CLASSNOTES, CSW3137

1 Finding Shortest Paths: Dijkstra’s Algorithm

fa) The graph
B 8.5 o ot Lot sy PA Dk s
1 2 3 4 5. B 7 3 9

1| 345 97 230 39 | Baltimore
2, M5 186 252 445 385 7 Buffalo
3 244 265 284 492 | Cincinnat
4 186 244 167 7 125 Cleveland
5 52 143 17 Detruit
6 143 307 2 33 Naw York
7| 97 33 92 308 Fhiladelphia
830 n7 w18 386 305 1 | Pitsburgh
EXAMPLE OF DUKSTRA'S ALGORITHM
DISTANCES
1 2 2 4 o = f 4 8
heraion Settled Selected Bal Buff Clne Clew Dt NYC Fhl Fltt ~ Wash
hria o 5 inf irtf irtf inf ar 220 =4
1 1 g 0 5 £ irtf irtf irf 2y 220 =4
2 18 7 0 45 53 irtf irtf 189 a7 220 =4
3 18,7 G 0 5 3 €50 irtf 189 a7 230 34
4 1.9.7.6 g o 45 S1d =5 irtf 189 2 230 33
L 159,768, 2 o 45 o4 255 Gy 189 2 220 24
L 18,7852 4 0 5 514 =5 o2z 189 21y 220 =4
7 18786524 3 0 5 514 =5 L2 189 21y 220 =4
g 15765243 Q 5 514 =5 L2 189 2y 220)

1. We want to compute the shorterst path distance from a sowdeS to all other nodes. We associate lengths or
costs on edges and find the shortest path.

2. We can't use edges with a negative cost. If graph has cyslescan take endless loops to reduce the cost by
continuing to travel along the negative cost edge.

3. Finding a path from verteX to vertexI” has the same cost as finding a path from veftéa all other vertices in the
graph (within a constant factor).

4. If all edge lengths are equal, then the Shortest Pathidigois equivalent to the breadth-first search algorithm.
Breadth first search will expand the nodes of a graph in thenmim cost order from a specified starting vertex
(assuming equal edge weights everywhere in the graph).

5. Dijkstra’s Algorithm: This is a greedy algorithm to find the minimum distance fronode to all other nodes. At
each iteration of the algorithm, we choose the minimum distavertex from all unvisited vertices in the graph,

e There are two kinds of nodesettled or closed nodes are nodes whose minimum distance from threesou
nodesS is known.Unsettled or open nodes are nodes where we don’t know the minimum distiiomsS.

e At each iteration we choose the unsetteld nbdef minimum distance from the sourée This settles (closes)
the node since we know its distance frgin All we have to do now is to update the distance to any unskttle
node reachable by an arc frovh At each iteration of the algorithm, we close off aother naded eventually
we have all the minimum distances from source n§de

void dijkstra(Vertex S){
for each Vertex v {
v.dist = INFINTY;
v. known = fal se;

}
s.dist = 0;
for(; ;) {
Vertex v = snall est unknown di stance vertex;
if(v == NOT_A VERTEX)
br eak;
v. known = true;
for each Vertex w adjacent to v
if('"w known)
if(v.dist + cvw < w.dist) {
/1l Update w
decrease(w. dist to v.dist + cvw);
w. path = v;
}
}

}

6. Cost: using the table on page 1, we need to find the minimsitantie out of V cities (vertices{)(V')) and we
need to do thid” — 1 times, yielding arO(V2) algorithm. We also may have to do an update on eadfi efiges to
reduce cost, so the total running timed¢V2 + E) = O(V?). We can reduce this cost by using a priority queue
that holds the cities and their distances. Since we arersgéhké smallest distance each time, this jgad — min
operation on the priority queue. As distances are updatedidd them to the priority queue, and the new, smaller
distance is always deleted first. We do have to check thatihemte we get via find — min operation is not for a
closed, settled vertex. This brings the complexityd” + Elog V). TheV term is the cost of building the initial
heap, and thé’ [og V' term is the update to insert a new distance into the queue edgenupdates a distance.

7. Sketch of Proof that Dijkstra’s Algorithm Produces MinsE@ath

(a) At each stage of the algorithm, we settle a new ndded that will be the minimum distance from the source
nodesS to V. To prove this, assume the algoritidoes not report the minimum distance to a node, andWet
be the first such node reported as settled yet whose distapoged by DijkstraDist(V'), is not a minimum.

(b) If Dist(V) is notthe minimum cost, then there must be an unsettled Aoglech thaDist (X)+ Edge(X,V) <
Dist(V). However, this implies thabDist(X) < Dist(V), and if this were so, Dijkstra’s algorithm would
have chosen to settle nodebefore we settled nodé since it has a smaller distance value frémTherefore,
Dist(X) cannot be< Dist(V'), andDist(V') is the minium cost path frorf to V.

2 Computing Transitive Closure of a Graph

1. Given Graph G below, Can we find the Transitive Closure isf @raph? Essentially this computes if thereuy
path that exists between two nodes - can we get from A to B iraptgr

©

Figure 1: Graph used in Transitive Closure example

2. We can think of an Adjacency Matri® as a Boolean Matrix where a 1 means an edge exists betweeti&ser
and a 0 means there is no edge. Assume each edge has length Adjabency Matrix A encodes the information
about paths of length 1 - what edges exist in the graph. Them = A2= all paths of length 2 between specified
vertices. A x A + A =A3= all paths of length 3 between specified vertices. In thidysig we multiply matrices
using Boolean AND for Multiplication and Boolean OR for Adidn:

00 1 0 0100 100 1 00 1 0
v 1001 - loo 1 0|5 . o 10 0 s |1 001
A=t 1 00| A=4A= 1 g0 1 |Y=2 =10 010" 0100
00 0 0 000 0 00 0 0 000 0
1

11 1 1
PATH=A'v Ay AP vati=| 1 o 11 2)

0000

Note: V is the logical OR operator.

3. Thetransitive closure of a graph is the logical OR of all these matricés i=1 to N: PAT H[i][j] = A'[i][j] v
A%[][5] V... v AN ([i][f]. We are simply stating tha? AT H [i][j] is true if there is a path of length 1 from i to j, OR
a path of length 2 fromito j,..., OR a path of lengthfrom i to j.

4. Finding out if there is a path between two vertices in aaiée graph: Consider the logical expression:
A'[i][k] AND A'[K][j]
This is TRUE (TRUE=1) if and only if an edge exists from i to k ANan edge exists from k to jA2[i][j] will be 1
if there is a path of length 2 from i to j. Similarly fot3[:][;], and so on. We need to OR together all N matrices to

3

find if any path exists, because the longest simple path iphgsN nodes has length N - and this is a simplele.
Adding paths longer than N will give us no new information.

5. The method above @ow for computing transitive closure of a graph&fnodes: The total cost to create— 1 A?
matrices i N — 1) x N = O(N*) Plus we have to also OR togeth®¥r— 1 matrices, where each matrix hag
elements, yielding)(N* + (N — 1) x N'2) operations!

6. Can we speed up this algorithm? Yes, thanks to Warshddjitarithm (a variant is known as Floyd’s algorithm).
Also, reference Weiss text, section 10.3.4, page 472.

for(k=1;, k<=N;, k++)
for(i=1; i<=N;, i++)
for(j=1; j<=N | ++)
Ali][j] = Al T[] OR(AliJ[k] AND ALK][j])

This algorithm isO(N?3). We use a dynamic programming approach above where we simsplyan intermediate
nodek each time as a way station between nodasd; .

7. DefineAx[i][j] as TRUE if there exist a path between nodasd; thatdoes not go through an intermediate node
numbered higher thai

8. Ag[i][7]is just the initial adjacency matrix. On a graph withnodes A v [i][7] is the transitive closure of the graph,
since it encodes all paths between nodasd; that do not go through any nodes numbered higher fliarwhich
is in fact all possible paths.

9. The trick is to computel[¢][j] from Ax_1[i][7]. Ax[{][j] is TRUE if a path exists between nodesnd; that does
not go through any node labeled higher tikarThis will be TRUE if:

(a) Thereis a direct edge betweeand;. This is encoded iy [¢][;].

(b) There is a path fromto &, and a path fronk to j. The two components of this path are paths that must go
through nodes labeled no higher thiar 1, and this information is contained iy, _1 [¢][k] and Ax_1 [k][j]. So
we can use the contents of the already computed matriceseoae the next level of matrix:

Aplillj] = Ap-1[d[j] OR (Ax—1[i][k] AND , Ay [K][j]) ©)

Since we can reuse the same A matrices, we can drop the qutbsurd use a single matri(:][;] that we fill up as
we iterate over each intermediate nddinat our paths go through.

10. Note: Matrix Multiplication is defined as:

ailr a2 aiz ai4 bir b1z biz bus
Z a21 Aa22 Aa23 424 bor baz baz Do
Cij = aikbkj s A x B = b b b b (4)
- a3l a3z a33 A34 31 032 033 034
G41 Q42 Q43 Q44 byr baz baz bas
a1y ¥ bi1 + a2 *ba1 Faz* bz Faa*ba a1 *bia+ a2 ¥ bas +a13 ¥ b3s + a1y ¥ byy
@41 ¥ b11 + Qa2 ¥ ba1 + @az3 ¥ b31 Faga ¥ bar aa1 ¥ bia + a2 ¥ bag + au3 ¥ b3g + agq ¥ bay

(®)

/1 Compute transitive closure of a graph
public class transitivecl osure {

public static void main(String [] args) {

/1 Graph is stored as an adjacency matri x: 1l=edge exists, 0= no edge

}s
b
I
Systemout.println("Oiginal Adjacency Matrix:");
for(i =0; i < 4; i++){
for(j =0; j <4; j++)
Systemout.print(a[i][j] +" R
Systemout.printin();
}
Systemout.println();
/Il see if vertices i,] reachable through vertex k
for(k =0; k < 4; k++)
for(i =0; i <4; i++)
for(j =0; j <4; j++)
a[i][j] =a[i][j] | (a[i][k] & a[k][j]);
Systemout. printlin();

/1 print out the reachability matrix
Systemout. println("Reachability Matrix:");

for(i =0; i <4; i++) {
for(j =0, j <4, j++)
Systemout.print(a[i][j] +" "y,

Systemout.printlin();

Original Adjacency Matrix:
0 0 1 0

oo
oOrFr o
[eNeNe)
OO

Reachability Matrix:
1 1 1 1

1 1 1 1
1 1 1 1
0 0 0 0

If we use the actual distances on the edges instead of just a binary
adj acency, Warshall’'s algorithmallows us to create an all pairs

di stance array. W sinply have to change the update froma binary
reachability update to a distance update.

old update: a[i][j] =a[i][j] | (a[i]l[k] & a[k][j]);

new update: if (d[i][j] > d[i][k] + d[k]
i

(i1
dii][j] = dli][k] + d[k][]j

1.

here is the nmain | oop of the program

for(k =0; k < Dinension; k++) {
for(i =0; i < Dinmension; i++)
for(j =0; j <Dinension; j++){
if (dli][j] > dli][k] + d[K][j]){
dii][j] =d[i][k] + d[k][]j];
}
}
}

Here is an exanple (999 is infinite distance in original array)

Original distance array

BAL BUF CI'N CLE DET NYC PHI PIT WAS
BAL 000 345 999 999 999 999 097 230 039
BUF 345 000 999 186 252 445 365 217 999
CIN 999 999 000 244 265 999 999 284 492
CLE 999 186 244 000 167 507 999 125 999
DET 999 252 265 167 000 999 999 999 999
NYC 999 445 999 507 999 000 092 386 999
PHI 097 365 999 999 999 092 000 305 999
PIT 230 217 284 125 999 386 305 000 231
WAS 039 999 492 999 999 999 999 231 000

Al Pairs Shortest Path array

BAL BUF CI'N CLE DET NYC PHI PIT WAS
BAL 000 345 514 355 522 189 097 230 039
BUF 345 000 430 186 252 445 365 217 384
CIN 514 430 000 244 265 670 589 284 492
CLE 355 186 244 000 167 507 430 125 356
DET 522 252 265 167 000 674 597 292 523
NYC 189 445 670 507 674 000 092 386 228
PH 097 365 589 430 597 092 000 305 136
PIT 230 217 284 125 292 386 305 000 231
WAS 039 384 492 356 523 228 136 231 000

