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In these notes, we introduce duality and the Simplex algorithm (Dantzig 1949).

1 Simplex Algorithm

Definition 1. x is a vertex of the feasible region F ⇐⇒ x is a basic feasible solution (bfs) ⇐⇒ x

tightly satisfies precisely n linearly independent constraints.

Definition 2. The edge (v, u) exists ⇐⇒ v and u tightly satisfy n − 1 shared linearly independent

constraints.

Definition 3. The neighborhood of x is N(x) := { all y such that (x, y) is an edge (neighbors)}.

Simplex Algorithm:

1. Choose x0 ∈ F , the starting vertex.

2. Consider N(xt), where xt is x at iteration t. Choose some neighbor y ∈ N(xt) such that c>y < c>xt

3. Set xt+1 = y, and repeat from step 2 (if such y exists). If y does not exist, xt is optimal.

For the standard form of the LP given by

minimize c>x

subject to Ax ≤ b

it is possible to find a feasible starting point for Step 1 of the Simplex Algorithm by using an auxiliary

LP to find x0 ∈ F . This is equivalent to finding the minimum t such that Ax ≤ b + t · 1: set all x’s to

be 0, and t is the most negative b value. Solve this auxiliary LP starting from x = 0 and t = −mini bi
(which is necessarily feasible for the auxiliary LP).

• If t > 0, the original LP is not feasible

• Otherwise, x is a feasible point

Note that we obtain a point x, but if x is not a vertex of F (i.e. it does not satisfy precisely n

constraints), push x to tightly satisfy precisely n constraints.

Remark 4. The Simplex Algorithm will converge eventually.

Remark 5. Step 2 of the Simplex Algorithm is the ”pivoting” rule.

Remark 6. Choosing y∗ = arg miny∈N(x) c
>y is not necessarily the optimal pivoting rule (where optimal

is the rule which leads to fastest convergence).
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We note that N(x) can be computed by the following algorithm.

Pivoting Algorithm:

• Let E1, · · · , En be equalities defining x

• For each i ∈ [n]:

For each j ∈ [m]:

Define y as solution to E1, · · · , Ei−1, Ei+1, · · · , En and Ajy = bj
If y is unique and y ∈ F , add it to N(x).

The total time of this algorithm is # iterations ·n ·m · (GE+m ·n) where GE is the time to perform

Gaussian elimination and m · n is the time to check Ay ≤ b.

Remark 7. For many pivoting rules, there exist LPs taking exp(n) number of iterations.

Remark 8. ”Smoothed LPs” admit polytime simple algorithms, where smoothed LPs are created by

perturbing the parameters of the program. [Spielman, Teng]

Conjecture 9. Hirsch Conjecture: Consider graph G composed of vertices and edges (of the polytope).

The graph has poly(n,m) diameter and exp(n) vertices.

2 Duality

2.1 Reminder: Standard form of Primal LP

Previously, we defined the standard form of the primal:

Definition 10. The standard form of the primal LP is:

minimize v∗ = c>x

subject to Ax = b

x ≥ 0

And we have shown previously that all LPs can be converted to this form.

2.2 The Dual

Consider the following definition of the dual:

Definition 11. Given a primal in standard from, the dual LP is:

maximize w∗ = b>y

subject to A>y ≤ c

We will motivate this construction by demonstrating weak duality:

Theorem 12. Weak Duality: Given a primal LP and its optimal solution v∗, and its corresponding dual

and dual optimal solution w∗, then v∗ ≥ w∗.
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Proof. The proof is given in the motivation for constructing the Definition 11 above.

Consider a vector y ∈ Rm such that y>A ≤ c> (where the inequality holds coordinate-wise). Multi-

plying by some x ∈ F where F is the feasible region of the primal yields:

y>Ax ≤ c>x

Here we note we have used the fact that, in the primal, we have restricted x ≥ 0. Further, noting

that since x ∈ F it follows that Ax = b, thus can be re-written as:

y>b = y>Ax ≤ c>x
=⇒ ∀x ∈ F, y>b ≤ c>x
=⇒ y>b ≤ min

x∈F
c>x = v∗

We see we have constructed the dual such that it yields an optimization problem which permits a

lower bound on the optimal solution of the primal.

2.3 Dual of the Dual

Theorem 13. For linear programs, the dual of the dual is the primal.

Proof. Given the dual in Definition 11 above, the dual can be re-written in the standard form as:

optimize w∗ = −miny+,y−,δ −b>(y+ − y−)

subject to A>i y
+ −A>i y− + δi = ci

y+, y−, δ ≥ 0

Where the original y is now y = y+ − y−. (More details on this construction can be found in earlier

notes.)

For which we can construct the dual:

optimize v∗ = −maxz∈Rn c>z = minz∈Rn c>(−z)
subject to Az ≤ −b

−Az ≥ b
Iz ≤ 0

We note Az ≤ −b and −Az ≥ b gives A(−z) = b. Substituting x = −z recovers the primal form:

optimize v∗ = minz∈Rn c>(−z) = minx∈Rn c>x

subject to Ax = b

x ≥ 0
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2.4 Strong Duality

Claim 14. Strong Duality: For LPs, if v∗ is the solution to the primal and w∗ is the solution to the dual,

then v∗ = w∗. That is, the primal and dual have identical solutions.

2.5 Intuition for Strong Duality

Proving strong duality in general is tedious, but we will provide intuition here for why strong duality

should hold by making an analogy with physics. In the dual, we are optimizing w∗ = −min b>(−y)

subject to A>y ≤ c. For convenience, we re-define −y → y and −c→ c, thus the dual LP is now:

optimize w∗ = min b>y

subject to A>y ≥ c

Consider the space Rm in which y lives, and consider y to be the location of a ball. Further, orient the

space such that b points upwards, and there is a gravitational force −b pulling the ball at y downwards.

The constraints A>y ≥ c create n hyperplanes at A>i y = c which form a kind of ”convex bowl” in the

space. Thus, when the ball y is dropped into the space, it will fall until it reaches the lowest point in the

bowl. Since b points upwards, this corresponds to an optimal solution to the dual problem (since the LP

essentially minimizes the projection of y along b).

If there is no plane perpendicular to b, then y will have reached a vertex of the feasible region.

Returning to the physics analogy, this requires that y is supported by normal forces coming from the

planes with which it is in contact. Since y is in Rm, a vertex will be found at the intersection of precisely

m planes. Suppose that each hyperplane i provides a normal force of xi. Since the ball is at rest, the total

normal force must equal the gravitational force b, thus over all hyperplanes (of which m < n actually

contribute):

∑
i

Aixi = b
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Consider that y will be resting on m of n possible hyperplanes, thus m constraints will be tight.

For those that are not tight, it follows that the xi for that constraint should be 0 (since it will not be

contributing to the normal force), thus xiAyi = 0 = cixi. If the constraint is tight, then Aiyi = c =⇒
xiAiyi = xici. Noting that in the primal form, we have A>x = b, summing over all constraints yields:

∑
i

xiAiy =

(∑
i

xiAi

)
y = (A>x)>y = b>y∑

i

xiAiy =
∑
i

cixi = c>x

=⇒ c>x = b>y

Noting −v∗ = c>x and −w∗ = b>y, and noting that we have demonstrated weak duality v∗ ≥ w∗,

showing an instance of c>x = b>y gives strong duality. There are cases which have not been shown

(such as when a constraint creates a hyperplane perpendicular to b), but this physical analogy should

give intuition for why strong duality holds for LPs.
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