
CLASS NOTES, CS W3137

1 Finding Shortest Paths: Dijkstra’s Algorithm

1. We want to compute the shorterst path distance from a source nodeS to all other nodes. We associate lengths or
costs on edges and find the shortest path.

1

2. We can’t use edges with a negative cost. If graph has cycles, we can take endless loops to reduce the cost by
continuing to travel along the negative cost edge.

3. Finding a path from vertexS to vertexT has the same cost as finding a path from vertexS to all other vertices in the
graph (within a constant factor).

4. If all edge lengths are equal, then the Shortest Path algorithm is equivalent to the breadth-first search algorithm.
Breadth first search will expand the nodes of a graph in the minimum cost order from a specified starting vertex
(assuming equal edge weights everywhere in the graph).

5. Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance from anode to all other nodes. At
each iteration of the algorithm, we choose the minimum distance vertex from all unvisited vertices in the graph,

• There are two kinds of nodes:settled or closed nodes are nodes whose minimum distance from the source
nodeS is known.Unsettled or open nodes are nodes where we don’t know the minimum distance fromS.

• At each iteration we choose the unsetteld nodeV of minimum distance from the sourceS. This settles (closes)
the node since we know its distance fromS. All we have to do now is to update the distance to any unsettled
node reachable by an arc fromV . At each iteration of the algorithm, we close off aother node, and eventually
we have all the minimum distances from source nodeS.

void dijkstra(Vertex S){
for each Vertex v {

v.dist = INFINITY;
v.known = false;

}
s.dist = 0;
for(; ;) {

Vertex v = smallest unknown distance vertex;
if(v == NOT_A_VERTEX)

break;
v.known = true;

for each Vertex w adjacent to v
if(!w.known)

if(v.dist + cvw < w.dist) {
// Update w
decrease(w.dist to v.dist + cvw);
w.path = v;

}
}

}

6. Cost: using the table on page 1, we need to find the minimum distance out of V cities (vertices) (O(V)) and we
need to do thisV − 1 times, yielding anO(V 2) algorithm. We also may have to do an update on each ofE edges to
reduce cost, so the total running time isO(V 2 + E) = O(V 2). We can reduce this cost by using a priority queue
that holds the cities and their distances. Since we are seeking the smallest distance each time, this is afind − min

operation on the priority queue. As distances are updated, we add them to the priority queue, and the new, smaller
distance is always deleted first. We do have to check that the distance we get via afind−min operation is not for a
closed, settled vertex. This brings the complexity toO(V + E log V). TheV term is the cost of building the initial
heap, and theE log V term is the update to insert a new distance into the queue as anedge updates a distance.

2

7. Sketch of Proof that Dijkstra’s Algorithm Produces Min Cost Path

(a) At each stage of the algorithm, we settle a new nodeV and that will be the minimum distance from the source
nodeS to V . To prove this, assume the algorithmdoes not report the minimum distance to a node, and letV

be the first such node reported as settled yet whose distance reported by Dijkstra,Dist(V), is not a minimum.

(b) If Dist(V) is not the minimum cost, then there must be an unsettled nodeX such thatDist(X)+Edge(X, V) <

Dist(V). However, this implies thatDist(X) < Dist(V), and if this were so, Dijkstra’s algorithm would
have chosen to settle nodeX before we settled nodeV since it has a smaller distance value fromS. Therefore,
Dist(X) cannot be< Dist(V), andDist(V) is the minium cost path fromS to V .

2 Computing Transitive Closure of a Graph

1. Given Graph G below, Can we find the Transitive Closure of this Graph? Essentially this computes if there isany
path that exists between two nodes - can we get from A to B in a graph.

1 2

43

Figure 1: Graph used in Transitive Closure example

2. We can think of an Adjacency MatrixA as a Boolean Matrix where a 1 means an edge exists between 2 vertices,
and a 0 means there is no edge. Assume each edge has length 1. The Adjacency Matrix A encodes the information
about paths of length 1 - what edges exist in the graph. ThenA ∗ A = A2= all paths of length 2 between specified
vertices.A ∗ A ∗ A =A3= all paths of length 3 between specified vertices. In this analysis, we multiply matrices
using Boolean AND for Multiplication and Boolean OR for Addition:

A
1

=







0 0 1 0

1 0 0 1

0 1 0 0

0 0 0 0







, A
2

= A∗A =







0 1 0 0

0 0 1 0

1 0 0 1

0 0 0 0







A
3

= A∗A
2

=







1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0







, A
4

=







0 0 1 0

1 0 0 1

0 1 0 0

0 0 0 0







(1)

PATH = A1
∨ A2

∨ A3
∨ A4 =









1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0









(2)

Note:∨ is the logical OR operator.

3. Thetransitive closure of a graph is the logical OR of all these matricesAi, i=1 to N: PATH [i][j] = A1[i][j] ∨
A2[i][j]∨ . . .∨AN ([i][j]. We are simply stating thatPATH [i][j] is true if there is a path of length 1 from i to j, OR
a path of length 2 from i to j,..., OR a path of lengthN from i to j.

4. Finding out if there is a path between two vertices in a directed graph: Consider the logical expression:
A1[i][k] AND A1[k][j]

This is TRUE (TRUE=1) if and only if an edge exists from i to k AND an edge exists from k to j.A2[i][j] will be 1
if there is a path of length 2 from i to j. Similarly forA3[i][j], and so on. We need to OR together all N matrices to

3

find if any path exists, because the longest simple path in graph of N nodes has length N - and this is a simplecycle.
Adding paths longer than N will give us no new information.

5. The method above isslow for computing transitive closure of a graph ofN nodes: The total cost to createN − 1 Ai

matrices is(N − 1) ∗ N3 = O(N4) Plus we have to also OR togetherN − 1 matrices, where each matrix hasN2

elements, yieldingO(N4 + (N − 1) ∗ N2) operations!

6. Can we speed up this algorithm? Yes, thanks to Warshall’s algorithm (a variant is known as Floyd’s algorithm).
Also, reference Weiss text, section 10.3.4, page 472.

for(k=1; k<=N; k++)
for(i=1; i<=N; i++)

for(j=1; j<=N; j++)
A[i][j] = A[i][j] OR (A[i][k] AND A[k][j])

This algorithm isO(N3). We use a dynamic programming approach above where we simplyuse an intermediate
nodek each time as a way station between nodesi andj.

7. DefineAk[i][j] as TRUE if there exist a path between nodesi andj thatdoes not go through an intermediate node
numbered higher thank.

8. A0[i][j]is just the initial adjacency matrix. On a graph withN nodes,AN [i][j] is the transitive closure of the graph,
since it encodes all paths between nodesi andj that do not go through any nodes numbered higher thanN - which
is in fact all possible paths.

9. The trick is to computeAk[i][j] from Ak−1[i][j]. Ak[i][j] is TRUE if a path exists between nodesi andj that does
not go through any node labeled higher thank. This will be TRUE if:

(a) There is a direct edge betweeni andj. This is encoded inA0[i][j].

(b) There is a path fromi to k, and a path fromk to j. The two components of this path are paths that must go
through nodes labeled no higher thank−1, and this information is contained inAk−1[i][k] andAk−1[k][j]. So
we can use the contents of the already computed matrices to generate the next level of matrix:

Ak[i][j] = Ak−1[i][j] OR (Ak−1[i][k] AND , Ak−1[k][j]) (3)

Since we can reuse the same A matrices, we can drop the subscripts and use a single matrixA[i][j] that we fill up as
we iterate over each intermediate nodek that our paths go through.

10. Note: Matrix Multiplication is defined as:

cij =
∑

k

aikbkj , A ∗ B =









a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

















b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44









(4)

=









a11 ∗ b11 + a12 ∗ b21 + a13 ∗ b31 + a14 ∗ b41 a11 ∗ b14 + a12 ∗ b24 + a13 ∗ b34 + a14 ∗ b44

.

.

a41 ∗ b11 + a42 ∗ b21 + a43 ∗ b31 + a44 ∗ b41 a41 ∗ b14 + a42 ∗ b24 + a43 ∗ b34 + a44 ∗ b44









(5)

4

// Compute transitive closure of a graph
public class transitiveclosure {

public static void main(String [] args) {

// Graph is stored as an adjacency matrix: 1=edge exists, 0= no edge

int i,j,k;
int [][] a = { { 0,0,1,0 },

{ 1,0,0,1 },
{ 0,1,0,0 },
{ 0,0,0,0} };

System.out.println("Original Adjacency Matrix:");
for(i = 0; i < 4; i++){

for(j = 0; j < 4; j++)
System.out.print(a[i][j] + " ");

System.out.println();
}
System.out.println();

// see if vertices i,j reachable through vertex k

for(k = 0; k < 4; k++)
for(i = 0; i < 4; i++)

for(j = 0; j < 4; j++)
a[i][j] = a[i][j] | (a[i][k] & a[k][j]);

System.out.println();
// print out the reachability matrix

System.out.println("Reachability Matrix:");
for(i = 0; i < 4; i++) {

for(j = 0; j < 4; j++)
System.out.print(a[i][j] + " ");

System.out.println();

}
}
}

Original Adjacency Matrix:
0 0 1 0
1 0 0 1
0 1 0 0
0 0 0 0

Reachability Matrix:
1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 0

5

If we use the actual distances on the edges instead of just a binary
adjacency, Warshall’s algorithm allows us to create an all pairs
distance array. We simply have to change the update from a binary
reachability update to a distance update.

old update: a[i][j] = a[i][j] | (a[i][k] & a[k][j]);

new update: if (d[i][j] > d[i][k] + d[k][j])
d[i][j] = d[i][k] + d[k][j];

here is the main loop of the program:

for(k = 0; k < Dimension; k++) {
for(i = 0; i < Dimension; i++)

for(j = 0; j < Dimension; j++){
if (d[i][j] > d[i][k] + d[k][j]){

d[i][j] = d[i][k] + d[k][j];
}

}
}

Here is an example (999 is infinite distance in original array)

Original distance array
BAL BUF CIN CLE DET NYC PHI PIT WAS

BAL 000 345 999 999 999 999 097 230 039
BUF 345 000 999 186 252 445 365 217 999
CIN 999 999 000 244 265 999 999 284 492
CLE 999 186 244 000 167 507 999 125 999
DET 999 252 265 167 000 999 999 999 999
NYC 999 445 999 507 999 000 092 386 999
PHI 097 365 999 999 999 092 000 305 999
PIT 230 217 284 125 999 386 305 000 231
WAS 039 999 492 999 999 999 999 231 000

All Pairs Shortest Path array
BAL BUF CIN CLE DET NYC PHI PIT WAS

BAL 000 345 514 355 522 189 097 230 039
BUF 345 000 430 186 252 445 365 217 384
CIN 514 430 000 244 265 670 589 284 492
CLE 355 186 244 000 167 507 430 125 356
DET 522 252 265 167 000 674 597 292 523
NYC 189 445 670 507 674 000 092 386 228
PHI 097 365 589 430 597 092 000 305 136
PIT 230 217 284 125 292 386 305 000 231
WAS 039 384 492 356 523 228 136 231 000

6

