Building Illumination Coherent 3D Models of Large Scale Outdoor Scenes

Alejandro Troccoli Peter K. Allen Dept. of Computer Science Columbia University

Columbia Vision + Graphics Center

The problem

The problem

Previous approaches

- Weighted blending
 - Pictures acquired under same illumination
- Color correction and relighting
 - Relighting faces [Roy 03]
 - Color correcting small models [Agathos 03]
- Inverse rendering
 - Estimate reflectance property from images with known/measured lighting [Debevec 04]

Our Method

- Relighting method
 - Outdoor scenes
 - Can be used to perform de-shadowing
- Texture and shading factorization
 - No need to measure illumination
 - Compute diffuse reflectance

Relighting

Stumpfel and Debevec

Irradiance ratio

Intensity = albedo * irradiance

Distant illumination – no shadows nor interreflections

Irradiance ratio

The solution

1. Compute irradiance ratio from overlap region

2. Relight

Irradiance ratio map

Per surface normal

Irradiance ratio map

Compute from HDR images

1. Linearize camera

2. Compute

 $ratio_{2-1} = Irr_2/Irr_1 = I_2/I_1$

Must look up normals

Color encoded normals

Relighting

- Per pixel
- 1. Lookup normal
- 2. Lookup irradiance ratio
- 3. Multiply

Shadows are a problem

Handling shadows

Shadow irradiance ≠ Non-shadow irradiance Treat them separately

Compute 4 irradiance ratio maps

Handling shadows

Create shadow map

Shadow detection

• Penumbras can be a problem

Geometry based shadow map

Image based shadow map

Image based shadow detection

- Two thresholds S₀ and S₁
 - Everything below S₀ = shadow
 - Everything above S₁ = not shadowed
 - In between = penumbra
- After we compute the IRMs
 - Update penumbra values in the region of overlap

Relighting shadows

Per pixel

- 1. Lookup normal
- 2. Lookup shadow bits
- 3. Select ratio map
- 4. Lookup irradiance ratio
- 5. Multiply

Relighting penumbras

Penumbras: between shadow and non-shadow Interpolate between irradiance ratio maps

Before interpolation

After interpolation

Relighting vs de-shadowing

- Relighting
 - Keep shadows of target illumination
- De-shadowing
 - Set all pixels in target shadow mask as lit

Experimental verification

Campus example

At 10am

At 2pm

Masked out windows, trees and ground

Results Pupin Hall

Before relighting

After relighting

Results Casa Italiana

3:22pm

1:28pm

Results Casa Italiana

3:22pm

1:28pm 🐴 🗄

After reliabling

Results St Paul's Chapel

11:22 am

12:35 pm

Results St Paul's Chapel

Deshadowed

Before

After

Potential sources of error

- Image registration errors
- Shadow detection errors
- Non-Lambertian reflectance and interreflections

Talk outline

- Motivation
- Contributions
- Methodology and results
 - Line-based image registration \checkmark
 - Shadow based registration \checkmark
 - Texture integration
 - Shading and texture factorization
- Future work and conclusions

Factorization

- Compute diffuse shading of each image
- Solve for spatially varying albedo map
- Advantages over relighting:
 - Ability to create new renderings under different illuminations

Factorization

Input image 1 Input image 2

Factorization algorithm

OUTPUTS

Irradiance Image 1

Irradiance image 2

Albedo map

Factorization steps

Ratio images of a Lambertian object are texture-free, and only depend on the illumination of the scene.

Select illumination model: point light source or generalized illumination Albedo map is computed taking the ratio of the original images and the irradiance maps.

Compute ratio image

Ratio image:
$$R(x, y) = \frac{I_1(x, y)}{I_2(x, y)}$$

For a Lambertian object under distant illumination, ratio image is texture-free:

Model 1. Point light sources

Irradiance:
$$E(\vec{n}) = L \max(\vec{n} \cdot \vec{1}, 0)$$

Ratio: $R(x, y) = \frac{L_1 \max[\vec{n}(x, y) \cdot \vec{l}_1, 0]}{L_2 \max[\vec{n}(x, y) \cdot \vec{l}_2, 0]}$

Solve for: I_1 , I_2 and L_1/L_2

Model 2. SH illumination

Irradiance:
$$E(\vec{n}) = \sum L_i A_i Y_i(\vec{n})$$

Ratio: $R(x, y) = \frac{\sum L_{2i} A_i Y_i(\vec{n}(x, y))}{\sum L_{1i} A_i Y_i(\vec{n}(x, y))}$

Solve for: $L_{1[1..n]}$, $L_{2[0..n]}$, $L_{10} = 1$

Alternatively, replace **SH** basis by **PCA** basis computed analytically.

Model 3. Sun + sky illumination

Irradiance: $E(\vec{n}) = P(\vec{n} \cdot \vec{s})^{+} + \sum L_i A_i Y_i(\vec{n})$

Point light

Ambient

Ratio:
$$\frac{P_2(\vec{n}(x,y)\cdot\vec{s}_2)^+ + \sum L_{2i}A_iY_i(\vec{n}(x,y))}{P_1(\vec{n}(x,y)\cdot\vec{s}_1)^+ + \sum L_{1i}A_iY_i(\vec{n}(x,y))}$$

Solve for: P_{2} , $L_{1[0..n]}$, $L_{2[0..n]}$, $P_{1} = 1$

Solve linear system of equations

$$\begin{bmatrix} \vec{n}_{0}^{T} & -R_{0} \ \vec{n}_{0}^{T} \\ \vec{n}_{1}^{T} & -R_{1} \ \vec{n}_{1}^{T} \\ \vec{n}_{2}^{T} & -R_{2} \ \vec{n}_{2}^{T} \\ \vdots & \vdots \\ \vec{n}_{k}^{T} & -R_{k} \ \vec{n}_{k}^{T} \end{bmatrix} \begin{bmatrix} \vec{l}_{1} \\ \vec{l}_{2} \ \vec{l}_{2} \end{bmatrix} = \mathbf{0}$$

(e.g. matrix for model 1.)

- Linear systems of the form Ax = 0. Solution is null-space of A.
- One system of equations per R,G,B channel
- Scale and chromatic ambiguity solved by fixing one of the unknowns to 1.

Solving for albedo maps

Once irradiance maps are known

$$\rho_1(x, y) = \frac{I_1(x, y)}{E_1(\vec{n}(x, y))}$$

Factorization results - PL

Model 1. Point light sources

Synthetic (known geometry) Normal maps from photometric stereo

Scanned models

Factorization results - PL

Resulting albedo map

Resulting irradiance map 1

Resulting irradiance map 2

Factorization results - PL

	Point source 1			Point source 2			Rel. intensity
	Х	у	Z	Х	у	Z	(R, G, B)
Actual position	-0.58	0.36	0.73	0.28	-0.28	0.92	(5.00, 10.00, 20.00)
Sphere	-0.58	0.36	0.73	0.27	-0.28	0.92	(5.03, 10.10, 20.48)
Armadillo	-0.58	0.35	0.73	0.27	-0.28	0.92	(5.11, 10.27, 20.88)

Actual position	0.40	0.48	0.78	-0.32	0.49	0.86	(1.00, 1.00, 1.00)
Buddha	0.39	0.57	0.71	-0.34	0.54	0.76	(1.03, 1.03, 1.04)
Cat	0.39	0.49	0.78	-0.33	0.47	0.82	(1.09, 1.09, 1.05)
Owl	0.39	0.48	0.78	-0.31	0.44	0.84	(1.02. 1.01, 1.00)

Factorization results - SH

Resulting albedo map

Resulting irradiance map 1

Resulting irradiance map 2

Factorization results - SH

Relative squared error

$$err = \frac{\|I^{1} - I^{0}\|^{2}}{\|I^{0}\|^{2}}$$

Model	Method	Error 1	Error 2
Sphere	PL	< 0.1%	< 0.1%
	PCA 5	0.40%	0.20%
Armadillo	PL	< 0.1%	< 0.1%
	PCA 3	3.50%	4.30%
Buddha	PL	0.40%	0.50%
	PCA 3	0.10%	1.60%
Cat	PL	< 0.1%	< 0.1%
	PCA 3	4.40%	4.50%
Owl	PL	< 0.1%	< 0.1%
	PCA 3	3.80%	3.50%

Factorization: Eglise de Chappes

Factorization: Eglise de Chappes

Relighting Chappes

Extending to multiple illum.

- For more than two images under different illuminations
 - Compute pair wise IRM
 - Transitive composition

