
This is page 1
Printer: Opaque this

Image Alignment and Stitching

Richard Szeliski

ABSTRACT Stitching multiple images together to create beautiful high-
resolution panoramas is one of the most popular consumer applications of
image registration and blending. In this chapter, I review the motion models
(geometric transformations) that underlie panoramic image stitching, dis-
cuss direct intensity-based and feature-based registration algorithms, and
present global and local alignment techniques needed to establish high-
accuracy correspondences between overlapping images. I then discuss vari-
ous compositing options, including multi-band and gradient-domain blend-
ing, as well as techniques for removing blur and ghosted images. The re-
sulting techniques can be used to create high-quality panoramas for static
or interactive viewing.

1 Introduction

Algorithms for aligning images and stitching them into seamless photo-
mosaics are among the oldest and most widely used in computer vision.
Image stitching algorithms have been used for decades to create the high-
resolution photo-mosaics used to produce digital maps and satellite photos
[20]. Frame-rate image alignment is used in every camcorder that has an
image stabilization feature. Image stitching algorithms come “out of the
box” with today’s digital cameras and can be used to create beautiful
high-resolution panoramas.

In film photography, special cameras were developed at the turn of the
century to take wide-angle panoramas, often by exposing the film through
a vertical slit as the camera rotated on its axis [18]. In the mid-1990s,
image alignment techniques started being applied to the construction of
wide-angle seamless panoramas from regular hand-held cameras [17, 9, 27].
More recent work in this area has addressed the need to compute globally
consistent alignments [30, 23, 25], the removal of “ghosts” due to parallax
and object movement [20, 10, 25, 32, 1], and dealing with varying exposures
[17, 32, 1]. (A collection of some of these papers can be found in [3].) These
techniques have spawned a large number of commercial stitching products
[9, 22].

While most of the above techniques work by directly minimizing pixel-
to-pixel dissimilarities, a different class of algorithms works by extracting a
sparse set of features and then matching these to each other [8, 6]. Feature-
based approaches have the advantage of being more robust against scene

2 Richard Szeliski

movement, and are potentially faster. Their biggest advantage, however,
is the ability to “recognize panoramas”, i.e., to automatically discover the
adjacency (overlap) relationships among an unordered set of images, which
makes them ideally suited for fully automated stitching of panoramas taken
by casual users [6].

What, then, are the fundamental algorithms needed for image stitching?
First, we must determine the appropriate motion model relating pixel co-
ordinates in one image to pixel coordinates in another (Section 2). Next,
we must somehow estimate the correct alignments relating various pairs of
images, using either direct pixel-to-pixel comparisons combined with gradi-
ent descent or feature-based alignment techniques (Section 3). We must also
develop algorithm to compute globally consistent alignments from large col-
lections of overlapping photos (Section 4). Once the alignments have been
estimated, we must choose a final compositing surface onto which to warp
and place all of the aligned images (Section 5). We also need to seamlessly
blend overlapping images, even in the presence of parallax, lens distortion,
scene motion, and exposure differences (Section 6). In the last section of
this chapter, I discuss additional applications of image stitching and open
research problems. For a more detailed tutorial on all of these components,
please consult [28].

2 Motion models

Before we can stitch images to create panoramas, we need to establish the
mathematical relationships that map pixel coordinates from one image to
another. A variety of such parametric motion models are possible, from
simple 2D transforms, to planar perspective models, 3D camera rotations,
and non-planar (e.g., cylindrical) surfaces [27, 30].

Figure 1 shows a number of commonly used 2D planar transformations,
while Table 1.1 lists their mathematical form along with their intrinsic
dimensionality. The easiest way to think of these is as a set of (potentially
restricted) 3×3 matrices operating on 2D homogeneous coordinate vectors,
x′ = (x′, y′, 1) and x = (x, y, 1), s.t.

x′ ∼ Hx, (1.1)

where ∼ denotes equality up to scale and H is one of the 3 × 3 matrices
given in Table 1.1.

2D translations are useful for tracking small patches in videos and for
compensating for instantaneous camera jitter. This simple two-parameter
model is the one most commonly associated with Lucas and Kanade’s patch
tracker [16], although, in fact, their paper also describes how to use an affine
motion model.

The three-parameter rotation+translation (also known as 2D rigid body
motion or the 2D Euclidean transformation) is useful for modeling in-plane

1. Image Alignment and Stitching 3

�

�

����������

	
����
�� �����

����
����

�����������

FIGURE 1. Basic set of 2D planar transformations

rotations, for example when different portions of a larger image are scanned
on a flatbed scanner.

Scaled rotation, also known as the similarity transform, adds a fourth
isotropic scale parameter s. This is a good model for a slowly panning and
zooming camera, especially when the camera has a long focal length. The
similarity transform preserves angles between lines.

The six parameter affine transform uses a general 2×3 matrix (or equiv-
alently, a 3× 3 matrix where the bottom row is

[

0 0 1
]

). It is a good
model of local deformations induced by more complex transforms, and also
models the 3D surface foreshortening observed by an orthographic camera.
Affine transforms preserve parallelism between lines.

The most general planar 2D transform is the eight-parameter perspective
transform or homography denoted by a general 3×3 matrix H. The result of
multiplying Hx must be normalized in order to obtain an inhomogeneous
result, i.e.,

x′ =
h00x + h01y + h02

h20x + h21y + h22

and y′ =
h10x + h11y + h12

h20x + h21y + h22

. (1.2)

Perspective transformations preserve straight lines, and, as we will see
shortly, are an appropriate model for planes observed under general 3D
motion and 3D scenes observed under pure camera rotation.

In 3D, the process of central projection maps 3D coordinates x = (x, y, z)
to 2D coordinates x′ = (x′, y′, 1) through a pinhole at the camera origin
onto a 2D projection plane a distance f along the z axis,

x′ = f
x

z
, y′ = f

y

z
. (1.3)

Perspective projection can also be denoted using an upper-triangular 3 ×
3 intrinsic calibration matrix K that can account for non-square pixels,
skew, and a variable optic center location. However, in practice, the simple
focal length scaling used above provides high-quality results when stitching
images from regular cameras.

What happens when we take two images of a 3D scene from different
camera positions and/or orientations? A 3D point p = (X, Y, Z, 1) gets

4 Richard Szeliski

Name Matrix # D.O.F. Preserves: Icon

translation
[

I t
]

2×3
2 orientation + · · ·

rigid (Euclidean)
[

R t
]

2×3
3 lengths + · · · ��

��

SS
SS

similarity
[

sR t
]

2×3
4 angles + · · · �

�
S
S

affine
[

A
]

2×3
6 parallelism + · · · �� ��

projective
[

H
]

3×3
8 straight lines `̀

TABLE 1.1. Hierarchy of 2D coordinate transformations. The 2× 3 matrices are
extended with a third [0T 1] row to form a full 3 × 3 matrix for homogeneous
coordinate transformations.

mapped to an image coordinate x′

0 through the combination of a 3D rigid-
body (Euclidean) motion E0 and a perspective projection K0,

x0 ∼ K0E0p = P 0p, (1.4)

where the 3 × 4 matrix P 0 is often called the camera matrix. If we have a
2D point x0, we can only project it back into a 3D ray in space. However,
for a planar scene, we have one additional plane equation, n̂0 · p + d0 = 0,
which we can use to augment P 0 to obtain P̃ 0, which then allows us to
invert the 3D→2D projection. If we then project this point into another
image, we obtain

x1 ∼ P 1P̃
−1

0 x0 = H10x0, (1.5)

where H10 is a general 3 × 3 homography matrix and x1 and x0 are 2D
homogeneous coordinates. This justifies the use of the 8-parameter homog-
raphy as a general alignment model for mosaics of planar scenes [17, 27].

The more interesting case is when the camera undergoes pure rotation
(which is equivalent to assuming all points are far from the camera). In
this case, we get the more restricted 3 × 3 homography

H10 = K1R1R
−1
0 K−1

0 = K1R10K
−1
0 . (1.6)

In practice, we usually set Kk = diag(fk, fk, 1). Thus, instead of the gen-
eral 8-parameter homography relating a pair of images, we get the 3-, 4-, or
5-parameter 3D rotation motion models corresponding to the cases where
the focal length f is known, fixed, or variable [30]. Estimating the 3D ro-
tation matrix (and optionally, the focal length) associated with each image
is intrinsically much more stable than estimating a full 8-d.o.f. homogra-
phy, which makes this the method of choice for large-scale image stitching
algorithms [30, 25, 6].

1. Image Alignment and Stitching 5

An alternative to using homographies or 3D rotations is to first warp the
images into cylindrical coordinates and to then use a pure translational
model to align them [9]. Unfortunately, this only works if the images are
all taken with a level camera or with a known tilt angle. The equations
for mapping between planar and cylindrical/spherical coordinates can be
found in [30, 28].

3 Direct and feature-based alignment

Once we have chosen a suitable motion model to describe the alignment
between a pair of images, we need to devise some method to estimate its
parameters. One approach is to shift or warp the images relative to each
other and to look at how much the pixels agree. Approaches such as these
are often called direct methods, as opposed to the feature-based methods
described a little later.

3.1 Direct methods

To use a direct method, a suitable error metric must first be chosen to com-
pare the images. Once this has been established, a suitable search technique
must be devised. The simplest search technique is to exhaustively try all
possible alignments, i.e., to do a full search. In practice, this may be too
slow, so hierarchical coarse-to-fine techniques based on image pyramids
have been developed [4]. Alternatively, Fourier transforms can be used to
speed up the computation [28]. To get sub-pixel precision in the alignment,
incremental methods based on a Taylor series expansion of the image func-
tion are often used [16]; these can also be applied to parametric motion
models [16, 4]. Each of these techniques is described in more detail in [28]
and summarized below.

The simplest way to establish an alignment between two images is to shift
one image relative to the other. Given a template image I0(x) sampled at
discrete pixel locations {xi = (xi, yi)}, we wish to find where it is located
in image I1(x). A least-squares solution to this problem is to find the
minimum of the sum of squared differences (SSD) function

ESSD(u) =
∑

i

[I1(xi + u) − I0(xi)]
2 =

∑

i

e2
i , (1.7)

where u = (u, v) is the displacement vector and ei = I1(xi + u)− I0(xi) is
called the residual error.

In general, the displacement u can be fractional, so a suitable interpo-
lation function must be applied to image I1(x). In practice, a bilinear in-
terpolant is often used, but bi-cubic interpolation may yield slightly better
results.

6 Richard Szeliski

We can make the above error metric more robust to outliers by replacing
the squared error terms with a robust function ρ(ei) [26]. We can also model
potential bias and gain variations between the images being compared,
and to associate spatially varying weights with different pixels, which is a
principled way to deal with partial overlap and regions that have been “cut
out” from one of the images [2, 28]. The extended version of this chapter
[28] also discusses correlation (and phase correlation) as an alternative
to robust pixel difference matching. It also discusses how coarse-to-fine
(hierarchical) techniques [4] and Fourier transforms can be used to speed
up the search for optimal alignment. (Fourier transforms unfortunately
only work for pure translation and for a very limited set of (small-motion)
similarity transforms.)

Incremental refinement

To obtain better sub-pixel estimates, we can use one of several techniques.
One possibility is to evaluate several discrete (integer or fractional) values
of (u, v) around the best value found so far and to interpolate the matching
score to find an analytic minimum. A more commonly used approach, first
proposed by Lucas and Kanade [16], is to do gradient descent on the SSD
energy function (1.7), using a Taylor Series expansion of the image function,

ELK−SSD(u + ∆u) ≈
∑

i

[J1(xi + u)∆u + ei]
2, (1.8)

where

J1(xi + u) = ∇I1(xi + u) = (
∂I1

∂x
,
∂I1

∂y
)(xi + u) (1.9)

is the image gradient at xi + u.
The above least squares problem can be minimizing by solving the asso-

ciated normal equations.
A∆u = b (1.10)

where

A =
∑

i

JT
1 (xi + u)J1(xi + u) and b = −

∑

i

eiJ
T
1 (xi + u) (1.11)

are called the Hessian and gradient-weighted residual vector, respectively.
The gradients required for J1(xi + u) can be evaluated at the same

time as the image warps required to estimate I1(xi + u), and in fact are
often computed as a side-product of image interpolation. If efficiency is a
concern, these gradients can be replaced by the gradients in the template
image,

J1(xi + u) ≈ J0(x), (1.12)

since near the correct alignment, the template and displaced target images
should look similar. This has the advantage of allowing the pre-computation
of the Hessian and Jacobian images, which can result in significant compu-
tational savings [2].

1. Image Alignment and Stitching 7

Parametric motion

Many image alignment tasks, for example image stitching with handheld
cameras, require the use of more sophisticated motion models. Since these
models typically have more parameters than pure translation, a full search
over the possible range of values is impractical. Instead, the incremental
Lucas-Kanade algorithm can be generalized to parametric motion models
and used in conjunction with a hierarchical search algorithm [16, 4, 2].

For parametric motion, instead of using a single constant translation
vector u, we use a spatially varying motion field or correspondence map,
x′(x; p), parameterized by a low-dimensional vector p, where x′ can be any
of the motion models presented in Section 2. The parametric incremental
motion update rule now becomes

ELK−PM(p + ∆p) =
∑

i

[I1(x
′(xi; p + ∆p)) − I0(xi)]

2

≈
∑

i

[J1(x
′

i)∆p + ei]
2, (1.13)

where the Jacobian is now

J1(x
′

i) =
∂I1

∂p
= ∇I1(x

′

i)
∂x′

∂p
(xi), (1.14)

i.e., the product of the image gradient ∇I1 with the Jacobian of correspon-
dence field, Jx′ = ∂x′/∂p.

The derivatives required to compute the Jacobian can be derived directly
from Table 1.1 and are given in [28].

The computation of the Hessian and residual vectors for parametric mo-
tion can be significantly more expensive than for the translational case. For
parametric motion with n parameters and N pixels, the accumulation of A

and b takes O(n2N) operations [2]. One way to reduce this by a significant
amount is to divide the image up into smaller sub-blocks (patches) Pj and
to only accumulate the simpler 2 × 2 quantities (1.11) at the pixel level
[25, 2, 28].

For a complex parametric motion such as a homography, the computation
of the motion Jacobian becomes complicated, and may involve a per-pixel
division. Szeliski and Shum [30] observed that this can be simplified by
first warping the target image I1 according to the current motion estimate
x′(x; p) and then comparing this warped image against the template I0(x).
Baker and Matthews [2] call this the forward compositional algorithm, since
the target image is being re-warped, and the final motion estimates are
being composed, and also present an inverse compositional algorithm that
is even more efficient.

8 Richard Szeliski

3.2 Feature-based registration

As mentioned earlier, directly matching pixel intensities is just one possi-
ble approach to image registration. The other major approach is to first
extract distinctive features from each image, to match individual features
to establish a global correspondence, and to then estimate the geometric
transformation between the images. This kind of approach has been used
since the early days of stereo matching and has more recently gained pop-
ularity for image stitching applications [8, 6].

Schmid et al. [24] survey the vast literature on interest point detection
and perform some experimental comparisons to determine the repeatability
of feature detectors. They also measure the information content available
at each detected feature point. Among the techniques they survey, they
find that an improved version of the Harris operator works best.

More recently, feature detectors that are more invariant to scale [15] and
affine transformations have been proposed. These can be very useful when
matching images that have different scales or different aspects (e.g., for 3D
object recognition).

After detecting the features (interest points), we must match them, i.e.,
determine which features come from corresponding locations in different
images. In some situations, e.g., for video sequences or for stereo pairs that
have been rectified, the local motion around each feature point may be
mostly translational. In this case, the error metrics introduced previously
can be used to directly compare the intensities in small patches around
each feature point. (The comparative study by Mikolajczyk and Schmid
[19] discussed below uses cross-correlation.)

If features are being tracked over longer image sequences, their appear-
ance can undergo larger changes. In this case, it makes sense to compare
appearances using an affine motion model. Because the features can appear
at different orientations or scales, a more view invariant kind of represen-
tation must be used. Mikolajczyk and Schmid [19] review some recently
developed view-invariant local image descriptors and experimentally com-
pare their performance.

The simplest method to compensate for in-plane rotations is to find a
dominant orientation at each feature point location before sampling the
patch or otherwise computing the descriptor. Mikolajczyk and Schmid use
the direction of the average gradient orientation, computed within a small
neighborhood of each feature point. The descriptor can be made invariant
to scale by only selecting feature points that are local maxima in scale space.
Among the local descriptors that Mikolajczyk and Schmid compared, David
Lowe’s Scale Invariant Feature Transform (SIFT) [15] performed the best.

The simplest way to find all corresponding feature points in an image
pair is to compare all features in one image against all features in the
other, using one the local descriptors described above. Unfortunately, this
is quadratic in the expected number of features, which makes it impractical

1. Image Alignment and Stitching 9

for some applications. More efficient matching algorithms can be devised
using different kinds of indexing schemes, many of which are based on the
idea of finding nearest neighbors in high-dimensional spaces.

Once an initial set of feature correspondences has been computed, we
need to find a set that is will produce a high-accuracy alignment. One
possible approach is to simply compute a least squares estimate, or to use
a robustified version of least squares. However, in many cases, it is better
to first find a good starting set of inlier correspondences, i.e., points that
are all consistent with some particular motion estimate. Two widely used
solution to this problem are RANdom SAmple Consensus (RANSAC) and
least median of squares (LMS) [26]. Both techniques start by selecting a
random subset of k correspondences, which is then used to compute a
motion estimate p. The RANSAC technique then counts the number of
inliers that are within ε of their predicted location. Least median of squares
finds the median value of the ‖ri‖ values. The random selection process
is repeated S times, and the sample set with largest number of inliers (or
with the smallest median residual) is kept as the final solution.

Geometric registration

Once we have computed a set of matched feature point correspondences,
we still need to estimate the motion parameters p that best register the two
images. The usual way to do this is to use least squares, i.e., to minimize
the sum of squared residuals given by

ELS =
∑

i

‖ri‖
2 = ‖x̃′

i(xi; p) − x̂
′

i‖
2, (1.15)

where x̃′

i are the estimated (mapped) locations, and x̂
′

i are the sensed
(detected) feature point locations corresponding to point xi in the other
image.

Many of the motion models presented in Section 2, i.e., translation, simi-
larity, and affine, have a linear relationship between the motion and the un-
known parameters p. In this case, a simple linear regression (least squares)
using normal equations works well.

The above least squares formulation assumes that all feature points are
matched with the same accuracy. This is often not the case, since certain
points may fall in more textured regions than others. If we associate a
variance estimate σ2

i with each correspondence, we can minimize weighted
least squares instead,

EWLS =
∑

i

σ−2
i ‖ri‖

2. (1.16)

As discussed in [28], a covariance estimate for patch-based matching can
be obtained by multiplying the inverse of the Hessian with the per-pixel
noise estimate. Weighting each squared residual by the inverse covariance

10 Richard Szeliski

Σ−1
i = σ−2

n Ai (which is called the information matrix), we obtain

ECWLS =
∑

i

‖ri‖
2

Σ
−1

i

=
∑

i

rT
i Σ−1

i ri =
∑

i

σ−2
n rT

i Airi, (1.17)

where Ai is the patch Hessian.
If there are outliers among the feature-based correspondences, it is better

to use a robust version of least squares, even if an initial RANSAC or MLS
stage has been used to select plausible inliers. The robust least squares cost
metric is then

ERLS(u) =
∑

i

ρ(‖ri‖Σ
−1

i

). (1.18)

For motion models that are not linear in the motion parameters, non-
linear least squares must be used instead. Deriving the Jacobian of each
residual equation with respect to the motion parameters is relatively straight-
forward, once a suitable parameterization has been chosen [28].

3.3 Direct vs. feature-based

Given that there are these two alternative approaches to aligning images,
which is preferable?

My original work in image stitching was firmly in the direct (image-
based) camp [27, 30, 25]. Early feature-based methods seemed to get con-
fused in regions that were either too textured or not textured enough.
The features would often be distributed unevenly over the images, thereby
failing to match image pairs that should have been aligned. Furthermore, es-
tablishing correspondences relied on simple cross-correlation between patches
surrounding the feature points, which did not work well when the images
were rotated or had foreshortening due to homographies.

Today, feature detection and matching schemes are remarkably robust
and can even be used for known object recognition from widely separated
views [15]. Because they operate in scale-space and use a dominant orien-
tation (or orientation invariant descriptors), they can match images that
differ in scale, orientation, and even foreshortening. My own recent expe-
rience is that if the features are well distributed over the image and the
descriptors reasonably designed for repeatability, enough correspondences
to permit image stitching can usually be found.

The other major reason I used to prefer direct methods was that they
make optimal use of the information available in image alignment, since
they measure the contribution of every pixel in the image. Furthermore,
assuming a Gaussian noise model (or a robustified version of it), they prop-
erly weight the contribution of different pixels, e.g., by emphasizing the
contribution of high-gradient pixels. (See Baker et al. [2], who suggest that
adding even more weight at strong gradients is preferable because of noise
in the gradient estimates.)

1. Image Alignment and Stitching 11

The biggest disadvantage of direct techniques is that they have a limited
range of convergence. Even though hierarchical (coarse-to-fine) techniques
can help, it is hard to use more than two or three levels of a pyramid
before important details start get blurred. For matching sequential frames
in a video, the direct approach can usually be made to work. However, for
matching partially overlapping images in photo-based panoramas, they fail
too often to be useful.

Is there no rôle then for direct registration? I believe there is. Once a
pair of images has been aligned with a feature-based approach, we can
warp the two images to a common reference frame and re-compute a more
accurate correspondence using patch-based alignment. Notice how there is
a close correspondence between the patch-based approximation to direct
alignment and the inverse covariance weighted feature-based least squares
error metric (1.17).

In fact, if we divide the template images up into patches and place an
imaginary “feature point” at the center of each patch, the two approaches
return exactly the same answer (assuming that the correct correspondences
are found in each case). However, for this approach to succeed, we still have
to deal with “outliers”, i.e., regions that do not fit the selected motion
model due to either parallax or moving objects. While a feature-based
approach may make it somewhat easier to reason about outliers (features
can be classified as inliers or outliers), the patch-based approach, since
it establishes correspondences more densely, is potentially more useful for
removing local mis-registration (parallax).

4 Global registration

So far, I have discussed how to register pairs of images using both direct
and feature-based methods. In most applications, we are given more than
a single pair of images to register. The goal is to find a globally consistent
set of alignment parameters that minimize the mis-registration between
all pairs of images [30, 25, 23]. In order to do this, we need to extend
the pairwise matching criteria to a global energy function that involves
all of the per-image pose parameters. Once we have computed the global
alignment, we need to perform local adjustments such as parallax removal
to reduce double images and blurring due to local mis-registration. Finally,
if we are given an unordered set of images to register, we need to discover
which images go together to form one or more panoramas.

4.1 Bundle adjustment

One way to register a large number of images is to add new images to the
panorama one at a time, aligning the most recent image with the previ-

12 Richard Szeliski

ous ones already in the collection [30], and discovering, if necessary, which
images it overlaps [23]. In the case of 360◦ panoramas, accumulated error
may lead to the presence of a gap (or excessive overlap) between the two
ends of the panorama, which can be fixed by stretching the alignment of
all the images using a process called gap closing [30]. However, a better
alternative is to simultaneously align all the images together using a least
squares framework to evenly distribute any mis-registration errors.

The process of simultaneously adjusting pose parameters for a large
collection of overlapping images is called bundle adjustment in the pho-
togrammetry community [31]. In computer vision, it was first applied to
the general structure from motion problem [29], and then later specialized
for panoramic image stitching [25, 23].

In this section, I formulate the problem of global alignment using a
feature-based approach, since this results in a simpler system. An equiva-
lent direct approach can be obtained by dividing images into patches and
creating a virtual feature correspondence for each one [25].

Consider the feature-based alignment problem given in (1.15). For multi-
image alignment, instead of having a single collection of pairwise feature
correspondences, {(xi, x̂

′

i)}, we have a collection of n features, with the
location of the ith feature point in the jth image denoted by xij and its
scalar confidence (inverse variance) denoted by cij . Each image also has
some associated pose parameters.

In this section, I assume that this pose consists of a rotation matrix Rj

and a focal length fj , although formulations in terms of homographies are
also possible [30, 23]. The equation mapping a 3D point xi into a point xij

in frame j can be re-written from (1.4–1.6) as

xij ∼ KjRjxi and xi ∼ R−1
j K−1

j xij , (1.19)

where Kj = diag(fj , fj , 1) is the simplified form of the calibration matrix.
The motion mapping a point xij from frame j into a point xik in frame k
is similarly given by

xik ∼ Hkjxij = KkRkR−1
j K−1

j xij . (1.20)

Given an initial set of {(Rj , fj)} estimates obtained from chaining pairwise
alignments, how do we refine these estimates?

One approach is to directly extend the pairwise energy to a multiview
formulation,

Eall−pairs−2D =
∑

i

∑

jk

cijcik‖x̃ik(x̂ij ; Rj , fj , Rk, fk) − x̂ik‖
2, (1.21)

where the x̃ik function is the predicted location of feature i in frame k
given by (1.20), x̂ij is the observed location, and the “2D” in the subscript
indicates than an image-plane error is being minimized.

1. Image Alignment and Stitching 13

While this approach works well in practice, it suffers from two potential
disadvantages. First, since a summation is taken over all pairs with corre-
sponding features, features that are observed many times get overweighted
in the final solution. Second, the derivatives of x̃ik w.r.t. the {(Rj , fj)} are
a little cumbersome.

An alternative way to formulate the optimization is to use true bundle
adjustment, i.e., to solve not only for the pose parameters {(Rj , fj)} but
also for the 3D point positions {xi},

EBA−2D =
∑

i

∑

j

cij‖x̃ij(xi; Rj , fj) − x̂ij‖
2, (1.22)

where x̃ij(xi; Rj , fj) is given by (1.19). The disadvantage of full bundle
adjustment is that there are more variables to solve for, so both each it-
eration and the overall convergence may be slower. However, the compu-
tational complexity of each linearized Gauss-Newton step can be reduced
using sparse matrix techniques [29, 25, 31].

An alternative formulation is to minimize the error in 3D projected ray
directions [25], i.e.,

EBA−3D =
∑

i

∑

j

cij‖x̃i(x̂ij ; Rj , fj) − xi‖
2, (1.23)

where x̃i(xij ; Rj , fj) is given by the second half of (1.19).
However, if we eliminate the 3D rays xi, we can derive a pairwise energy

formulated in 3D ray space [25],

Eall−pairs−3D =
∑

i

∑

jk

cijcik‖x̃i(x̂ij ; Rj , fj) − x̃i(x̂ik; Rk, fk)‖2. (1.24)

This results in the simplest set of update equations [25], since the fk can be
folded into the creation of the homogeneous coordinate vector. Thus, even
though this formula over-weights features that occur more frequently, it is
the method used both by Shum and Szeliski [25] and in my current feature-
based aligner. In order to reduce the bias towards longer focal lengths, I
multiply each residual (3D error) by

√

fjfk, which is similar to projecting
the 3D rays into a “virtual camera” of intermediate focal length.

4.2 Parallax removal

Once we have estimated the global orientations and focal lengths of our
cameras, we may find that the images are still not perfectly aligned, i.e., the
resulting stitched image looks blurry or ghosted in some places. This may
be caused by a variety of factors, including unmodeled radial distortion,
3D parallax (failure to rotate the camera around its optical center), small

14 Richard Szeliski

FIGURE 2. A set of images and the panorama discovered in them

scene motions such as waving tree branches, and large-scale scene motions
such as people moving in and out of pictures.

Each of these problems can be treated with a different approach. Radial
distortion can be estimated using one of several classic calibration tech-
niques. 3D parallax can be attacked by doing a full 3D bundle adjustment.
The 3D positions of the matched features points and cameras can then be
simultaneously recovered, although this can be significantly more expensive
that parallax-free image registration.

When the motion in the scene is very large, i.e., when objects appear and
disappear completely, a sensible solution is to simply select pixels from only
one image at a time as the source for the final composite [10, 1], as discussed
in Section 6. However, when the motion is reasonably small (on the order
of a few pixels), general 2-D motion estimation (optic flow) can be used to
perform an appropriate correction before blending using a process called
local alignment [25]. This same process can also be used to compensate for
radial distortion and 3D parallax, although it uses a weaker motion model
than explicitly modeling the source of error, and may therefore fail more
often.

4.3 Recognizing panoramas

The final piece needed to perform fully automated image stitching is a tech-
nique to determine which images actually go together, which Brown and
Lowe call recognizing panoramas [6]. If the user takes images in sequence so
that each image overlaps its predecessor, bundle adjustment combined with
the process of topology inference can be used to automatically assemble a
panorama [23]. However, users often jump around when taking panoramas,
e.g., they may start a new row on top of a previous one, or jump back to
take a repeated shot, or create 360◦ panoramas where end-to-end overlaps
need to be discovered. Furthermore, the ability to automatically discover
multiple panoramas taken by a user can be a big convenience.

To recognize panoramas, Brown and Lowe [6] first find all pairwise image
overlaps using a feature-based method and then find connected components

1. Image Alignment and Stitching 15

in the overlap graph to “recognize” individual panoramas (Figure 2). First,
they use Lowe’s Scale Invariant Feature Transform (SIFT features) [15]
followed by nearest neighbor matching. RANSAC is then used to find a
set of inliers, using pairs of matches to hypothesize similarity motion esti-
mates. Once pairwise alignments have been computed, a global registration
(bundle adjustment) stage is used to compute a globally consistent align-
ment for all of the images. Finally, a two-level Laplacian pyramid is used
to seamlessly blend the images [6].

5 Choosing a compositing surface

Once we have registered all of the input images with respect to each other,
we need to decide how to produce the final stitched (mosaic) image. This
involves selecting a final compositing surface, e.g., flat, cylindrical, or spher-
ical. It may also involve computing an optimal reference view to ensure that
the scene appears to be upright, as described in [28].

If only a few images are stitched together, a natural approach is to select
one of the images as the reference and to then warp all of the other images
into the reference coordinate system. The resulting composite is called a flat
panorama, since the projection onto the final surface is still a perspective
projection, and hence straight lines remain straight.

For larger fields of view, however, we cannot maintain a flat representa-
tion without excessively stretching pixels near the border of the image. (In
practice, flat panoramas start to look severely distorted once the field of
view exceeds 90◦ or so.) The usual choice for compositing larger panoramas
is to use a cylindrical [9] or spherical [30] projection. In fact, any surface
used for environment mapping in computer graphics can be used, including
a cube map that represents the full viewing sphere with the six square faces
of a box [30].

The choice of parameterization is somewhat application dependent and
involves a tradeoff between keeping the local appearance undistorted (e.g.,
keeping straight lines straight) and providing a reasonably uniform sam-
pling of the environment. Automatically making this selection and smoothly
transitioning between representations based on the extent of the panorama
is an interesting topic for future research.

6 Seam selection and pixel blending

Once the source pixels have been mapped onto the final composite surface,
we must decide how to blend them in order to create an attractive looking
panorama. If all of the images are in perfect registration and identically
exposed, this is an easy problem (any pixel combination will do). However,

16 Richard Szeliski

for real images, visible seams (due to exposure differences), blurring (due
to mis-registration), or ghosting (due to moving objects) can occur.

Creating clean, pleasing looking panoramas involves both deciding which
pixels to use and how to weight or blend them. The distinction between
these two stages is a little fluid, since per-pixel weighting can be though of
as a combination of selection and blending. In this section, I discuss spa-
tially varying weighting, pixel selection (seam placement), and then more
sophisticated blending.

Feathering and center-weighting

The simplest way to create a final composite is to simply take an average
value at each pixel., However, this usually does not work very well, since
exposure differences, mis-registrations, and scene movement are all very
visible (Figure 3a). If rapidly moving objects are the only problem, taking
a median filter (which is a kind of pixel selection operator) can often be
used to remove them [12].

A better approach is to weight pixels near the center of the image more
heavily and to down-weight pixels near the edges. When an image has some
cutout regions, down-weighting pixels near the edges of both cutouts and
edges is preferable. This can be done by computing a distance map or grass-
fire transform, where each valid pixel is tagged with its Euclidean distance
to the nearest invalid pixel. Weighted averaging with a distance map is
often called feathering [30, 32], and does a reasonable job of blending over
exposure differences. However, blurring and ghosting can still be problems
(Figure 3b).

One way to improve feathering is to raise the distance map values to some
power. The weighted averages then become dominated by the larger values,
i.e., they act like a p-norm. The resulting composite can often provide a
reasonable tradeoff between visible exposure differences and blur.

In the limit as p → ∞, only the pixel with the maximum distance value
gets selected, which is equivalent to computing the Vornoi diagram. The
resulting composite, while useful for artistic guidance and in high-overlap
panoramas (manifold mosaics) tends to have very hard edges with notice-
able seams when the exposures vary.

Optimal seam selection

Computing the Vornoi diagram is one way to select the seams between
regions where different images contribute to the final composite. However,
Vornoi images totally ignore the local image structure underlying the seam.

A better approach is to place the seams in regions where the images
agree, so that transitions from one source to another are not visible. In
this way, the algorithm avoids “cutting through” moving objects, where
a seam would look unnatural [10]. For a pair of images, this process can
be formulated as a simple dynamic program starting from one edge of

1. Image Alignment and Stitching 17

(a) (b)

(c) (d)

FIGURE 3. Final composites computed by a variety of algorithms: (a) average,
(b) feathered average, (c) weighted ROD vertex cover with feathering, (d) graph
cut seams with Poisson blending. Notice how the regular average cuts off moving
people near the edges of images, while the feathered average slowly blends them
in. The vertex cover and graph cut algorithms produce similar results.

the overlap region and ending at the other [20, 10]. Unfortunately, when
multiple images are being composited, the dynamic program idea does not
readily generalize.

To overcome this problem, Uyttendaele et al. [32] observed that for
well-registered images, moving objects produce the most visible artifacts,
namely translucent looking ghosts. Their system therefore decides which
objects to keep, and which ones to erase. First, the algorithm compares all
overlapping input image pairs to determine regions of difference (RODs)
where the images disagree. Next, a graph is constructed with the RODs as
vertices and edges representing ROD pairs that overlap in the final compos-
ite. Since the presence of an edge indicates an area of disagreement, vertices
(regions) must be removed from the final composite until no edge spans a
pair of unremoved vertices. The smallest such set can be computed using
a vertex cover algorithm. Since several such covers may exist, a weighted
vertex cover is used instead, where the vertex weights are computed by
summing the feather weights in the ROD. The algorithm therefore prefers
removing regions that are near the edge of the image, which reduces the
likelihood that partially visible objects will appear in the final compos-
ite. Once the required regions of difference have been removed, the final
composite is created using a feathered blend (Figure 3c).

A different approach to pixel selection and seam placement was recently
proposed by Agarwala et al. [1]. Their system computes the label assign-

18 Richard Szeliski

ment that optimizes the sum of two objective functions. The first is a
per-pixel image objective CD that determines which pixels are likely to pro-
duce good composites. In their system, users can select which pixels to
use by “painting” over an image with the desired object or appearance.
Alternatively, automated selection criteria can be used, such as maximum
likelihood that prefers pixels which occur repeatedly (for object removal), or
minimum likelihood for objects that occur infrequently (for greatest object
retention).

The second term is a seam objective CS that penalizes differences in la-
belings between adjacent images. For example, the simple color-based seam
penalty used in [1] measures the color difference between corresponding pix-
els on both sides of the seam. The global energy function that is the sum
of the data and seam costs can be minimized using a variety of techniques
[28]. Agarwala et al. [1] use graph cuts, which involves cycling through a
set of simpler α-expansion re-labelings, each of which can be solved with a
graph cut (max-flow) polynomial-time algorithm [5].

For the result shown in Figure 3d, Agarwala et al. [1] use a large data
penalty for invalid pixels and 0 for valid pixels. Notice how the seam place-
ment algorithm avoids regions of differences, including those that border
the image and which might result in cut off objects. Graph cuts [1] and
vertex cover [32] often produce similar looking results, although the former
is significantly slower since it optimizes over all pixels, while the latter is
more sensitive to the thresholds used to determine regions of difference.

Laplacian pyramid blending

Once the seams have been placed and unwanted objects removed, we still
need to blend the images to compensate for exposure differences and other
mis-alignments. An attractive solution to this problem was developed by
Burt and Adelson [7]. Instead of using a single transition width, a frequency-
adaptive width is used by creating a band-pass (Laplacian) pyramid and
making the transition widths a function of the pyramid level. First, each
warped image is converted into a band-pass (Laplacian) pyramid. Next,
the masks associated with each source image are converted into a low-
pass (Gaussian) pyramid and used to perform a per-level feathered blend
of the band-pass images. Finally, the composite image is reconstructed by
interpolating and summing all of the pyramid levels (band-pass images).

Gradient domain blending

An alternative approach to multi-band image blending is to perform the
operations in the gradient domain. Here, instead of working with the initial
color values, the image gradients from each source image are copied; in a
second pass, an image that best matches these gradients is reconstructed
[1]. Copying gradients directly from the source images after seam placement
is just one approach to gradient domain blending. Levin et al. [14] examine

1. Image Alignment and Stitching 19

several different variants on this approach, which they call Gradient-domain
Image STitching (GIST). The techniques they examine include feathering
(blending) the gradients from the source images, as well as using an L1 norm
in performing the reconstruction of the image from the gradient field, rather
than using an L2 norm. Their preferred technique is the L1 optimization of
a feathered (blended) cost function on the original image gradients (which
they call GIST1-l1). While L1 optimization using linear programming can
be slow, a faster iterative median-based algorithm in a multigrid framework
works well in practice. Visual comparisons between their preferred approach
and what they call optimal seam on the gradients (which is equivalent
to Agarwala et al.’s approach [1]) show similar results, while significantly
improving on pyramid blending and feathering algorithms.

Exposure compensation

Pyramid and gradient domain blending can do a good job of compensating
for moderate amounts of exposure differences between images. However,
when the exposure differences become large, alternative approaches may
be necessary.

Uyttendaele et al. [32] iteratively estimate a local correction between
each source image and a blended composite. First, a block-based quadratic
transfer function is fit between each source image and an initial feathered
composite. Next, transfer functions are averaged with their neighbors to
get a smoother mapping, and per-pixel transfer functions are computed
by splining between neighboring block values. Once each source image has
been smoothly adjusted, a new feathered composite is computed, and the
process is be repeated (typically 3 times). The results in [32] demonstrate
that this does a better job of exposure compensation than simple feath-
ering and can handle local variations in exposure due to effects like lens
vignetting.

High dynamic range imaging

A more principled approach is to estimate a single high dynamic range
(HDR) radiance map from of the differently exposed images [11, 21]. This
approach assumes that the input images were taken with a fixed camera
whose pixel values are the result of applying a parameterized radiometric
transfer function f(R, p) to scaled radiance values ckR(x). The exposure
values ck are either known (by experimental setup, or from a camera’s EXIF
tags), or are computed as part of the parameter estimation process. After
the transfer function has been estimated, radiance values from different
exposures can be combined to emphasize reliable pixels.

Once a radiance map has been computed, it is usually necessary to dis-
play it on a lower gamut (i.e., 8-bit) screen or printer. A variety of tone
mapping techniques have been developed for this purpose, which involve
either computing spatially varying transfer functions or reducing image

20 Richard Szeliski

gradients to fit the the available dynamic range.
Unfortunately, most casually acquired images may not be perfectly regis-

tered and may contain moving objects. Kang et al. [13] present an algorithm
that combines global registration with local motion estimation (optic flow)
to accurately align the images before blending their radiance estimates.
Since the images may have widely different exposures, care must be taken
when producing the motion estimates, which must themselves be checked
for consistency to avoid the creation of ghosts and object fragments.

7 Extensions and open issues

While image stitching has now reached a point where it is commonly used
in consumer photo editing products, there are still a lot of open research
problems that need to be addressed.

The first of these is improving the reliability of fully automated stitching.
Whenever images contain small amounts of overlap, repeated textures, or
large regions of difference because of moving objects, it becomes increas-
ingly difficult to disambiguate between accidental and correct alignments.
Global reasoning about a compatible set of correspondences might be the
solution, as might be improvements in robust (partial) feature matching.

Dealing with motion and parallax is another important area, since pic-
tures are often taken with handheld cameras in highly dynamic situations.
At some point, full 3D reconstruction with moving object detection and
layer extraction may be required, which also raises interesting issues in
designing quick and easy user interfaces to specify the desired final output.

Dealing with images at different resolutions and zoom factors is another
interesting area, especially since variable resolution image representations
and viewers are not common. A related issue is super-resolution, i.e., en-
hancing image resolution through the combination of jittered photographs
of the same region [17, 8]. Unfortunately, because of limitations in optics
and motion estimation, there seems to be a very limited (< 2×) improve-
ment that can be achieved in practice.

Stitching videos is another area that is likely to grow as more digital
cameras start to include the ability to take videos. Examples of stitching
videos to obtain summary panoramas have been around for a while [12, 22].
In the future, we are likely to see the construction of “live” panoramas that
include moving elements along with still portions [27].

Ultimately, image alignment and stitching will become part of a reper-
toire of computer vision algorithms used to merge multiple images (with
different orientations, exposures, and other attributes) to create enhanced
and innovative composite pictures and photographic experiences.

1. Image Alignment and Stitching 21

8 References

[1] A. Agarwala et al. Interactive digital photomontage. ACM Transac-
tions on Graphics, 23(3):292–300, August 2004.

[2] S. Baker and I. Matthews. Lucas-kanade 20 years on: A unifying
framework: Part 1: The quantity approximated, the warp update rule,
and the gradient descent approximation. International Journal of
Computer Vision, 56(3):221–255, March 2004.

[3] R. Benosman and S. B. Kang, editors. Panoramic Vision: Sensors,
Theory, and Applications, New York, 2001. Springer.

[4] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchi-
cal model-based motion estimation. In Second European Conference
on Computer Vision, pages 237–252, Santa Margherita Liguere, Italy,
May 1992. Springer-Verlag.

[5] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(11):1222–1239, November 2001.

[6] M. Brown and D. Lowe. Recognizing panoramas. In Ninth Interna-
tional Conference on Computer Vision, pages 1218–1225, Nice, France,
October 2003.

[7] P. J. Burt and E. H. Adelson. A multiresolution spline with applica-
tions to image mosaics. ACM Transactions on Graphics, 2(4):217–236,
October 1983.

[8] D. Capel and A. Zisserman. Automated mosaicing with super-
resolution zoom. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 885–891, Santa Barbara, June
1998.

[9] S. E. Chen. QuickTime VR – an image-based approach to virtual
environment navigation. Computer Graphics (SIGGRAPH’95), pages
29–38, August 1995.

[10] J. Davis. Mosaics of scenes with moving objects. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recogni-
tion, pages 354–360, Santa Barbara, June 1998.

[11] P. E. Debevec and J. Malik. Recovering high dynamic range radiance
maps from photographs. Proceedings of SIGGRAPH 97, pages 369–
378, August 1997.

[12] M. Irani and P. Anandan. Video indexing based on mosaic represen-
tations. Proceedings of the IEEE, 86(5):905–921, May 1998.

22 Richard Szeliski

[13] S. B. Kang et al. High dynamic range video. ACM Transactions on
Graphics, 22(3):319–325, July 2003.

[14] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image stitching
in the gradient domain. In Eighth European Conference on Computer
Vision, volume IV, pages 377–389, Prague, May 2004.

[15] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, November
2004.

[16] B. D. Lucas and T. Kanade. An iterative image registration technique
with an application in stereo vision. In Seventh International Joint
Conference on Artificial Intelligence, pages 674–679, Vancouver, 1981.

[17] S. Mann and R. W. Picard. Virtual bellows: Constructing high-quality
images from video. In First IEEE International Conference on Image
Processing, volume I, pages 363–367, Austin, November 1994.

[18] J. Meehan. Panoramic Photography. Watson-Guptill, 1990.

[19] K. Mikolajczyk and C. Schmid. A performance evaluation of local
descriptors. In IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, volume II, pages 257–263, Madison, WI,
June 2003.

[20] D. L. Milgram. Computer methods for creating photomosaics. IEEE
Transactions on Computers, C-24(11):1113–1119, November 1975.

[21] T. Mitsunaga and S. K. Nayar. Radiometric self calibration. In IEEE
Computer Society Conference on Computer Vision and Pattern Recog-
nition, volume 1, pages 374–380, Fort Collins, June 1999.

[22] H. S. Sawhney et al. Videobrush: Experiences with consumer video
mosaicing. In IEEE Workshop on Applications of Computer Vision,
pages 56–62, Princeton, October 1998.

[23] H. S. Sawhney and R. Kumar. True multi-image alignment and its
application to mosaicing and lens distortion correction. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 21(3):235–243,
March 1999.

[24] C. Schmid, R. Mohr, and C. Bauckhage. Evaluation of interest point
detectors. International Journal of Computer Vision, 37(2):151–172,
June 2000.

[25] H.-Y. Shum and R. Szeliski. Construction of panoramic mosaics with
global and local alignment. International Journal of Computer Vi-
sion, 36(2):101–130, February 2000. Erratum published July 2002,
48(2):151-152.

1. Image Alignment and Stitching 23

[26] C. V. Stewart. Robust parameter estimation in computer vision.
SIAM Reviews, 41(3):513–537, September 1999.

[27] R. Szeliski. Video mosaics for virtual environments. IEEE Computer
Graphics and Applications, 16(2):22–30, March 1996.

[28] R. Szeliski. Image alignment and stitching: A tutorial. Technical
Report MSR-TR-2004-92, Microsoft Research, December 2004.

[29] R. Szeliski and S. B. Kang. Recovering 3D shape and motion from
image streams using nonlinear least squares. Journal of Visual Com-
munication and Image Representation, 5(1):10–28, March 1994.

[30] R. Szeliski and H.-Y. Shum. Creating full view panoramic im-
age mosaics and texture-mapped models. Computer Graphics (SIG-
GRAPH’97 Proceedings), pages 251–258, August 1997.

[31] B. Triggs et al. Bundle adjustment — a modern synthesis. In In-
ternational Workshop on Vision Algorithms, pages 298–372, Kerkyra,
Greece, September 1999.

[32] M. Uyttendaele, A. Eden, and R. Szeliski. Eliminating ghosting and
exposure artifacts in image mosaics. In IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, volume II, pages
509–516, Kauai, Hawaii, December 2001.

