence
$\lim _{t \rightarrow \infty} x^{t}=D^{1 / 2} v_{1}=\left(\begin{array}{c}d_{1} \\ d_{2} \\ \ldots \\ d_{n}\end{array}\right) \cdot \frac{1}{\sum d_{i}}$ is the unique stationary distribution in this case.
Theorem 5. $\lambda_{2}<1 \Leftrightarrow G$ connected
Proof. G is disconnected $\Rightarrow \lambda_{2}=1$
Let's say A has two components: comp1 and rest as below:

$$
A=\left(\begin{array}{cc}
c o m p 1 & 0 \\
0 & \text { rest }
\end{array}\right)
$$

comp1 will act independently of rest meaning each component has its own eigenvalues and eigenvectors, so each component will have its own top eigenvalue, which is 1 as proven above. Say comp1 is composed of k nodes $\{1,2, \ldots, \mathrm{k}\}$, we can write $v_{1}=\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{k}}, 0, \ldots, 0\right), v_{2}=\left(0, \ldots, 0, \sqrt{d_{k+1}}, \ldots, \sqrt{d_{n}}\right)$.

Prove in other direction: If G is connected $\Rightarrow \lambda_{2}<1$
take $v_{2} \perp v_{1}\left(v_{1}=\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)$, prove by contradiction:

$$
\text { suppose } \begin{aligned}
R\left(x=v_{2}\right)=1 & \Rightarrow \frac{x_{i}}{\sqrt{d_{i}}}=\frac{x_{j}}{\sqrt{d_{j}}} \forall(i, j) \\
& \Rightarrow \frac{x_{i}}{\sqrt{d_{i}}}=\beta \text { where } \beta=\frac{x_{1}}{\sqrt{d_{1}}} \forall i \\
& \Rightarrow \text { x proportional to } v_{1}\left(\text { contradicted with } x \perp v_{1}\right)
\end{aligned}
$$

where the middle step is since there's a path from node 1 to each other node, and we can apply the above equality to each edge on this path.

