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Abstract. This paper presents an overview of our research project on digital preservation of cultural heritage objects
and digital restoration of the original appearance of these objects. As an example of these objects, this project focuses on
the preservation and restoration of the Great Buddhas. These are relatively large objects existing outdoors and providing
various technical challenges. Geometric models of the great Buddhas are digitally achieved through a pipeline, consisting
of acquiring data, aligning multiple range images, and merging these images. We have developed two alignment
algorithms: a rapid simultaneous algorithm, based on graphics hardware, for quick data checking on site, and a parallel
alignment algorithm, based on a PC cluster, for precise adjustment at the university. We have also designed a parallel
voxel-based merging algorithm for connecting all aligned range images. On the geometric models created, we aligned
texture images acquired from color cameras. We also developed two texture mapping methods. In an attempt to restore
the original appearance of historical objects, we have synthesized several buildings and statues using scanned data and
a literature survey with advice from experts.
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1. Introduction

Currently, a large number of cultural heritage objects
around the world are deteriorating or being destroyed
because of natural weathering, disasters, and civil wars.
Among them, Japanese cultural heritage objects, in par-
ticular, are vulnerable to fires and other natural disas-
ters because most of them were constructed of wood and
paper.

One of the best ways to prevent these objects from loss
and deterioration is to digitally preserve them. Digital
data of heritage objects can be obtained by using mod-
ern computer vision techniques. Once these data have
been acquired, they can be preserved permanently, and
then safely passed down to future generations. In addi-
tion, such digital data can be used for many applications
that aim to restore real objects through digital simulation
and to plan restoration projects through precise measures
given by such digital models. And by creating multi-
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media content from digital data, a user can view digital
contents through the Internet from anywhere in the world,
without moving the objects or visiting the sites.

One of the origins of this line of research is Kanade’s
virtualized reality project (Kanade et al., 1997). The basic
idea of this project was to create 3D virtual reality mod-
els through observation of the real objects. Kanade and
his students constructed an experimental room equipped
with multiple TV cameras, which were focused in the
center of the room. By observing some event at the center
of the room, such as a player playing basketball, they ob-
tained sequences of 2D images captured through synchro-
nized TV cameras. By applying a multi-baseline stereo
algorithm or its variation to these image sequences, they
created a series of 3D models of an object, a moving
3D model. By combining this moving 3D model with a
background 3D model and rendering the resulting syn-
thesized 3D model, they generated a series of 2D images
from many directions. This line of research has been ex-
tensively explored (Borovik and Davis, 2000; Kutulakos
and Seitz, 2000; Kitahara and Ohta, 2004; Matsuyama
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Figure 1. Three steps in geometric modeling.

et al., 2004) and a couple of representative results are
included in this special issue.

Another line of research has been directed toward mod-
eling of various cultural heritage objects in a very pre-
cise manner, using laser range sensors (Ikeuchi and Sato,
2001). Recently, technologies of laser sensing have dras-
tically advanced, and laser range sensors provide very
accurate 3D range images of an object. However, those
range images, given by a range sensor, are partial mesh
models of an entire object, obtained from arbitrary di-
rections. Thus, the research issues include how to align,
or to determine relative relations, among such partial
meshes, and how to merge these aligned partial mesh
models into a unified mesh model of the object. Represen-
tative examples include Stanford University’s Michelan-
gelo Project (Levoy et al., 2000), IBM’s Pieta Project
(Wasserman, 2003), and Columbia University’s French
cathedral project (Stamos and Allen, 2001), to name a
few.

We have been working to develop digital archival
methods by using laser range sensors (Ikeuchi and Sato,
2001). Our project has a number of unique features;
among them is its focus on digitizing large outdoor ob-
jects such as the Kamakura great Buddha and Cambodia’s
Bayon temple. These large-scale objects present several
challenges in processing range data into a unified mesh
model. Our project emphasizes not only geometric mod-
eling but also photometric and environmental modeling,
particularly for outdoor objects.

The remainder of this paper is organized as follows.
Section 2 describes the outline of the geometric pipeline
developed, a rapid alignment algorithm based on graphics
hardware, a parallel simultaneous alignment algorithm
based on a PC cluster, and a parallel voxel-based merg-
ing algorithm, solving the issues given under digitizing

large objects. Section 3 describes methods to align ob-
served textures from a digital camera with range data
for texturing large outdoor objects. Section 4 reports our
efforts to restore the original appearance of these ob-
jects using acquired digital data and a literature survey.
Section 5 summarizes this paper.

2. Geometric Modeling

2.1. Overview

Figure 1 shows an overview of three steps in geomet-
ric modeling: data acquisition, alignment, and merging.
Several computer vision techniques, such as traditional
shape-from-X and binocular stereo, or modern range sen-
sors, provide 3D data points. In this paper, we mainly uti-
lize laser range sensors as the input device of the 3D data
points. These 3D data are represented as a set of 3D data
points with connecting triangular arcs. This data repre-
sentation is referred to as a (triangular) mesh model of an
object. By repeating the data acquisition process so as to
cover the entire object’s surface, we have a set of partial
mesh models, overlapping each other and covering the
entire object surface as the combination of those partial
mesh models.

The second step in geometric modeling is to align these
partial mesh models. Since each sensor is located at an ar-
bitrary position on data acquisition, we have to determine
relative relations of these partial mesh models, referred
to as alignment, by considering resemblances in the data
set. When we handle a large object, even if we can as-
sume that the sensor itself maintains the same degree
of data accuracy as one for a smaller object, each scan
covers a smaller portion of the object; many scans are
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necessary to cover the entire surface of the object. As the
result, a long alignment sequence is formed. It is impor-
tant to avoid accumulation of errors along this sequence
of alignment.

The third step is to integrate the aligned multiple mesh
models into a complete mesh model, representing an en-
tire surface of an object. This step is referred to as ‘merg-
ing.’ The procedure can be considered as determining
one surface position from multiple overlapping surface
observations. In the merging procedure, it is important to
make the integration framework robust against any noise
that may occur when scanning the range images or that
may be inherited from the registration procedure.

2.2. Alignment

The alignment step determines relative relations among
partial mesh models. We have developed two alignment
algorithms: a rapid alignment algorithm based on graph-
ics hardware, and a parallel simultaneous alignment algo-
rithm based on a PC cluster. The former is mainly used on
site for quick data checking and sensor planning, while
the latter is used at the university to determine the precise
adjustment of the entire data set. Both algorithms are de-
signed as simultaneous alignment to avoid accumulation
of errors for handling large objects.

2.2.1. A Rapid Alignment Based on Graphics Hard-
ware. Our rapid algorithm employs points and planes
to evaluate relative distance as the Chen and Medioni
(1992) and Gagnon et al. (1994) methods. Scanning a
large architectural object requires using different types
of range sensors, due to complex scanning conditions at
sites, whose resolutions may be different from each other.
An alignment algorithm, based on point correspondence
such as ICP (Besl and McKay, 1992), does not work well
on such range data due to inequality in point resolutions.
We can mitigate this situation with an algorithm based
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Figure 2. Search procedure.

on point-face correspondence, because it creates virtual
points on face patches, and sets up correspondence be-
tween the real points and virtual points, even if there is
unbalance in point distributions.

Our algorithm uses an M-estimator, in particular, the
Lorentzian function, as the error measure, to avoid the
effects from the outliers (Wheeler and Ikeuchi, 1995). It
is well known that the L-2 norm is susceptive to noise.
Surfaces of cultural heritage objects are often covered by
foreign materials such as molls or water. Sometimes re-
turned range values are quite noisy from such surfaces.
The M-estimator effectively removes outliers. Since we
prefer a smooth differentiable function for effective min-
imization process, we chose the Lorentian function as the
evaluation function.

In order to increase computational efficiency, our al-
gorithm is designed to utilize graphics processing hard-
ware. The corresponding pairs are searched along the line
of sight for the usage of the graphics hardware. Here, the
line of sight is defined as the optical axis of a range sensor.
While this does not guarantee that all the corresponding
pairs are correct, using the M-estimator removes the ef-
fect of such mismatching. It is also true that after several
iterations of the minimization process, the process even-
tually converges into the correct corresponding pairs. But
for the sake of rapid computation, we decided to use the
line of sight searching method.

Let us denote one mesh as the model mesh and its cor-
responding mesh as the scene mesh. One vertex in the
model mesh is depicted as the point in Fig. 2. Each trian-
gular mesh in the scene model is assigned one particular
color, and then the color map is depicted on an index
plane using the painting capability of graphics hardware.
An extension of the line of sight, from a vertex of the
model mesh, crosses a triangular mesh of the scene mesh
and creates the intersecting point. This operation is im-
plemented using the Z -buffer capability of the graphics
hardware. In order to eliminate false correspondences, if
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the distance between the vertex and the corresponding
point is larger than a certain threshold value, the cor-
respondence is removed. This correspondence search is
computed for every combination of mesh models.

The error measure between corresponding points is the
cosine distance between the point and the plane. Let the
vertex of the model mesh and the corresponding crossing
point in the scene mesh be �x and �y, respectively. The
error measure between the pairs is written as

�n · (�y − �x) (1)

where �n is the normal of �x defined around the vertex.
The transformation matrices of the model and scene

meshes are computed so that this error measure is mini-
mized. The error evaluation function is rewritten as

RM �n · {(RS �y + �tS) − (RM �x + �tM )} (2)

Here, the rotation matrix and the translation vector of the
model and scene mesh are RM , Rs , �tM ,�ts respectively.
The distance between the model and the scene mesh is
expressed as

ε2 = min
R,t

∑
s �=m,k

(RM �n · {(RS �y + �tS) − (RM �x + �tM )})2

(3)

If it is assumed that the angles of rotation are small,
the rotation matrix R can be approximated as

R =

⎛⎜⎝ 1 −c3 c2

c3 1 −c1

−c2 c1 1

⎞⎟⎠ (4)

The translation vector is expressed as

t = ( tx ty tz ) (5)

After some algebraic manipulations (Oishi et al., 2003),
Eq. (3) is rewritten as

ε2 = min
�δ

∑
m �=s,k

‖Amsk �� − γmsk‖2
(6)

Here, m, s, k denotes one model mesh, one scene mesh,
and one corresponding pair, respectively.

γmsk = �nmk · (�xmk − −→ymsk) (7)

Amsk =
⎛⎝0 . . . 0︸ ︷︷ ︸

6m×1

Cmsk︸︷︷︸
6×1

0 . . . 0︸ ︷︷ ︸
6(N−m−1)×1

⎞⎠
+

⎛⎝0 . . . 0︸ ︷︷ ︸
6s×1

−Cmsk︸ ︷︷ ︸
6×1

0 . . . 0︸ ︷︷ ︸
6(M−s−1)×1

⎞⎠ (8)

Cmsk =
(−→nmk × −→ymsk

−−→nmk

)
(9)

�� = (δ0 . . . δN−1) (10)

δm = (c1m c2m c3m txm tym tzm) (11)

where the number of range images is N. By (6) �� is
written as

�� =
( ∑

m �=s,k

AT
msk Amsk

)−1 ∑
m �=s,k

AT
mskγmsk (12)

To avoid accumulation of errors, we have developed a
simultaneous alignment method. Traditional sequential
methods (Besl and McKay, 1992; Chen and Medioni,
1992; Rusinkiewicz and Levoy, 2001) such as the Iter-
ative Closest Point (ICP) algorithm align these meshes
one by one, and progressively align a new partial mesh
with previously aligned meshes. If a few partial meshes
can cover the entire surface of an object, the accumu-
lation of alignment errors is relatively small and can be
ignored; sequential alignment works well for a small ob-
ject. However, for large objects, sometimes, we may need
more than a hundred partial mesh models. In such cases,
the error accumulation would be very large, if we employ
sequential alignment. Thus, we align all partial meshes so
as to reduce the errors among all the pairs simultaneously
in Eq. (6).

We have implemented a simultaneous alignment al-
gorithm, and verified the effectiveness of the algorithm,
with respect to the pair-wise alignment algorithm. Since
we need a true value of the aligned result, we gener-
ate synthesized 49 data sets by segmenting a whole 3D
mesh model of the Great Buddha of Kamakura with small
overlapping boundaries. We add a Gaussian noise, whose
standard deviation is 3 mm with 1cm cut-off. This level of
noise is typical in the data obtained by our sensors. These
data were perturbed along a random direction to simulate
initial alignment errors in the manual alignment process.
Figure 3 shows synthesized range data. The simultane-
ous and the pair-wise alignment programs are applied to
these data. Figure 4 shows the resulting converging pro-
cess. While the simultaneous algorithm provides a con-
stant error along the number of data sets, the pair-wise
algorithm accumulates errors from the true value along
the number of data sets processed in the horizontal axis.

2.2.2. Parallel Alignment Based on a PC Cluster. The
rapid simultaneous alignment algorithm, described in the
previous section, is mainly utilized for rough alignment of
the data acquired daily at the site. Although the algorithm
employs simultaneous alignment for accuracy, the algo-
rithm, designed for a single notebook type PC, without
considering the aspect of the memory capability, may
cause memory overflow for large-scale data of the entire
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Figure 3. Synthesized range data. (a) Original whole mesh model of Kamakura Buddha, (b) Synthesized range data with initial perturbation and

Gaussian noise to simulate alignment error amd simulate sensor errors, respectively.
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Figure 4. Converged result.

target. We have designed a parallel alignment algorithm
based on a PC cluster for large-scale alignment of the
entire data set.

2.2.2.1. Overview of the Parallel Algorithm. The simul-
taneous alignment algorithm is applied in the following
steps:

1. To compute, for all pairs of partial meshes,

(a) to search all correspondence of vertices
(b) to evaluate error terms of all correspondence pairs

2. To compute transformation matrices of all pairs for
immunizing all errors

3. To iterate steps 1 and 2 until the termination condition
is satisfied

Among these operations, 1(a) correspondence search
and 1(b) error evaluation require a large amount of com-
putational time. They also require data space to read
in data of all vertices. On the other hand, these two
operations can be conducted independently in each pair
of partial mesh models. Computation of transformation
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Figure 5. Data dependency relations.

in step 2 does not require much computational time
or memory space. Thus, we designed correspondence
search and error evaluation in step 1 to be conducted
in slave PCs in a PC cluster, and computation of trans-
formation in step 2 to be conducted in a master PC.

2.2.2.2. Graph Simplification. We remove redundant or
weak data dependency relations of partial mesh models
for the sake of efficiency in parallel computation. Fig-
ure 5 shows overlapping data-dependency relations. Each
node in the graph represents one mesh model, and each
arc represents an overlapping dependency relation among
mesh models. The left graph shows the original state in
which all the mesh models overlap each other. If we con-
duct alignment of one mesh as is, we would have to read
into a PC’s memory all the remaining mesh models. By
removing some of redundant overlapping dependencies,
we can transform the original graph into a simpler one
as shown in the right figure. By using this simpler rela-
tional graph, we only need adjacent data with respect to
a vertex for alignment of a vertex, and we can reduce the
necessary memory space.

We will remove the dependency relation between the
two mesh models if any of the mesh pairs does not satisfy
any one of the following three conditions:

1. The Bounding-Boxes of Two Range Images Overlap
Each Other. A sufficient overlapped region exists be-
tween two mesh models, provided that initial positions
of two meshes are accurately estimated.

2. The Angle θ Between Ray Directions of Two Mesh
Models is Less Than a Threshold Value. Two observa-
tion directions of the meshes are relatively near. This
condition also reduces the possibility of false corre-
spondences between front- and backside meshes, by
setting the threshold, as θ = 90◦. We could use a more
accurately estimated value for this threshold, but since
this value is used as a constraint to reduce the possi-
bility described above, we use this θ = 90◦ for the
sake of safety and simplicity.

3. Two Range Images are Adjacent to Each Other.
This condition removes non-adjacent relations se-
quentially. For example, as shown in Fig. 6, if the
length from I0 to I3 is larger than the length from I1
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Figure 6. Non-adjacency relation.

to I3 (l01 < l03), the arc between I0 and I3 is removed.
Here, the distance is evaluated from the center of a
mesh model.

2.2.2.3. Parallelization by Graph Partitioning Algo-
rithms. The problem of load balancing with a mini-
mum amount of required memory is an NP-hard prob-
lem. It is difficult to obtain an optimal solution in a rea-
sonable time. Alternatively, we employ an approxima-
tion method to solve this problem by applying heuristic
graph-partitioning algorithms.
Pair-Node Hyper-Graph. First, we define the pair-node
hyper-graph. The left image of Fig. 7 shows a graph that
expresses the relations of partial meshes In . The graph
is converted to the hyper-graph in which each node ex-
presses pairs Pi, j of two partial meshes i and j, and net-
works represent meshes, as shown in the right figure of
Fig. 7. We refer to it as a “pair-node hyper-graph.”

The weight of the network W net
i is defined as the num-

ber of vertices vi in the partial mesh, i ; the weight W node
i, j

of the node is defined as the sum of the number of vertices
vi and v j .

W net
i = vi (13)

W node
i, j = vi + v j (14)

A pair-node hyper-graph is partitioned so that the sum
of the node weights in each subset is roughly equal for
computational load balance, and summation of all the
net-weight in each subset is minimized for efficiency of
memory usage.

It is necessary to consider both node weights and net
weights in optimization, even though they are related to
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each other, and using them seems to be redundant. Re-
ducing the computational load requires each sub-group to
have equal values in the node-weights. On the other hand,
even when a hyper-graph is portioned equally in terms of
node-weight, depending on the method, each sub-group
has different memory usage. Let us consider the exam-
ple, shown in Fig. 7, to divide the hyper-graph into two
sub-graphs. For the sake of simplicity, we assume that
all node-weights and net-weights are the same in all the
nodes and all the networks. When the hyper-graph is di-
vided into two groups, {P0,2, P1,3, P2,3} and {P0,1, P0,3},
the node balance is achieved in two sub-graphs. The first
sub-graph needs to load in all the data {I0, I1, I2, I3}.
The maximum value in sums of net-weights is four
units. When the hyper-graph is divided into two groups,
{P0,2, P0,3, P2,3} and {P1,3, P0,1}, each sub-group needs
only to load in three data sets. The maximum value in the
sum of net-weights is three units. In these two cases, both
portioning methods have roughly equal load balance in
terms of node-weights, but have different memory usage.
When we divide the graph by considering only memory
usage, it is not guaranteed that each sub-graph has equal
load balance. Thus, we will consider both node-weights
and net-weights in the optimization procedure.
Initial Partitioning. The pair-node hyper-graph is ini-
tially partitioned so that the sum of the node-weights in
each subset is roughly equal. We used the random seeded
breadth first search method for initial partitioning. Since
the sum of net-weight included in each subset is greatly
influenced by the selection of the seed, we created initial
partitions for multiple seeds and adopted the partition in
which the sum of net-weight included is minimized. In
order to obtain k-way partitions, the recursive bisection
method is used. After logk phases, the hyper-graph is
partitioned into k sub-graphs.
Refinement of the Partition. The partitioned graphs are
refined so that the sum of net-weights included in each
subset graph is minimized. We improved the KLFM al-
gorithm, which is an iterative refinement algorithm. The
algorithm moves a node from one partition to another so
that the operation causes the greatest improvement in the
cut-size. While the original KLFM algorithm moves a
node at one iteration, our method moves a net at one iter-
ation. That is, all nodes connected to the net are moved
at the same time. For k-way refinement, the subset graph
of which the sum of net-weight is maximum weight is
computed with all other subsets. The refinement process
is reiterated until there is no more improvement.

The net gain is computed for all nets along the bound-
ary of two subset graphs. Now, we consider the kth net
at the boundary between the subset graphs, Gi and G j .
In the case the net N(i, j),k is moved to Gi , the gain gi, j,k

is expressed using two values, Dint
i, j,k , the variation of the

sum of net weight of Gi and Dext
i, j,k , the variation of the

sum of net-weight of G j as

gi, j,k = Dext
i, j,k − Dint

i, j,k . (15)

On the other hand, in the case where N(i, j),k is moved to
G j , the gain g j,i,k is expressed in the similar way as

g j,i,k = Dext
j,i,k − Dint

j,i,k . (16)

The two lists, Li , L j , consisting of all gains of the all nets
at the boundary, are created. The list with the larger sum
of the total node-weight (computational time) is selected
for consideration of the movement, and the components,
candidate nets in the list, are processed one by one in de-
scending order of the gain. At each movement of one net,
all nets and nodes concerned with the net are updated, and
the moved net is locked in order to avoid thrashing. The
sum of the net-weight (memory usage) and the moved
net’s ID are also recorded at each movement. After all
nets are moved, the minimum value of the sum of the
net-weight (memory usage) is compared with the value
at the starting stage. If the minimum value is smaller than
that of the starting state, the corresponding movement-
sequence is performed, and the next iteration begins. If
not, the refinement process is terminated. See Fig. 8 for
the flow chart of the refinement process.
Implementation. We implemented our method as a mas-
ter/slave system. The procedures of the computation is
are as follows

Algorithm Procedure of Parallel Alignment
/∗ Check correspondence of all pairs of the range images

∗/
Create-Pair-Table;
/∗ Create the lists of the files for each processor ∗/

Create-File-Lists:
while(error > threshold){
/∗ Slave Process∗/
for(i = 0; i < nImage; ++i)
for(j = 0; j < nImage; ++j)

Whether-i-and-j-overlap-each-other?{
Correspondence-Search(i, j);
Calculation-Each-Matrix(i, j);
}

/∗ Master Process ∗/
CalculationMatrix(all);
/∗ Master & Slave process ∗/

UpdatePosition;
}

The master program holds bounding-boxes and transfor-
mation matrices from initial position to current position
of all partial meshes, checks all pairs, and creates the
list of computations for each node. The pairs list for
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Create two lists (Li, Lj) for gains (gi,j,k, gj,i,k)

Sort these lists in descending order by gains

Select one list by following condition

if Σ Σ( Wnode
i > Wnode

j ) : select Li

else : select Lj

Consider Graphs Gi and Gj

Move an unfixed net which contains minimum gain

Update the neighbors’ gains

Fix the moved net

Terminated?
No

Updated?
Yes

Finish

Yes
No

Start

Figure 8. Flow chart of refinement process.

each slave is computed at the beginning of the entire
iteration process based on the relational table using the
algorithm described above. The slave programs receive
the lists and read the required range images into mem-
ory. Then, each slave computes the matrices AT

msk Amsk

and AT
mskγmsk in (12) independently, and sends the matri-

ces to the master program. The master program com-
putes the transformation matrices of all range images
from the matrices AT

msk Amsk and AT
mskγmsk received from

the slave programs. The results are applied to all mas-
ter/slave data. Each iteration process is continued until
the error falls below a certain threshold value. Equation
(12) is evaluated in all the data. The matrix is very sparse;
the ICCG provides computation 10 times faster than usual
SVD.

2.3. Merging

Once we can determine relative configurations among all
the mesh models through the alignment operations, we
can connect these aligned mesh models into a unified
mesh model representing an entire object’s surface. This
operation is referred to as merging. One of the simplest
methods is to directly connect each mesh, and remove
overlapping meshes. This direct method discards mul-
tiple observations of overlapping regions, and creates a
sharp jump around the connecting boundaries. In order
to avoid these shortcomings, we employ a voxel-based
merging algorithm.

2.3.1. Voxel-Based Merging Algorithm. After all par-
tial mesh models have been aligned, a volumetric view-
merging algorithm generates a consensus mesh of the
object from them. Our method, first, calculates a volu-
metric implicit-surface representation, where each voxel
in the volumetric space has an estimated signed distance
from the position of the estimated consensus mesh. Un-

like previous techniques based on implicit-surface rep-
resentations, our method estimates the signed distance
to the object’s surface by determining a consensus of lo-
cally coherent observations of the surface (Wheeler et al.,
1998; Sagawa et al., 2001, 2003; Sagawa and Ikeuchi,
2003). This consensus method is effective, in particular,
for noisy data, often provided at the occluding bound-
aries.

We utilize octrees to represent volumetric implicit
surfaces, thereby effectively reducing the computation
and memory requirements of the volumetric representa-
tion without sacrificing accuracy of the resulting surface.
Then, this signed distance representation is converted to
a surface mesh by using a variant of the marching-cubes
algorithm (Curless and Levoy, 1996).

We originally designed software for a single PC. How-
ever, because recent input data is unpredictably huge, we
decided to build a PC cluster to run this merging software;
the cluster parallel-processes the merging algorithm to
save computation time and utilize the large memory space
of many PCs (Sagawa and Ikeuchi, 2005). We produced
one integrated digital of the Great Buddha of Kamakura
and another of the Bayon Temple in Cambodia with this
software.

2.3.2. Results of Merging Process. We have digitally
archived Japanese Buddhas, including Asuka (7th cen-
tury), Kamakura (13th century), and Nara (17th century).
Here, the great Buddha of Nara, although the name indi-
cates the Nara period of the 8th century, was burned, and
the current one was rebuilt in the 17th century. Thus, it is
the newest among the three. It is interesting to note that
the faces of the Buddhas have become wider as the time
passed, as shown in Fig. 9.

2.4. Analysis of Geometric Modeling

We extended this effort toward foreign cultural her-
itage objects and obtained all 173 Buddha faces of
the Bayon temple in the Angkor ruin in Cambodia.
Eighteen of these faces are shown in Fig. 10. Ac-
cording to the JSA (Japanese Government Team for
Safeguarding Angkor) research, those faces can be clas-
sified into three categories: Deva, Devata, and Ashura.
See Fig. 11 for examples. However, some of them are

Table 1. 3D data of great Buddha.

Height Number Number

(m) of vertices of meshes

Asuka (7th Century) 2.7 1.5 Million 2.9 Million

Kamakura (13th Century) 13 5.0 Million 9.8 Million

Nara (17th Century) 15 36.3 Million 69.1 Million
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Figure 9. Three great Buddha: Asuka (7th century), Kamakura (13th century), and Nara (17th century) Buddha.

Figure 10. Bayon face library. 18 faces out of 153 faces in Bayon temple in Angkor ruin, Cambodia.

quite difficult to classify due to parallel work by different
craftsmen and different techniques employed. Others
have deteriorated due to weathering. And still others are
unfinished.

In order to classify these faces in an accurate manner,
we examined the 173 faces using cluster analysis. First,
we converted all the faces into normalized depth images,
defined a standard face among 173 faces, and adjusted
all the remaining faces onto this standard face using a
classification procedure. We extracted three key points:
a pair of inner corners of the eyes, and the middle point
between the mouth and the nose. We obtained translation,
rotation, and scaling parameters to minimize the differ-
ences between two sets of key points of the standard and
current faces. We applied those parameters to the range

data of the current face, and obtained a 64 by 64 range
image of the current face. We conducted two types of
analyses: supervised and unsupervised. Details are given
in Kamakura et al. (2005).

2.4.1. Supervised Analysis: Linear Discrimination
Function. The purpose of supervised analysis is to clar-
ify the differences among the given classes. JSA has al-
ready classified all faces into three types based on subjec-
tive evaluations by an artist. Through such a supervised
analysis, we can verify correctness of the process, and
then objectively evaluate the differences using statistical
analysis methods.

In this paper, we use a linear function f (x) = n ·x + d
as the classification function. The dimension of the
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Figure 11. Ashura, Dave, and Devata. The black parts in the figures indicate areas where data is missing due to occlusion.
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Figure 12. Linear discrimination function.

sample space, that is, image size (=64 × 64, in this
case), is much greater than the number of samples;
there are only 173 faces in the Bayon Temple. It is pre-
ferred that the dimension and parameters of the function
are small in order to prevent a so-called “over-fitting”
problem.

Roughly speaking, the parameters of the function n, d
can be determined by maximizing SB/ST , where SB and
ST are intraclass and interclass variances, respectively.
Because the matrix S is not full-rank matrix, we solve the
equation using the singular value decomposition (SVD)
method while minimizing |n|. Figure 10 illustrates the
result of the analysis. The graph is obtained by projecting

all vector points of faces on the 2D flat surface that is
determined by two linear discriminant functions in order
to clearly express the classification result.

The former discriminant function classifies them into
Devata (female god) and Deva (male god) with separate
planes corresponding to the y-axis in Fig. 12. The right
side area is a female area, and the left side area is a male
area. Although Asura data (male devil) are not used for
training the function, almost all of Asura data are in the
male area.

The second function classifies them into Deva (god)
and Asura (devil) with separate planes corresponding
to the diagonal line. The upper side area of the diagonal
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Figure 13. Similarity group.

line is a god area and the lower side is a devil area.
Almost all of Devata (female god) are also in the god
area, even though we did not use Devata data for training
this function.

2.4.2. Cluster Analysis. The purpose of unsupervised
analysis is to discover new knowledge through classifi-
cation of the faces without any a priori standards. Cluster
analysis provides us with some classification of samples
according to distances among them. We calculate the dis-
tance based on the Ward method, and define the distance
as the Euclidean distance in the distance image space.
We employ agglomerative hierarchical cluster analysis.
This analysis begins with each sample being considered
as one cluster and then proceeds to combine the nearest
two clusters until all samples belong to one cluster. By
conducting this cluster analysis, we observed spatial
resemblance groups among faces, as shown in Fig. 13.
We determined that there were four or five independent
worker groups working on these faces in a parallel
manner.

3. Photometric Modeling: Texturing

Surface color distribution is important in representing the
appearance of cultural heritage objects. Some clay statues
still retain the surface colors that were painted at the time
the statue was originally made. For such types of cultural

properties, we have to archive color information as well as
geometric information. For this purpose, we have devel-
oped two kinds of texturing methods: calibration-based
and reflectance edge-based methods.

3.1. Calibration-Based Method

The main issue in texturing is how to determine the rela-
tionship between image sensors and geometrical sensors.
When short-distance range sensors can be used, as shown
in Fig. 14, the most promising method is to calibrate the
geometrical relationship between the image sensor and
the range sensor before scanning.

Figure 14. Calibration method.
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Figure 15. Synthesized Komoku-ten. (a) Picture of Komoku-ten, (b) Geometric model, and (c) Synthesized result under a new lighting condition

generated using the texturing result.

Assume that the coordinate system of the image sen-
sor is (xc, yc) and the corresponding point in the range
image is (X, Y, Z); the relationship between them can be
described as:

⎡⎣ hxc

hyc

h

⎤⎦ = c34

⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦
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⎡⎣ ku −ku cot θ u0

0 kv/ sin θ v0

0 0 1

⎤⎦ ⎡⎣ f
0

0

0 0 0

f 0 0

0 1 0

⎤⎦

×
[

R33 t
0 1

] ⎡⎢⎢⎣
X
Y
Z
1

⎤⎥⎥⎦ (17)

The matrix C34 represents the relationship between the
image and the world coordinate, and it can be calculated

by scanning the calibration box. Inversely, when we map
the texture images onto the geometrical triangular mesh−→
Xn = {(xn, yn, zn|1 ≤ n ≤ 3}, the corresponding points
in image coordinate −→xc = {xc, yc} can be easily calcu-
lated as:

xc = c11 Xn + c12Yn + c13 Zn + c14

c31 Xn + c32Yn + c33 Zn + c34

,

yc = c21 Xn + c22Yn + c23 Zn + c24

c31 Xn + c32Yn + c33 Zn + c34

(18)

For the modeling of the Koumoku-Ten clay figure, we
used 60 range images and color images that were taken at
the same time. Figure 15 shows a picture of Komoku-Ten
(a), the geometric model (b), and the synthesis result un-
der a new lighting condition generated using the texturing
result (c).
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Figure 16. Reflectance and color images.

3.2. Reflectance Edge-Based Method

As shown in the previous section, one solution for deter-
mining the relationship between range and color image is
through calibration using a calibration fixture. However,
this method requires that the range and color sensors be
fixed on the fixture once the relationship is calibrated.
Further, the calibration-based method is accurate only
around the position occupied by the calibration fixture.
When a target object is very large, this method becomes
unreliable due to the lens distortion. Thus, we need a
method that does not rely on calibration for handling a
large object.

Generally speaking, range sensors often provide re-
flectance images as side products of range images. The
returned timing provides a depth measurement, while the
returned strength provides a reflectance measurement. A
reflectance image is a collection of the strength of re-
turned laser energy at each pixel. This reflectance image
is aligned with the range image because both images are
obtained through the same optical receiving device. Com-
monly available range sensors, including ERIM, Pre-
ceptron, and our main sensor, CYRAX, provide this re-
flectance image.

We employ this reflectance image as a vehicle for the
alignment of range images with color images (Stamos
and Allen, 2001; Kurazume et al., 2002). Reflectance
images share characteristics similar to color images due
to the fact that both images are somehow related with sur-
face roughness, as shown in Fig. 16. Since our CYRAX
range scanner uses a green laser diode, reflectance edges
can be observed along material boundaries between two
different reflectance ratios for this wavelength. Since dif-
ferent materials are of different colors, a discontinuity
also appears in the color images. Jump edges along small
ranges in a range image also appear as jump edges in a
reflectance image as well as in a color image. Occluding

boundaries are observed both in reflectance images and
in color images.

Prior to the alignments, we paste the necessary re-
flectance edges onto the 3D geometric model. As men-
tioned above, since occluding boundaries vary depend-
ing on the viewing direction, edges along the occluding
boundaries are first removed from the reflectance images.
Edges along the current occluding boundaries will be es-
timated from the 3D geometric model and the current
viewing direction. Our algorithm extracts them automat-
ically, and uses them for alignment.

We align edges extracted from reflectance images with
those in color images so that the 3D position error of those
edges is minimized by iterative calculation as shown in
Fig. 17. Extracted edges are represented as a collection
of points along them. The alignment is done between 3D
reflectance points on a 3D geometric model projected
on the image plane and 2D color edge points in the 2D
image.

To establish correspondence, the system finds the color
image points that are nearest to the projected reflectance
points. This operation is similar to the ICP operation.

2D image edge

Image plane

Geometric model

3D edge point

Nearest point

Zi

Projection to the image plane

3D error zi

θ

2D image edge

Image plane

Geometric model

3D edge point

Nearest point

Zi

Projection to the image plane

3D error zi

θ

Figure 17. Texturing algorithm.
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To determine the relative pose that coincides with the
position of 2D color edges and projected 3D reflectance
edges, we use the M-estimator.

First, the distance between corresponding 2D color
edge points and 3D reflectance edge points is evaluated
as shown in Fig. 17, where zi is a 3D error vector that is
on a perpendicular line from a 3D reflectance edge point
to the stretched line between the optical center and a 2D
color edge point on the image plane.

εi = Zi sin θ (19)

where Zi is the distance between the optical center and
a 3D reflectance edge point, and θ is the angle be-
tween the color edge point and the reflectance edge
point.

The system finds the configuration, P, which minimizes
the total error, E, where ρ is an error function. The min-
imum of E(p) can be obtained by

∂ E

∂ P
=

∑
i

∂ρ(εi )

∂εi

∂εi

∂ P
= 0 (20)

We can consider ω(ε) as a weight function to evaluate
error terms.

ω (ε) = 1

ε

∂ρ

∂ε
(21)

By substituting Eq. (21) into (20) we obtain

∂ E

∂ρ
=

∑
i

ω (εi )εi
∂εi

∂ P
= 0 (22)

We choose the Lorentzian function for this function.

ω(ε) =
(

1 + 1

2

(
ε

σ

)2)−1

(23)

By solving this equation using the conjugate gradient
method, we can obtain the configuration P that minimizes
the error term and gives the relative relationship between
the camera and the range sensor. Figure 18 shows the
texture-mapped Kamakura Buddha. Since this method
minimizes a non-linear equation, we need an initial align-
ment. The initial alignment is given manually using our
GUI. For the current implementation, relatively accurate
alignment is necessary for rotation, but it is not the case
for translation.

4. Restoring the Original Nara Great Buddha

One of the advantages of obtaining digital data of cultural
heritage objects is to modify those data and display the
original appearance of the object. In order to demonstrate

Figure 18. Texturing result.

this ability, after we obtain the precise geometric and
photometric information about cultural heritage objects
in their current state, we can modify the current data into
a hypothesized original state. In this section, we describe
one of the examples: the restoration of the Nara Great
Buddha and its main hall.

The Nara Great Buddha is one of the most impor-
tant heritage objects in Japan. The Buddha statue is
sitting in the Buddha palace at the Toudaiji temple in
Nara, Japan. Originally, this temple and statue were con-
structed by order of the Shomu emperor, in the 8th cen-
tury. Here, the original one is referred to as “Tempyou
Big Buddha.” The original Tempyou Buddha was made
of bronze and covered with gold plate. Unfortunately,
however, the palace was burned and the statue was
melted twice due to civil war in Japan. The current Bud-
dha and palace were rebuilt in the 17th and 18th cen-
turies. Accordingly, the shape of the current Great Bud-
dha is different from that of the original one in the 8th
century.

4.1. Restoring the Nara Great Buddha

As the first step, we acquired the complete 3D mesh
model of the Nara Great Buddha in its current state
by using the geometrical modeling techniques described
in Section 2. We collected more than 100 partial mesh
models using CYRAX sensors. Those partial mesh
models were aligned using the parallel alignment al-
gorithm on a PC cluster and merged into a unified
mesh model with 70M polygon. Figure 19 shows the
picture of the current Buddha, and its 3D geometric
model.

We synthesized the original state by morphing the 3D
mesh of the model from this mesh model. From some lit-
erature inherited at various temples, we knew the sizes of
various face parts such as the nose and mouth. “Enryaku-
so-rokubun,” “Daibutsuden-hibun,” “Hichidaiji-nikki,”
and “Gokokuji-honnsyoji-enngishu” are representative
documents that contain those sizes. Unfortunately,
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Figure 19. Nara Buddha (a) Picture of current Buddha, (b) 3D geometric model of current Buddha.

Figure 20. Comparison in 3D models. (a) Current Buddha, (b) Original Buddha.

however, those numbers often contradict each other.
Some researchers investigated which number is the most
reliable one. We followed their method to compare them
and determined a common figure for each part.

Table 2 shows the obtained estimated and the current
dimensions of various face parts. Here, all the documents
employ the unit called “shaku.” We interpreted shaku as
the tempyo shaku, and one shaku is assumed to be 0.2964
meters among the various interpretations of shaku. Notice
that relatively large differences exist in height measure-
ments.

Using these data, we designed a two-step morphing
algorithm. First, we globally changed the scale of the
whole portions (for example, Height when sitting, Face
Length, Nose Length); these are gradually modified. In
the second stage, vertices were moved one by one itera-
tively, similarly to the constraint propagation algorithm,

using smoothness and uniform constraints. The two-stage
morphing enabled us to obtain the complete model of the
original Great Buddha. Figure 20 shows the 3D models of
the current (a) and the original Great Buddha (Tempyou

Table 2. Current and estimated dimensions of various face parts

Parts name Current (m) Original (m)

Height when sitting 14.98 15.85

Eye length 1.02 1.16

Face length 3.20 2.82

Ear length 2.54 2.52

Palm length 1.48 1.66

Foot length 3.74 3.56

Nose height 0.50 0.47

Mouth length 1.33 1.10
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Figure 21. Miniature model of Buddha palace.

Figure 22. 3D model acquired from the Miniature model.

Buddha) (b). We can easily recognize that the original
Buddha is larger and rather thin.

4.2. Restoring the Toudaiji Main Hall

The main hall of the Toudaiji Temple was built during the
same decades as those of the Great Buddha (8th century).

It was also rebuilt twice: in the 12th and 17th centuries.
In the 12th century, Tenjiku architecture was imported
from China, and the main hall was rebuilt in a totally
different architecture style. The rebuilding in the 18th
century followed the same new style. As a result, the
style of the current main hall is entirely different from
that of the original building.
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Figure 23. Key parts of the main hall at Tousho-daiji digitized.

Figure 24. 3D models of those key parts.

Fortunately, the Toudaiji temple has been displaying
a miniature model of the original hall, constructed for
the Paris Expo in 1900, as shown in Fig. 21. We digi-
tized it using the Pulsteck TDS-1500 and scaled it up to
the original size as shown in Fig. 22(a). The TDS-1500
can scan a range from 3.5 meters through 10 meters with
the accuracy of 0.5 to 5 mm and the spatial resolution
of 420 × 280. We obtained 12 range images from vari-
ous observation directions. As shown in Fig. 22(b), due
to the limits of the sensor’s accuracy and constraints of
observation directions, though the model provides rough
dimensions of locations of columns and walls, it does

not provide a precise and accurate picture of the detailed
parts.

According to Prof. Keisuke Fujii, who is an archi-
tecture professor at the University of Tokyo and one of
the experts on building style in the era, the Toudaiji and
Toushoudaiji temples share a similar format. The main
hall of the Toushoudaiji Temple was also built during the
same period (8th century). We have decided to combine
the detailed part model of the Toushoudaiji Temple with
the rough whole model of the Todaiji temple.

We digitized various key parts of the main hall at Tou-
shoudaiji. Using the suggestions of Prof. Fujii, we chose
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Figure 25. Restored nara Buddha.
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Table 3. Four interpretations determining the amount of gold used.

Interpretation
Written amount in the

Document name document ryou Large ryou (42 g) Small ryou (14 g)

Daibutu-den-hibun 5412 227 kg 76 kg

Enryaku-sorokubun 4187 176 kg 59 kg

20 important parts of the main hall. Figure 23 shows
6 parts among 20 important parts. We employed Cyrax
2004 and Pulsteck TDS-1500, which have a range from
0.5 meter through 1meter, with resolution of 0.23 mm
through 0.83 mm, to obtain 780 range images. Figure
24 shows the obtained range images of the detailed
parts.

We pasted these partial range data of Touhoudaiji parts
(Fig. 24) to the scaled-up range data of the Toudaiji
(Fig. 22(b)), using as a scale the average size difference
between those temples, roughly 1 to 2.3. But each part
needed more precise scaling parameters. The traditional
alignment algorithm determined translation and rotation
parameters as six unknown parameters. However, we de-
signed an extended alignment algorithm that determined
not only translation and rotation parameters but also scale
parameters.

ε2= min
R,t

∑
s �=m,k

(Rm �n · {(Rs �K (�y, ks) +�ts) − (Rm �x +�tm)})2

(24)

where K (, ) is a scaling function to expand each arc length
in a mesh, and ks is an unknown scaling parameter. By
using this extended alignment algorithm, we completed
the 3D model of the original Buddha’s palace.

Figure 25(a) shows the original Buddha’s palace digi-
tally restored by our method. By combining the original
Buddha’s palace and the original Buddha, we created the
virtual appearance of the Nara Buddha in the 8th century,
as shown in Fig. 25(b)–(c). The virtual appearance of this
and other historic objects can be used for education about
and promotion of our cultural heritage.

4.3. Analysis

As one of the demonstrations of utilizing digital restora-
tion, we conducted an experiment to determine the
amount of gold used to plate the surface of the Buddha.
It is well known that the original Buddha was golden
due to gold plating of its surface. However, several con-
tradictory numbers exist in documents. For example,
“Daibutu-den-hibun” and “Enryaku-sorokubun” say it re-
quired 5412 ryou and 4187 ryou of gold, respectively, to
cover the body of the great Buddha. Moreover, there were
two interpretations of “ryou”; A large ryou was 42 g,

while a small ryou was 14 g. Thus, there are four inter-
pretations determining the amount of gold required.

In order to disambiguate this discussion, we used our
restored digital model of the Tempyou great Buddha. The
surface area, 597 m2, is obtained from the restored dig-
ital model by taking a summation of all surface areas
of triangular meshes. For comparison, the surface area
of the current Buddha is 556 m2. From the documents,
it is known that the amalgam method was used to put
gold over the Buddha’s surface. Usually, this method puts
6–10 mg/cm2. This number was also confirmed by ex-
amining the thickness of gold plate on various treasures
stored in Sho-so-in. By multiplying the surface area of
Tempyo and the current Buddha with this number, we
obtained the gold amount as 36 kg–60 kg and 33 kg–
56 kg. Those numbers indicate that the interpretation of
“enryaku-sorokubun” with a small ryou is most likely.

5. Conclusion

This paper introduced our project to digitally archive and
restore cultural heritage objects. Our project’s main goal
was to develop software to create VR models of heritage
objects through observation of real heritage objects. As
the input sensor of geometrical information, we used laser
range sensors because of their accuracy. Since only par-
tial mesh models of an object are obtained from such sen-
sors, we have developed post-process algorithms. These
included a rapid alignment algorithm based on graphics
hardware, a parallel alignment algorithm based on a PC
cluster, and a parallel merging algorithm based on a PC
cluster. For texturing color information onto geometric
modes, we developed a non-calibrated texturing method
based on laser reflectance features.

Digital restoration of lost cultural heritage objects has a
great advantage compared with other restoration methods
such as physical construction of actual temples, because
we can examine various hypotheses without any physical
changes or long building periods. We demonstrated the
effectiveness of this method through the restoration of
the Nara Great Buddha and its main hall.
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