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1 Recap: I/O model (External Memory Model)

Figure 1: I/O Model

We briefly recall the I/O model:

• We have a cache of size M, and an external memory unit which has unbounded storage space.

• Both are composed of lines of length B.

• To access a location in external memory, we need to import its entire line to the cache.

• We define ”Time”/”cost” of an algorithm to be the total number of lines brought into the cache.

Problem 0: Searching for x in an (unsorted) array A of size N via linear scan. This can be done in

”time” O(NB + 1), which is unsurprising because an array of size N occupies ≈ N
B cache lines.

Problem 1: Searching for x in a sorted array of size N via binary search. We know that in the

standard (RAM) model, this can be done in O(log(N)). In the I/O model the analysis proceeds as

follows:
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1. if N ≤ B then we need at most 2 CLs.

2. if N >> B: At the beginning of each iteration we search in the range [l, r] ⊂ {1, 2, ..., N}. As long

as r− l > B, we need to bring another CL for each iteration/halving of the range. When r− l ≤ B,

the previous case applies.

Thus the overall cost is O(log(NB ) + 1).

Note that compared to the standard model, we achieved only an additive improvement (O(log(N)−
log(B) + 1) vs O(log(N)), whereas in the unsorted search we achieved a multiplicative speedup (O(NB )

vs O(N)). Thus we would like to design an algorithm that achieves an analogous speedup for the sorted

array problem as well.

Problem 2: Searching for x in a Binary Search Tree:

Figure 2: BST, with each node storing an element of A

Where a is the current node, and the binary tree is ordered in the sense that x ≤ a ≤ y for any x, y

in the subtrees b, c respectively.

Analysis:

• if N ≤ 2B then we need at most 3 CLs.

• if N > 2B: As long as the subtree rooted at the current node is of size ≥ 2B, we need a new CL

for each ”split”.

Thus overall again we require O(log(NB ) + 1), which isn’t an improvement...

Problem 3:

Idea: To get a multiplicative speedup, we re-organize the tree to utilize the CLs more efficiently.

B-Tree
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Figure 3: B-Tree

Each nodes now stores B − 1 elements of A, and has B children, and the tree satisfies the sortedness

property:

A1 ≤ a1 ≤ A2 ≤ a2 ≤ ... ≤ aB−1 ≤ AB

Note the if B=1 we recover the definition of a BST.

The search proceeds as before.

Analysis: Each node requires at most 2 CLs (we store B−1 numbers and B pointers to its children).

This implies that the number of CLs we need to bring is ≤ 2× (height of the tree). The height of the

tree is dlogB(N)e, so overall we require O(logB(N + 1) = O(Log(N)
Log(B) + 1) (where as before the constant is

required to deal with the case that N ≤ B).

Example: If N = 220 and B = 210, using a binary tree would require 20 − 10 = 10 CLs, whereas a

B tree would require only 20
10 = 2.

Remark 1: The runtime (number of CPU operations), once we take into account operations within

each CL, is logB(N) × B (using a naive scan of the elements in each node), but using Binary Search

instead reduces this to logB(N)× log(B) = log(N)).

Remark 2: Sorting can be implemented at cost O(NB × logM
B

(NB )), using an appraoch analogous to

a M
B -way merge-sort.

2 Cache Oblivious Model

In the I/O model, using the above algorithms requires knowledge of B,M. This is problematic for the

following reasons:

1. We would like to design algorithms that are hardware independent.

2. The value of of the parameters B,M could change over time, e.g because multiple processors use

the same cache.
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3. In realistic applications there are multiple caches with different parameters.

Thus we would like to design efficient algorithms that don’t require knowledge of B,M.

Theorem 1. We can achieve the same performance, i.e O( log(N)
log(B) ), in the cache oblivious model.

First Approach- Heaps: A heap is a (balanced) BST stored in an array, where if a node is stored

in the i-th cell, its children are stored in the cells 2i+ 1 and 2i+ 2. This approach doesn’t work however,

because searching for x in this heap requires:

• A single CL for the first B elements, which correspond to depth Log(B) from the root.

• Another CL for each additional ”layer”, of which log(N)− log(B) remain.

And thus log(N)− log(B) + 1 CLs overall.

Figure 4: VEB Layout

New Data Structure: We store the BST using the Van Emde Boas layout. To store a tree T with

N nodes, we proceed as follows:

• If N ≤ 16 we store T in an arbitrary way.

• Otherwise, we store T0, T1, ..., T√N consecutively, where T0 consists of the upper half of T (namely

all nodes of distance ≤ n
2 from the root), and T0, T1, ..., T√N are the subtrees rooted at the leaves

of T0. Each one of the trees T0, T1, ..., T√N is stored recursively.

We will prove that using binary search on a BST stored in this way costs O( log(N)
log(B) ) in the next lecture.
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