

Abstract

We recently proposed a new and efficient next-best-
view algorithm for 3D reconstruction of indoor scenes
using active range sensing. We overcome the computation
difficulty of evaluating the view metric function by using
an adaptive hierarchical approach to exploit the various
spatial coherences inherent in the acquisition constraints
and quality requirements. The impressive speedups have
allowed our NBV algorithm to become the first to be able
to exhaustively evaluate a large set of 3D views with
respect to a large set of surfaces, and to include many
practical acquisition constraints and quality requirements.
The success of the algorithm is greatly dependent on the
implementation efficiency of the constraint and quality
evaluations. In this paper, we describe the algorithmic
details of the hierarchical view evaluation, and present
efficient algorithms that evaluate sensing constraints and
surface sampling densities between a view volume and a
surface patch instead of simply between a single view
point and a surface point. The presentation here provides
examples for the design of efficient algorithms for new
sensing constraints.

1. Introduction
With the advent of affordable active range sensing

devices, reconstructing detailed 3D digital models of real-
world objects and environments has become more

common. A typical reconstruction would require multiple
range scans made from different scanning locations. The
set of scanning locations must be chosen carefully so that
each location satisfies a set of acquisition constraints and
the reconstructed 3D digital model can meet a set of
quality requirements. This task is known as view
planning. For 3D reconstruction, a priori knowledge of the
scene geometry is not available to the automatic view
planner. The first scan is made from a view selected by a
human operator, and for each subsequent scan, the planner
must determine its best view based on the information
collected from the previous scans. This is often called the
next-best-view (NBV) problem.

The NBV problem is inherently a local optimization
problem since global geometric information is unknown.
It is NP-hard, and since it can be reduced to the set-
covering problem, it is often solved approximately using a
greedy approximation algorithm. A greedy NBV
algorithm selects the view that maximizes a view metric as
the best view for the next scan.

The major challenge to a practical NBV solution is an
efficient method to evaluate the view metric for a large set
of views, using information provided by a partial model of
the scene. Each evaluation can be computationally very
expensive, since a large amount of information of the
partial model may be involved, and visibility
computations and other constraint evaluations are
expensive. This apparent computation difficulty has
limited many previous NBV algorithms to simple and
small objects, incomplete search space, incomplete set of
acquisition constraints and reconstruction quality
requirements, and low-quality acquisition. Some early
algorithms even ignore self-occlusion of the objects [2].

Efficient Constraint Evaluation Algorithms
for Hierarchical Next-Best-View Planning

Kok-Lim Low
National University of Singapore

lowkl@comp.nus.edu.sg

Anselmo Lastra
University of North Carolina at Chapel Hill

lastra@cs.unc.edu

Figure 1. (a) The eight 3D views in a computed view plan. The views may be at different height. (b)&(c) Two views of the polygonal
model constructed from the eight range scans.

(a) (b) (c)

1

2

3

4

5

6

7 8

However, an efficient algorithm to evaluate the view
metric is actually possible. Recently, we proposed a
hierarchical approach [5] to adaptively exploit the various
spatial coherences inherent in the acquisition constraints
and quality requirements. Results show that the
hierarchical approach can speed up view evaluation by
one to two orders of magnitude over the straightforward
method used in the previous NBV algorithms. These
impressive speedups have allowed our NBV algorithm to
become the first to be able to exhaustively evaluate a large
set of 3D views with respect to a large set of surfaces, and
to include many practical acquisition constraints and
quality requirements.

Our proposed hierarchical view evaluation algorithm
was inspired by the hierarchical radiosity algorithm [4],
which can be generalized to evaluate pair-wise
interactions between extended objects. The success of the
hierarchical view evaluation is due to the evaluation of the
sensing constraints and surface sampling densities
between a view volume and a surface patch, instead of
between a single view point and a single surface point at a
time. The straightforward, inefficient, single-view-point-
to-single-surface-point approach is used in almost every
previous view planning algorithms [2, 3, 6, 7, 8]. The
purpose of this paper is to describe the algorithmic details
of the hierarchical approach, and present efficient
algorithms that evaluate sensing constraints and surface
sampling densities between a view volume and a surface
patch. The presentation here provides examples for the
design of efficient algorithms for new acquisition
constraints.

Section 2 presents a summary of the material in [5]. The
reader is encouraged to refer to the paper for more details.
In Section 3, we present the details of the hierarchical
view evaluation algorithm, and the efficient
implementation of the individual constraint and sampling
density evaluation algorithms. Section 4 presents some
results of our hierarchical view evaluation. We conclude
the paper in Section 5.

2. The Hierarchical NBV Algorithm
For our NBV algorithm, we have formulated a view

metric and used an adaptive hierarchical method to
efficiently evaluate the view metric for a large set of
views. The view metric incorporates the reconstruction
quality requirements and acquisition constraints.

Our view metric takes into account the following two
reconstruction quality requirements.

(1) Completeness. The NBV algorithm tries to
maximize the amount of surface area acquired so that the
reconstructed model can be more complete.

(2) Surface sampling quality. Our algorithm tries to
maximize the surface area that reaches a required surface
sampling density.

Several acquisition constraints must be observed when
planning a view of the scanner. Each constraint can be
classified as one of the following types.

(1) Positioning constraints. The physical construction
of the scanner and the capability of the positioning device

can constrain the scanner’s physical position. A view that
satisfies all the positioning constraints is called a feasible
view.

(2) Sensing constraints. These constraints determine
whether a surface point in the scene can be measured from
a view. For example, a surface point cannot be measured
by the scanner if it is not visible from the range sensor.

(3) Registration constraint. Due to positioning error of
the scanner, each new scan has to be explicitly aligned to
the previous scans. However, this registration is not
guaranteed to be successful. Our view planning algorithm
can ensure that the new scan to be acquired from the
planned view can be successfully registered with the
previous ones. However, we will not discuss the
formulation and evaluation of the registration constraint in
this paper.

2.1. Partial Model
The partial model consists of the acquired surfaces

(called true surfaces) and three types of false surfaces: (1)
occlusion surfaces, (2) hole-boundary surfaces, and (3)
image-boundary surfaces. They are shown in Figure 2.
These false surfaces are added to connect holes caused by
occlusions, missing samples, and range image boundaries,
respectively. These surfaces enclose a volume of known
empty space. The false surfaces provide clues to how the
unknown volumes can be resolved by subsequent scans.

One partial model can be merged to another of the same
environment by performing the union of their known
empty volumes and the union of their true surfaces.

In our implementation, the partial model is represented
using an octree. All surface types and empty space are
represented.

2.2. View Metric
Our view metric is shown in Eq. (1), where ()vh is the

score of view v.
 () () () () () ()dpp,vtpwp,vcvrvfvh

Sp

∫
∈

⋅⋅⋅⋅= (1)

where
• S is the set of all surface points in the current partial

scene model; it includes all true and false surfaces;
• ()vf is 1 if view v is a feasible view, otherwise ()vf

is 0;
• ()vr is 1 if the registration constraint is satisfied at

view v, otherwise ()vr is 0;

Figure 2. Different types of surfaces in a partial model. (a)
True surfaces. (b) Occlusion surfaces (red). (c) Hole-boundary
surfaces (blue). (d) Image-boundary surfaces (green).

(a) (b) (c) (d)

• ()p,vc is 1 if all the sensing constraints between
view v and surface point p are satisfied, otherwise
()p,vc is 0;

• ()pw is the weight or importance value assigned to
the surface type (false or true surface) of p;

• ()p,vt is the improvement to the recorded sampling
density at p if a scan is made from view v.

We use the following definition for ()p,vt .

 () ()() ()()pqD,p,vs,p,vt −= min 0max (2)

where
• ()p,vs is the sampling density at p if it is scanned

from view v; this is referred to as the new scan
sampling density;

• D is the sampling density requirement for all surfaces;
• ()pq is the maximum sampling density at which p

has been scanned previously; this is referred to as the
recorded sampling density; if p is on a false surface,
then ()pq is 0;

2.3. Algorithm Overview
Our strategy to evaluate ()vh for all the views is to

evaluate Eq. (1) in pieces, from least to most expensive to
compute. Figure 3 shows the major steps in the evaluation
of ()vh . We first evaluate ()vf for all views to eliminate
the infeasible views. Next, we use our hierarchical view
evaluation method to evaluate the integral part of Eq. (1)
for all the feasible views. The feasible views are then
ranked by their current scores. Starting from the highest-
score view, the registration constraint function, ()vr , is
evaluated. The first view found to satisfy the constraint is
output as the next best view.

To support the hierarchical view evaluation, surface
voxels in the partial octree scene model are grouped into
planar patches. The planar patches are then ranked in
descending order of importance, so that the most
important ones can be used to evaluate the views first.

Computing feasible views. An octree is used to
represent the feasible view volumes. This feasible view
octree contains a subset of the empty space in the
cumulative partial model, and it is “carved” out using the
positioning constraints.

Extracting planar patches. Surface voxels that have
not reached the required sampling density are grouped into
planar patches. Each patch has the following attributes: (1)
a bounding rectangle, (2) an approximate surface area, (3)
the average recorded sampling density, and (4) the
sampling deficit. The sampling deficit is defined as the
number of samples needed to make the average recorded
sampling density equal to the sampling density
requirement D.

Ranking patches. The most important patch should
have the greatest potential impact on the value of the view
metric in Eq. (1). This leads to the following: the patch
importance value of P = ()Pw × sampling deficit of P,
where P is the patch, and ()Pw is the weight assigned to
the surface type of P, which is the same as the weight
()pw in Eq. (1). The patches are then sorted in

descending order on their patch importance values.

2.4. Hierarchical View Evaluation
Let ()vg be the integral part in Eq. (1), i.e.

 () () () ()dpp,vtpwp,vcvg
Sp

∫
∈

⋅⋅= (3)

The next step of the NBV algorithm is to evaluate ()vg
for all the feasible views. Due to the potentially large area
of surfaces in the partial scene model, a brute-force
approach would be impractical. However, the amount of
computation can actually be reduced by exploiting the
spatial coherences in the sensing constraints and the
sampling quality function.

The idea is that if a constraint is satisfied between a
view v and a surface point p on the partial model, very
likely the same constraint is also satisfied between another
view v′ and p, provided v′ is near to v. The same constraint
is also very likely to be satisfied between v and another
surface point p′ that is near p. We exploit these spatial
coherences using a hierarchical approach. Neighboring
views are first grouped into view volumes, and
neighboring surface points are grouped into surface
patches. The constraint is evaluated between each view
volume V and a patch P. If it is entirely satisfied or
entirely not satisfied between V and P, then the constraint
evaluation is considered completed between every view in
V and every surface point in P. If the constraint is partially
satisfied between V and P, then we subdivide either V or
P, and continue the evaluation on the children.

2.4.1. Formulation

Suppose all the false surfaces and under-sampled true
surfaces in the partial model have been partitioned into N
patches { }N,,i|Pi K1= , then Eq. (3) can be rewritten as

 () ()∑
=

=
N

i
iP,vgvg

1

 (4)

where
Figure 3. The major steps in the NBV algorithm.

terminate

new view

(A) compute
feasible
views

(B) extract
planar
patches

(C) rank
patches

(D) evaluate
views

(E) rank
views

(F) check
registration
constraint

partial
scene model

 () () () ()dpp,vtpwp,vcP,vg
Pp

∫
∈

⋅⋅= (5)

Now, we will focus on evaluating views with respect to
a patch P, instead of with all the surface area in the partial
model. Suppose the values of ()p,vc and ()p,vt remain
constant between a view volume V and a patch P, where

Vv∈ and Pp∈ , then ()P,vg can be computed as

 () () () () () ()PaP,VtPwP,VcP,VgP,vg ⋅⋅⋅== (6)

where
 () ()() ()()PqD,P,Vs,P,Vt −= min 0max (7)

and ()P,Vc , ()Pw and ()P,Vs are similarly defined as
()p,vc , ()pw and ()p,vs ; ()Pa is the patch area of P,

and ()Pq is the average recorded sampling density of P.
In actual fact, the value of ()p,vs does not stay

constant between V and P. However, if every ()p,vs
between V and P is bounded within a small interval, then
we consider it approximately constant. The value of
()p,vs between V and P is considered approximately

constant if

 () ()
() sP,Vs

P,VsP,Vs
ε≤

−

max

minmax (8)

where ()P,Vsmin and ()P,Vsmax are the minimum and
maximum ()p,vs between V and P, respectively. We have
chosen to let () =P,Vs ()P,Vsmin , and compute ()P,Vg
using Eq. (6). If any sensing constraint is found entirely
not satisfied between V and P, then ()P,Vs need not be
computed and () 0=P,Vg .

If ()p,vc is not constant or ()p,vs is not approximately
constant between V and P, then we cannot compute
()P,Vg using Eq. (6). We can subdivide either V or P,

and apply Eq. (6) on the sub-volumes or the sub-patches.
If patch P is subdivided, then

 () () ()kP,VgP,VgP,Vg ++= L1 (9)

where kP,,P K1 are the sub-patches of patch P. If view
volume V is subdivided, then ()P,Vg is replaced with
() ()P,Vg,,P,Vg mK1 , where mV,,V K1 are the sub-

volumes of V. In this case, () =P,vg ()P,Vg i if iVv∈ .
The subdivision stops when ()p,vc is constant and
()p,vs is approximately constant between the view

volume and the patch.

3. Hierarchical View Evaluation Algorithm
The following describes the algorithmic details and

implementation of the hierarchical view evaluation to
evaluate the integral part of the view metric.

It is assumed that the range sensor is monostatic, and all
the samples in a range image are measured from a single

center of projection or viewpoint. This assumption is true
for many commercial mid-range and long-range laser
scanners that use time-of-flight range sensing. Many of
such scanners also have 360° horizontal FOV but limited
vertical FOV. Since we assume that the scanner is always
in the upright orientation, each view of the scanner is
effectively only a 3D position. We use the feasible view
octree to represent the 3D view volumes.

In our implementation, ()p,vc consists of four separate
sensing constraints:
(1) The maximum-range constraint, represented by

()p,vc0 . If the distance between view v and surface
point p is more than the maximum effective range of
the range sensor, then () 00 =p,vc , otherwise
() 10 =p,vc .

(2) The vertical-field-of-view constraint, represented by
()p,vc1 . If the surface point p is outside the vertical

field of view of the scanner at view v, then
() 01 =p,vc , otherwise () 11 =p,vc .

(3) The angle-of-incidence constraint, represented by
()p,vc2 . If the angle between the surface normal

vector at p and the direction vector from p to v is
greater than a threshold angle, then () 02 =p,vc ,
otherwise () 12 =p,vc .

(4) The visibility constraint, represented by ()p,vc3 . If
the line of sight from v to p is occluded, then
() 03 =p,vc , otherwise () 13 =p,vc .

Consequently, the binary function ()p,vc is defined as
() =p,vc ()p,vc0 ()p,vc1 ()p,vc2 ()p,vc3 . Similarly,
()P,Vc is made up of ()P,Vc0 , ()P,Vc1 , ()P,Vc2 , and
()P,Vc3 , where () 1=P,Vci if () 1=p,vci for all Vv∈

and Pp∈ , or () 0=P,Vci if () 0=p,vci for all Vv∈
and Pp∈ , otherwise ()P,Vci is undefined. Intuitively,
when ()P,Vci is undefined, it means that the
corresponding constraint is only partially satisfied
between V and P.

In Figure 4 is a simplified C-like procedure to
evaluate ()P,Vg . Here, input viewcell V is a feasible view
volume. Each input Boolean element C_in[i] is true
if ()P,Vci is already known to be 1, otherwise C_in[i]
is false to indicate that ()P,Vci is unknown. The input
Boolean argument S_const is true if the relative error
of ()P,Vs is known to be bounded by sε . The input
argument S is ()P,Vs if S_const is true. Initially, the
procedure EvaluateView() is called with all
C_in[i]=false and S_const=false.

The function EvaluateConstraint(i,V,P)
evaluates ()P,Vci and returns 0 or 1 to indicate
() 0=P,Vci or () 1=P,Vci , respectively, or returns any

other integer values to indicate ()P,Vci is undefined. The
function EvaluateSamplingDensity(V,P,

&SMin,&SMax) evaluates the minimum and maximum
new scan sampling densities between V and P. The details
of both functions are described in the subsections below.

In our implementation, a viewcell is subdivided into
eight equal sub-viewcells, whereas a patch is subdivided
into four sub-patches by splitting its bounding rectangle
into four equal parts. A viewcell is not subdivided if it has
reached the minimum viewcell size. Similarly, a patch is
not subdivided if it has reached the minimum patch size.
When either a viewcell or a patch is to be subdivided, we
subdivide the patch if its longer side is larger than the
viewcell’s width, otherwise the viewcell is chosen.

It is important to note that when () 1=P,Vci , it is also
true that () 1=k

i P,Vc and () 1=P,Vc m
i for all sub-patches

kP of P and all sub-viewcells mV of V. Therefore, when
() 1=P,Vci , and EvaluateView() is called with the

sub-patches kP or the sub-viewcells mV , there is no need
to recompute ()k

i P,Vc and ()P,Vc m
i . This is similar for

()P,Vs , when its relative error has been determined to be
bounded by sε . This important observation can eliminate
a large amount of computation since once a constraint is
determined to be 0 or 1 for V and P, it needs not be
evaluated anymore for their descendents.

After all patches have been evaluated (or the allotted
view evaluation time is up), a viewcell’s score is not yet
propagated down to its children. Since each child viewcell

contains part of the view volume of its parent viewcell, the
scores in the children should include the parent’s score.
Therefore, the score of each viewcell should be updated
by adding to it the scores of its ancestors. The center point
of each leaf node of the feasible view octree is a candidate
view, to be ranked and tested for the registration
constraint. The first candidate view that satisfies the
registration constraint is chosen as the best view for the
next scan.

3.1. Constraint and Sampling Density Evaluations
This section describes the implementation of

EvaluateConstraint() and EvaluateSampling
Density() to evaluate ()P,Vci and ()P,Vs ,
respectively. The success of the hierarchical view
evaluation depends on how efficiently they can be
evaluated.

In actual fact, EvaluateConstraint(i,V,P)
need not evaluate ()P,Vci precisely, in the sense that
when EvaluateConstraint(i,V,P) returns 1 or 0,
it implies that () 1=P,Vci or () 0=P,Vci , respectively,
but the inverse implication need not be true. When
() 1=P,Vci or () 0=P,Vci , EvaluateConstraint

(i,V,P) may return undefined. This is preferred when it
is expensive to precisely determine whether () 1=P,Vci
or () 0=P,Vci . By returning undefined, the precise
evaluation of the constraint is left to the sub-patches of P
or the sub-viewcells of V, and because of their smaller
sizes, they are more likely to belong to one of the easy
cases. Of course, when ()P,Vci is undefined, Evaluate
Constraint(i,V,P) must return undefined.

For the same purpose, EvaluateSampling
Density(V,P,&SMin,&SMax) need not return the
precise minimum and maximum new scan sampling
densities between V and P. It is allowed to underestimate
the minimum new scan sampling density and overestimate
the maximum new scan sampling density.

The following sections describe the algorithms. There
are certainly some other efficient ways to accomplish
these operations, but these provide examples for the
implementation of new constraints. When V is indivisible
or P is indivisible, where they are treated as points, the
algorithms are generally trivial, so they are not described
here.

3.1.1. Maximum-Range Constraint

Let the maximum effective range of the range sensor be
maxR . When () 10 =P,Vc , the distance between any point

in patch P and any view in V is equal to or less than maxR .
To determine this, four imaginary spheres of radius maxR
are centered at the four corners of the patch’s bounding
rectangle. If the entire viewcell V is inside all the four
spheres, then EvaluateConstraint(0,V,P) returns
1. The viewcell can be approximated with a bounding
sphere to speed up the computation. If the viewcell (or its Figure 4. A procedure to evaluate g(V, P).

EvaluateView(Viewcell *V, Patch *P,
 bool C_in[4], bool S_const, float S)
{
 bool C[4] = { C_in[0], C_in[1], C_in[2], C_in[3] };

 for (int i = 0; i < 4; i++)
 if (!C[i])
 {
 int t = EvaluateConstraint(i, V, P);
 if (t == 0) return;
 if (t == 1) C[i] = true;
 }

 if (!S_const)
 {
 float SMin, SMax;
 EvaluateSamplingDensity(V, P, &SMin, &SMax);

 if ((SMax - SMin) / SMax <= epsilon_S)
 {
 S_const = true;
 S = SMin;
 if (MIN(S, D) - q(P) <= 0) return;
 }
 }

 if (C[0] && C[1] && C[2] && C[3] && S_const)
 {
 V->score += w(P) * (MIN(S, D) - q(P)) * a(P);
 }
 else if (ToSubdividePatchFirst(V, P))
 {
 SubdividePatch(P);
 for (int k = 0; k < P->numChildren; k++)
 EvaluateView(V, P->child[k], C, S_const, S);
 }
 else
 {
 SubdivideViewcell(V);
 for (int m = 0; m < V->numChildren; m++)
 EvaluateView(V->child[m], P, C, S_const, S);
 }
}

bounding sphere) intersects or is inside some but not all
the four spheres, undefined is returned.

When () 00 =P,Vc , the distance between any point in
patch P and any view in V is greater than maxR . This can
be determined as follows. Let C be the imaginary convex
hull of the four spheres of radius maxR that are centered at
the four corners of the patch’s bounding rectangle. If the
viewcell is entirely outside the convex hull C, then
() 00 =P,Vc . By approximating the viewcell with a

sphere, it is not hard to efficiently determine whether the
sphere is outside the convex hull. When the viewcell (or
its bounding sphere) has been determined to be outside the
convex hull, EvaluateConstraint(0,V,P) returns
0. For all other cases, EvaluateConstraint
(0,V,P) returns undefined to indicate that the actual
value of ()P,Vc0 is still uncertain, or that the constraint is
satisfied by only some, but not all, pairs of views and
patch points.

3.1.2. Vertical-Field-of-View Constraint

The scanner is assumed to have a 360° horizontal FOV,
but a limited vertical FOV, as shown in Figure 5. To
determine whether a surface point is within the vertical
FOV, we compute the angle between the y-axis (vertical
axis) and the vector from the view position to the surface
point. If the angle is less than θtop or more than 180°−θbot,
then the surface point is outside the vertical FOV.

When () 01 =P,Vc , every point in patch P is outside the
FOV of every view in V. Figure 6 illustrates a method to
determine whether () 01 =P,Vc . If the directions of all the
four directed lines in Figure 6(a) are in the bottom outside
region of the vertical FOV, then
EvaluateConstraint(1,V,P) returns 0. Similarly,
in Figure 6(b), if the directions of all the four directed
lines are in the top outside region,
EvaluateConstraint(1,V,P) also returns 0. If
some of these directed lines are inside and some are
outside the vertical FOV, then Evaluate
Constraint(1,V,P) returns undefined.

Figure 7 illustrate how to determine whether
() 11 =P,Vc . If all the four corners of the patch’s

bounding rectangle are on the positive sides of both planes
A and B, then the patch is entirely inside the vertical FOV
of every view in the viewcell and the value to be returned

by EvaluateConstraint(1,V,P) is 1. Otherwise,
EvaluateConstraint(1,V,P) returns undefined.

3.1.3. Angle-of-Incidence Constraint

The angle of incidence, φ, of a surface point p from a
view position v is the angle between the surface normal
vector at p and the direction vector from p to v. If this
angle is greater than a threshold angle maxφ , then

() 02 =p,vc , otherwise () 12 =p,vc .
To determine whether () 12 =P,Vc , four open-ended

cones are set up at the four corners of the patch’s
bounding rectangle as shown in Figure 8. The base of each
cone extends infinitely in the direction of the patch’s
normal vector, and the half angle at the apex of each cone
is maxφ . If the viewcell V (or its bounding sphere) is
entirely inside all four cones, then () 12 =P,Vc , and
EvaluateConstraint(2,V,P) returns 1. If the

Figure 5. The vertical field of view of the scanner.

inside

θ top θ top

θ bot θ bot

inside

outside outside

outside outside

view
position

y

Figure 7. Determining whether a patch is entirely inside the
vertical FOV of every view in the viewcell. Planes A and B are
both tangent to the bounding sphere of the viewcell. The
planes’ normal vectors nA and nB are coplanar with the normal
vector nP of the patch. If all the four corners of the patch’s
bounding rectangle are on the positive side (the side where
the normal vector is pointing) of both planes A and B, then
the patch is entirely inside the vertical FOV of every view in
the viewcell.

patch’s
bounding
rectangle

viewcell

bounding
sphere

θ top

θ bot

y

nA nP

nB

plane B

plane A

Figure 6. (a) The four directed lines are tangent to the sphere
and point at the four corners of the patch’s bounding
rectangle. Each directed line touches the sphere at the lowest
point where it is still tangent to the sphere. If the angles
between the y-axis and all the directed lines are larger than
180°−θbot, then the patch is entirely in the bottom outside
region of the vertical FOV of the viewcell. (b) Each of the four
directed lines touches the sphere at the highest point where it
is still tangent to the sphere. If the angles between the y-axis
and all the directed lines are less than θtop, then the patch is
entirely in the top outside region of the vertical FOV of the
viewcell.

(a) (b)

patch’s bounding
rectangle

viewcell

bounding
sphere

viewcell intersects or is inside some but not all four cones,
then EvaluateConstraint(2,V,P) returns
undefined.

To determine whether () 02 =P,Vc , the viewcell V (or
its bounding sphere) must be entirely outside the open-
ended convex hull that encloses all the four cones in
Figure 8. In this case, EvaluateConstraint
(2,V,P) returns 0, otherwise it returns undefined.

3.1.4. Visibility Constraint

Here, we are testing the visibility between a viewcell
and a rectangle-bounded patch.

When () 13 =P,Vc , it implies the viewcell and the patch
are totally visible to each other. To determine that, one has
to ensure that there is no occluder in the shaft between the
viewcell and the patch, which is the 3D volume occupied
by the line segments connecting every point in the
viewcell to every point on the patch. To determine
() 13 =P,Vc , bounding planes are constructed to enclose

the shaft between the viewcell and the patch’s bounding
rectangle. The non-empty-space voxels in the partial
octree model are then tested, in a top-down traversal,
against all the bounding planes to find out if any of the
voxels intersects the volume bounded by the bounding
planes. If not, EvaluateConstraint (3,V,P)
returns 1.

When () 03 =P,Vc , the viewcell and the patch are
totally invisible to, or totally occluded from, each other.
Determining total invisibility or total occlusion between
two extended objects is a difficult problem because the
total occlusion may be caused by multiple occluders that
are not connected to each other [1].

In the absence of an efficient algorithm, we have chosen
to use a probabilistic approach to estimate total occlusion.
The method is illustrated in Figure 9. On the viewcell’s
bounding sphere, the great circle parallel to the patch is
first identified. Then, an equal number of random points is
generated in each quadrant of the disc bounded by the
great circle, and in each quadrant of the patch’s bounding
rectangle. Rays are shot from the random points on the
disc to the points on the patch’s bounding rectangle. 16
random rays are generated in this way. If all the random
rays are occluded, then it is estimated that the patch is
totally occluded from the viewcell, and
EvaluateConstraint(3,V,P) returns 0.
Otherwise, it is assumed that the patch is partially visible

from the viewcell, and EvaluateConstraint
(3,V,P) returns undefined. The hierarchical structure of
the partial octree model is exploited to accelerate the
determination of whether a ray intersects any non-empty-
space voxels.

There is no ill-effect when total occlusion is
erroneously declared as partial visibility, except that it
may cause an unnecessary subdivision of the viewcell or
the patch. On the other hand, it may be undesirable when
partial visibility is erroneously declared as total occlusion,
since the patch will be disregarded. However, since the
method is probabilistic, the “missed” patch might still be
reconsidered in a later acquisition cycles.

3.1.5. New Scan Sampling Density

The function EvaluateSamplingDensity(V,P,
&sMin,&sMax) outputs the minimum and the maximum
new scan sampling densities between V and P. Let α be
the angle interval between two successive samples
acquired by the range scanner, and r be the distance from
the view position v to the surface point p. The surface
sampling density around point p is () rdp,vs αφcos==
where φ is the angle of incidence of the laser beam at
surface point p.

When the values of α and d are fixed, the locus of the
view position is the surface of a sphere with radius
1/(2αd), and the sphere is tangent to the surface at p. All
points inside the sphere have sampling densities greater
than d, and points outside have sampling densities less
than d. We call it the sampling density sphere of p.

Since the function EvaluateSamplingDensity()
is allowed to under-estimate the minimum sampling
density, it is sufficient to construct, for each corner of the
patch’s bounding rectangle, the smallest sampling density
sphere that encloses the viewcell, and let S be the largest
of the four spheres. The minimum sampling density from
the viewcell V to the patch P is estimated as 1/(2αR),
where R is the radius of S. The viewcell may be
approximated by a bounding sphere.

The function EvaluateSamplingDensity() is
allowed to over-estimate the maximum sampling density.
Let p be the point on the patch’s bounding rectangle that is
closest to the viewcell’s bounding sphere. Then, let S be
the largest sampling density sphere of p that touches a
point of the viewcell’s bounding sphere but does not
enclose the bounding sphere. The maximum sampling
density from the viewcell V to the patch P is estimated as

Figure 8. The four open-ended cones set up at the four
corners of the patch’s bounding rectangle. nP is the normal
vector of the patch.

patch’s
bounding
rectangle

nP nP

nP nP

Figure 9. Generating random rays from the viewcell’s
bounding sphere to the patch’s bounding rectangle to
estimate total occlusion.

patch’s
bounding
rectangle

great circle on the bounding sphere
that is parallel to the patch

rays

1/(2αR), where R is the radius of S.

4. Results
Figure 10(a) shows the feasible view volumes

computed for a partial model of a large living room. These
feasible view volumes are then evaluated with a patch
shown in magenta color in Figure 10(b). The resulting
best 500 viewcells are shown. The minimum viewcell size
used is 4×4×4 inch3, and the minimum patch size is 2×2
inch2. A brute-force method took 259.6 seconds to
evaluate the feasible views with the patch, while our
hierarchical algorithm took just 11.9 seconds—a
difference of more than 20 times. Typical speedups for
indoor scenes are between 10 to 100 times. Generally,
larger and simpler scenes, and smaller minimum viewcell
and minimum patch sizes result in larger relative
speedups.

We have tested our NBV planning system in
simulations and on real scenes. The scanners used in both
cases have only 3D translational poses, and have full
horizontal FOVs but limited vertical FOVs. The simulated
scanner has pose errors, and produces range data with
range errors, drop-outs and outliers. Figure 1(a) shows the
computed view plan for acquiring scans of a synthetic
living room. The acquisition was manually terminated
after the eighth scans. Figure 1(b)&(c) show the polygonal
models reconstructed from the eight range images. Every
cycle, the hierarchical view evaluation was able to
evaluate almost all the patches with all the feasible views
within the allotted two minutes.

Figure 11 shows the acquisition of a real building
interior using a DeltaSphere-3000 laser scanner. The
acquisition process was manually terminated after the fifth
scan. Figure 11(a) shows the view plan. Every cycle, more
than 75% of the patch areas can be evaluated with all the
feasible views. This experiment shows that our NBV

planning system is robust for real-world applications.

5. Conclusion
Our hierarchical view evaluation method has made

exhaustive 3D view evaluation for greedy NBV planning
practical. This is mainly due to the evaluation of the
sensing constraints and surface sampling densities
between a view volume and a surface patch, unlike
previous NBV algorithms, which simply evaluate between
a single view point and a single surface point at a time.
We have presented efficient algorithms to evaluate the
individual sensing constraints and sampling quality
between view volumes and surface patches. The
descriptions also serve as examples for the design of
efficient algorithms for new acquisition constraints.

Acknowledgements
We thank John Thomas, Herman Towles, Lars Nyland,

and 3rdTech Inc. for their technical help, and thank Andy
Wilson and the UNC Walkthrough Group for the beautiful
house model. This work is supported by NSF grant
number ACI-0205425.

References
[1] Daniel Cohen-Or, Yiorgos Chrysanthou, Claudio Silva, and

Frédo Durand. A Survey of Visibility for Walkthrough
Applications. IEEE Transaction on Visualization and
Computer Graphics, 9(3):412–431, July 2003.

[2] C. I. Connolly. The Determination of Next Best Views.
Proceedings of IEEE International Conference on Robotics
and Automation, pp. 432–435, 1985.

[3] H. González-Baños, E. Mao, J.-C. Latombe, T. M. Murali
and A. Efrat. Planning Robot Motion Strategies for
Efficient Model Construction. Proceedings of International
Symposium on Robotics Research, pp. 345–352, 1999.

[4] Pat Hanrahan, David Salzman, Larry Aupperle. A Rapid
Hierarchical Radiosity Algorithm. ACM SIGGRAPH
Computer Graphics (Proceedings of SIGGRAPH '91),
25(4):197–206, July 1991.

[5] Kok-Lim Low and Anselmo Lastra. An Adaptive
Hierarchical Next-Best-View Algorithm for 3D
Reconstruction of Indoor Scenes. Technical Report TR06-
003, Department of Computer Science, University of North
Carolina at Chapel Hill, January 2006.

[6] N. A. Massios and R. B. Fisher. A Best Next View
Selection Algorithm Incorporating a Quality Criterion.
Proceedings of British Machine Vision Conference, 1998.

[7] R. Pito. A Sensor Based Solution to the Next Best View
Problem. Proceedings of IEEE International Conference on
Pattern Recognition, pp. 941–945, 1996.

[8] J. M. Sanchiz and R. B. Fisher. A Next-Best-View
Algorithm for 3D Scene Recovery with 5 Degrees of
Freedom. Proceedings of British Machine Vision
Conference, 1999.

Figure 11. (a) The view plan computed for a real scene. (b) The
final partial model and the feasible view volume.

(b) (a)

1
2

3

4
5

Figure 10. (a) The feasible view volumes to be evaluated. (b)
The results of evaluating the patch (magenta) with the feasible
view volumes. The best 500 viewcells are shown.

(b)(a)

