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Instructor: Alex Andoni Scribes: Garrison Grogan, Shunhua Jiang

1 Problem Setting

Think about any prediction problem, for example, predicting the stock price. We want to rely on the

advices from a group of experts. We define the following notations:

• n experts,

• t ∈ {1, . . . , T}: time.

• for i ∈ [n], t ∈ [T ], f ti :=

{
1, expert #i is wrong on day t,

0, otherwise.

• mt
i := number of errors that expert # i made up to day t,

• M t := number of errors we make.

Our goal: do as close as possible to the best expert, where the best expert is defined as

arg min
i
mT
i .

2 Examples of Bad Algorithms

(1) Majority vote: Follow the majority of the advices by the experts.

Consider the following example: There are in total 3 experts, and the 1st and 2nd experts always give

the advice to sell, while the 3rd expert always gives the advice to buy. And the right strategy is to buy

everyday. In this example the majority vote algorithm is always wrong, and its mistakes are M t.

(2) Follow the expert that was right yesterday: Consider the following example. There are two

experts. The advices by the experts and the right strategy are as follows (where B means buy and S

means sell):

• 1st: S, B, S, B, · · · ;

• 2nd: B, S, B, S, · · · ;

• right: S, S, S, S, · · · .

Observe that except the first day, this algorithm is always wrong by following the expert that was right

yesterday, since he is no longer right today. Thus the total number of mistakes is MT = T .
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3 Weighted Majority Algorithm

Intuitively, this algorithm is a combination of a the previous two algorithms: it follows the majority vote

of the experts that were more right. The algorithm assign weights to experts, and wti denotes the weight

for expert i at time t.

Algorithm 1 Weighted Majority Algorithm

1: Start: w0
i = 1, ∀i ∈ [n].

2: for t = 1, 2, . . . , T do
3: Update wt+1

i = wti(1− ε · f ti ), where ε < 1 is a parameter TBD.
4: Weighted majority: σtB =

∑
i: expert i says B w

t
i , σtS =

∑
i: expert i says S w

t
i .

5: if σtB > σtS then
6: Decision at time t: buy
7: else
8: Decision at time t: sell
9: end if

10: end for

Analysis.

Theorem 1. We have the following upper bound on the final number of mistakes.

MT ≤ 2(1 + ε)mT
i +

2 lnn

ε
, ∀i.

And this implies that MT ≤ 2(1 + ε) mini∈[n]m
T
i + 2 lnn

ε .

A remark about why we need to have the additive error 2 lnn
ε : Consider the example where we have

n − 1 random experts and 1 expert that is always right. In the first few days, we do not have enough

information to know which expert is the right one. Indeed, on the t-th day, in expectation there are 2−t

experts that were always right in previous days. So only until the lnn day we have gathered enough

information to find the right expert.

Proof. We prove the theorem by giving a lower bound and an upper bound of the following potential

function Φ.

∀t ∈ [T ], Φt :=

n∑
i=1

wti ; Φ0 := n.

(1) Φt+1 ≥ wt+1
i = (1− ε)mti , ∀i.

The first step follows from the definition of Φt+1, and the second step follows from w0
i = 1, and the

fact that the weight of i is multiplied by (1− ε) for mt
i = (# of errors) times.

(2) Φt+1 ≤ n · (1− ε
2)M

t
.

If at time t we don’t make an error: Φt+1 ≤ Φt.

If at time t we made an error: weight of wrong experts ≥ weight of right experts ≥ 1
2Φt.
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Combining these two cases, we have

Φt+1 =

n∑
i=1

wt+1
i

=
∑
i:right

wti +
∑

i:wrong

wti(1− ε)

=
n∑
i=1

wti − ε ·
∑

i:wrong

wti

≤ Φt − ε ·
1

2
Φt = Φt(1−

ε

2
).

Thus we have Φt+1 ≤ Φ0 · (1− ε
2)M

t
= n · (1− ε

2)M
t
.

Putting (1) and (2) together, we have

(1− ε)mti ≤ Φt+1 ≤ n · (1−
ε

2
)M

t
. (1)

Using 1 − x ≤ e−x, we have n · (1 − ε
2)M

t ≤ n · e−
ε
2
·Mt

. And using ln(1 − ε) ≥ −ε − ε2, we have

−ε(1 + ε)mt
i ≤ mt

i · ln(1− ε). Plugging these two inequality to Eq. 1, we have

−ε(1 + ε)mt
i ≤ lnn− ε

2
·M t,

and this implies the desired bound

M t ≤ 2(1 + ε)mt
i +

2 lnn

ε
.

The Weighted Majority Algorithm is good but we can do better. Our next algorithm will remove this

factor of 2.

4 Multiplicative Weights Update

The algorithms is the same as before but the decision is as follows:

Define pti =
wti∑n
j=1w

t
j

, the probability of following expert i at time step t.

Next choose i from the distribution (pt1, ..., p
t
n) and follow it’s decision. Now the number of errors we

make, MT is a random variable.

Analysis. Each mt
i is deterministic. MT , expected # of errors we make =

T∑
t=1

n∑
i=1

ptif
t
i =

T∑
t=1
〈pt, f t〉

We can generaliz4e f ti ∈ [−1,+1], and mt
i =

t∑
j=1

f ji

Theorem 2. MT ≤ mt
i +

lnn

ε
+ εT.
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Note the factor of 2 is no gone!

Proof. ΦT+1 ,
n∑
i=1

wT+1
i

Now note the following:

1. ΦT+1 ≥ wT+1
i ≥ 1 ∗

T∏
t=1

(1− εf ti ).

The (1− εf ti ) term is how much we scale down weight wti at time t

2. ΦT+1 ≤ ne−εMT

Now consider the following calculation:

pti =
wti
Φt

=⇒ ΦT+1 =
n∑
i=1

wT+1
i =

n∑
i=1

wTi ∗ (1− εfTi ) =
n∑
i=1

wTi − ε
∑n

i=1

wTi f
T
i

ΦT
∗ ΦT

= ΦT − εΦT 〈pT , f t〉

= ΦT (1− ε〈pT , fT 〉)

=⇒ ΦT+1 ≤ ΦT e−ε〈p
T ,fT 〉, which is

≤ Φ0e
−ε

T∑
t=1
〈pT ,fT 〉

= Φ0e−εM
T

= ne−εM
T

Now using 1 and 2, we get ΦT+1 ≤ n ∗ e−εMT
and

T∏
t=1

(1− εf ti ) ≤ ΦT+1 ≤ ne−εMT

Next we see that lnn− εMT ≤
T∑
t=1

ln(1− εf ti ) ≥ −
∑T

t=1[εf
t
i + ε2(f ti )

2]

Finally we see that MT ≤ lnn

ε
+
∑T

t=1[f
t
i + ε ≤ mT

i +
lnn

ε
+ εT for the optimal expert i.
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