
COMS 4995-2: Advanced Algorithms (Spring’20) April 2, 2020

Lecture 18: Interior Point Method for Linear Programming

Instructor: Alex Andoni Scribe: Jakwanul Safin (js5142)

1 Introduction

This lecture focuses the on the Interior Point Method for solving linear programs [Karmaker ‘84]

A linear program is an optimization of the form,

min
x∈Rn

cTx

s.t. Ax ≤ b
(1)

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm. Additionally, we let m denote the optimal value if it exists and

x∗ be the point that attains this value.

Our approach in this lecture is to relax this problem into a continuous unconstrained optimization

and apply the ideas from the previous lecture find the optima.

2 Converting To Unconstrained Optimization

Define the feasibility set as

k , {x : Ax ≤ b}

.

We want to relax the minimization by defining a new function,

f ′ = cTx+ F (x)

such that

f ′(x) = xTx if x ∈ K
f ′(x) =∞ if x /∈ K

To do so we define,

fη = ηcTx+ F (x)

where η ∈ R and F (x) has the properties

F (x) <∞ for x ∈ K
F (x)→∞ as x→ ∂K
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Let Ai denote the ith row of A. We will choose

F (x) = log

[
m∏
i=1

1

bi −Aix

]
= −

m∑
i=1

log [bi −Aix] (2)

Our optimization problem is now

min
x∈Rn

fn(x) , x∗n (3)

Intuitively x∗η approaches x∗ as η tends to ∞.

3 Solving the optimization

x∗0 , the analytic center of K

l = {x∗η|η ∈ R, η > 0} , the central path

Claim 1. For all η > 0, fη is convex.

Proof. First we compute the gradient and the hessian.

fη(x) = ηcTx+ F (x)

∇fη(x) = ηc+∇F (x) = ηc+

m∑
i=1

Aix

bi −Aix

∇2fn(x) = ∇2F (x) =

m∑
i=1

A>i Ai

(bi −Aix)2

(4)

For any vector γ 6= 0,
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γ>∇2fη(x)γ =
m∑
i=1

γ>A>i Aiγ

(bi −Aix)2

=
m∑
i=1

‖Aiγ‖2

(bi −Aix)2
≥ 0

(5)

Therefore fη is convex.

Note that if A is full rank (vol(K) > 0) then fη is strictly convex and there is a unique minimum.

Idea 1 (Naive Approach):

Why not solve η “very large”? The problem with this approach is that if we use gradient descent

then the convergence is very slow. And we can not use Newton’s Method since there is no warm start.

Idea 2 (Following Central Path):

• Start at x∗η0 for small η0

• Walk along central path. At each iteration t:

– ηt+1 = ηt(1 + α)

– Run Newton’s Method for fηt+1 with warm start x∗ηt

• Terminate when η large enough

Idea 3 (Improved performance):

• Start at x∗η0 for small η0

• Walk along central path. At each iteration t:

– ηt+1 = ηt(1 + α)

– xt+1 = xt + n(xt), where n(xt) is a single step of Newton’s method for fηt+1

• Terminate when η large enough

4 Stopping Condition on η

Claim 2.

cTx∗η − cTx∗ ≤
m

n

Note that with this claim, if η = m
ε then c>x∗n − c>x∗ ≤ ε

Proof.

0 = ∇fη
(
x∗η
)

= c>η +∇F
(
x∗η
)

=⇒ c> = −
∇F

(
x∗η
)

η
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We want to show that

c>x∗η − c>x∗ = c>
(
x∗η − x∗

)
=
∇F

(
x∗η
)

η

(
x∗ − x∗η

)
6
m

η

Now we show that ∀x, y ∈ K : ∇F (x) · (y − x) ≤ m

∇F (x)(y − x) =

m∑
i=1

Ai
bi −Aix

(y − x) =

m∑
i=1

(bi −Aix)− (bi −Aiy)

bi −Aix
= m−

m∑
i=1

bi −Aiy
bi −Aix

Since x, y ∈ K, we know that Ax ≥ b and Ay ≥ b, so for all i,

bi −Aiy
bi −Aix

≥ 0

Therefore,

∇F (x)(y − x) ≤ m

as desired.

5 Determining x∗η0

We assume vol(K) 6= 0. To find our starting point we start by finding some feasible point, x′ ∈ K

Claim 3. Our LP in (1) has nonempty K if and only if the LP

min
x∈Rn,t∈Rm

t

s.t. Ax ≤ b+ t
(6)

has optima equal to 0.

0 is a feasible point of (6) so we can use our interior point method to solve.

Claim 4. ∃c′ s.t.

x′ = min ηc′x+ F (x)

Proof. If x′ is to be opt, then

∇
(
ηc′x′ + F (x)

)
= 0

⇔ η′c′ +∇F (x′) = 0

⇔ c′ =
∇F (x′)

η

Idea 3.1 (Finding Initial Point) We walk backward along the central path from our feasible point.
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• Find feasible point x′ by solving (6) and c′ from claim 4.

• Starting from c′, walk backwards along central path for c′. At each iteration t:

– ηt+1 = ηt(1− α)

– xt+1 = xt + n(xt), where n(xt) is a single step of Newton’s method for fxt+1

• Terminate when η small enough.

Then run our main algorithm from xη, which is approximately the analytic center.

6 Setting α and Runtime

Claim 5. α = 1
8
√
m

is sufficient for correctness.

Proof. sketch

The proof demonstrates an invariant on the distance between xt and x∗ηt . At each iteration each

newton step decreases this distance, but scaling η by (1 + α) increases it.

Starting from η0, by claim 2, it is sufficient to stop at m
ε .

T = log1+α
m/ε

η0

= O
(

1
α log

m

εη0

)
= O

(√
m log

m

εη0

)
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