
A Survey of Methods for Volumetric Scene Reconstruction
from Photographs

Greg Slabaugh1

Center for Signal and Image Processing
Georgia Institute of Technology

Bruce Culbertson2
Visual Computing Department
Hewlett-Packard Laboratories

Tom Malzbender2
Visual Computing Department
Hewlett-Packard Laboratories

Ron Schafer1

Center for Signal and Image Processing
Georgia Institute of Technology

ABSTRACT
Scene reconstruction, the task of generating a 3D model of a scene given multiple 2D photographs taken of
the scene, is an old and difficult problem in computer vision. Since its introduction, scene reconstruction has
found application in many fields, including robotics, virtual reality, and entertainment. Volumetric models
are a natural choice for scene reconstruction. Three broad classes of volumetric reconstruction techniques
have been developed based on geometric intersections, color consistency, and pair-wise matching. Some of
these techniques have spawned a number of variations and undergone considerable refinement. This paper is
a survey of techniques for volumetric scene reconstruction.

1 Atlanta, GA 30332. {slabaugh, rws}@ece.gatech.edu
2 Palo Alto, CA 94306. {bruce_culbertson, tom_malzbender}@hp.com

1. INTRODUCTION
We present a survey of techniques for volumetric scene
reconstruction. In computer vision, scene reconstruction is an
old and challenging problem whose aim is to create a 3D
model of a scene, given 2D images of the scene. An
important early application was robot navigation. Multimedia
computing has generated renewed interest in the problem and
has shifted the emphasis to generating new, “virtual” views
of scenes. Applications include virtual reality, games, and
special effects for motion pictures. In this paper, we focus on
techniques developed primarily for reconstructing natural,
real world scenes using off-the-shelf cameras. Therefore, we
do not cover medical imaging or active light methods (such
as those that use laser scanners) as these methods require
specialized hardware.

Volumetric data representations have been gaining
importance since their introduction in the early 70’s in the
context of 3D medical imaging [Greenleaf 70]. The
exponential growth of computational storage and processing
during the last three decades have enabled these
representations to become practical alternatives to surface-
based geometrical representations for many applications in
computer graphics and scientific visualization [Kaufman 91].
Volumetric representations have also become an important
tool in the field of computer vision. In particular, volumetric
models provide a flexible and powerful representation for 3D
objects inferred from (typically) multiple images of a scene.

Unfortunately there are some differences in the meaning of
the word “volumetric” between the disciplines of computer
graphics/scientific visualization and that of computer vision.
In both cases, the term volumetric implies a representation
that describes not only the surface of some region, but also
the space that the region encloses. However in computer
graphics, the term volumetric further implies a sampled
representation. Various sampling patterns such as regular,
non-isotropic, curvilinear, and unstructured are
accommodated, and many of these allow extensions of signal
and image processing methods to be applied. However, the
term volumetric in the field of computer vision implies no
such sampling; for example polyhedral representations are
considered volumetric in this context. Papers such as
[Pentland 90] and [Terzopoulos 91], described by vision
researchers as involving volumetric representations [Fua 95],
are examples of non-sampled representations. In this paper
we restrict our usage of the term volumetric to imply sampled
systems, those involving voxels, following the convention of
the graphics and scientific visualization community.

Currently, several restrictions on the scenes and the input
photographs are required to make reconstruction tractable.
All the techniques described here require calibrated input
images, which means we know where any 3D point in the
scene projects in each image. ([Saito 99] and [Garcia 98] can
exploit a somewhat weaker form of calibration.) Image
calibration is itself a challenging problem with a large
literature devoted to it [Hartley 00]. With the exception of
[Szeliski 99] and [De Bonet 99], the techniques assume all
surfaces are entirely opaque. The visual hull techniques
require that foreground objects in the input images can be

To appear at VG ’01, the International Workshop on Volume Graphics

June 21-22, 2001

segmented from the background; the rest of the techniques
assume that surfaces are Lambertian (they reflect light
equally in all directions) or are nearly so.

The rest of this paper is organized as follows. Section 2
discusses methods for volumetric reconstruction of visual
hulls, which are based on geometric intersection. Section 3
considers voxel coloring methods, which rely upon the
consistency of colors observed across images. Finally,
Section 4 discusses a class of techniques based on pair-wise
matching.

2. VOLUMETRIC VISUAL HULLS
The earliest attempts at volumetric model reconstruction from
photographs are those that approximate the visual hull of the
imaged objects. This technique is also referred to as volume
intersection in the vision literature. The visual hull of an
object can be described as the maximal shape that gives the
same silhouette as the actual object for all views outside the
convex hull of the object [Laurentini 94]. Volume
intersection methods use a finite set of viewpoints, and
compute what we will call the inferred visual hull, as shown
in Figure 1. Typically one starts with a set of source images
that are simply projections of the object onto N known image
planes. Each of these N images must then be segmented into
a binary image containing foreground regions to which the
object projects; everything else is background. If these
foreground regions are then back-projected into 3D space and
intersected, the resultant volume is the inferred visual hull of
the object.

The inferred visual hull has several interesting properties.
First, although it is only an approximation to the true shape of
the object, it is guaranteed to enclose the object. Second, in
3D the inferred visual hull of an object can be a better or
worse approximation of the object than the convex hull
depending on the geometry of the object and the range of the
viewpoints. Third, the size of the inferred visual hull
decreases monotonically with the number of images used.
However, even when an infinite number of images are used,
not all concavities can be modeled with a visual hull. For the
rest of this paper we will use the term “visual hull” to mean
the inferred visual hull computed from N images.

The earliest work reporting a volumetric representation of the
visual hull is due to Martin and Aggarwal [Martin 83]. They
recommend simple intensity thresholding of each input image

to perform segmentation into object foreground and
background. A connected component analysis of the resulting
binary image yields the silhouette. An initial parallelogram
structure is then extracted by combining orthographic back-
projections from multiple images. This is further processed
into a volume segment representation, which is a set of line
segments parallel to one axis of their coordinate system. This
representation is then further processed into a surface
description when desirable.

Further work in Aggarwal’s lab led to explorations of octree
representations for the visual hull [Chien 84, Chien 86]. The
method starts with three binary images from orthogonal
viewing directions. These are converted to three quadtree
representations, which are subsequently merged into an
octree representation of the visual hull. A disadvantage of
this approach is the limitation on the number of input images
and the strict requirement on the orthogonality of their optical
axes. This limits the fidelity of the reconstructed volume.
Additionally, the method appears limited to cameras with
parallel projection transforms. Contemporary work by
Shneier et al. [Shneier 84] also proposes building octrees
from segmented images, however no examples were given
since their implementation was not complete. For the special
case of source images being available from 13 prescribed
orthographic viewpoints, an octree reconstruction is
described in [Veenstra 86].

An early implementation on a PDP11 by [Massone 85] used
actual photographic input from vidicon cameras to carve the
visual hull from regularly sampled voxels. This method is
flexible enough to handle both perspective and parallel
projections.

[Potmesil 87] also reconstructs an octree representation of
objects from multiple images, now handling arbitrary
viewpoints and perspective projections. He divides the task
into three components. First he generates conic octree
volumes from silhouettes of the objects. Second, he combines
sequences of these conic octree volumes into a global model.
Third, a 3D connected components algorithm is used to label
individual objects. Surface normals and textures are then
mapped onto the object with surface normals computed from
the local octree topology. Textures are sampled from the
original source images, averaging being performed when
multiple images are available for a particular surface point.
[Srivastava 90] also constructs an octree from arbitrary
perspective images. They also propose thresholding for
segmentation and then approximate the boundary of the
silhouette polygonally. The polygons are then decomposed
into convex components and efficient octree intersection tests
with the back-projections are employed. Source images
presented are computer generated, not photographic.

[Szeliski 93] builds volumetric models directly from actual
photographs. Although the approach is similar to the work of
Potmesil, there are numerous significant differences. First,
where Potmesil builds a separate octree per image and then
combines them, Szeliski refines a single octree model with
each successive frame. This allows significant increases in
processing speed. Additionally Szeliski is the first to address
many practical issues in this context, such as performing

Figure 1. Object (hatched) and its inferred visual hull (bold).

adaptive background subtraction and morphological
operations during the segmentation stage, and automatic
determination of turntable orientation. His work is also
leveraged in the Lumigraph system [Gortler 96] for finding
approximate geometry to improve image quality during scene
rendering. A variant of the octree representation for volume
intersection is given by [Garcia 98]. He uses a projective
octree representation, defined by selecting two images with
optical axes approximately at right angles to each other.
Projective projections of these reference images define a 3D
coordinate system on which the octree is defined.
Interestingly, since only the fundamental matrix [Luong 96]
is computed between these images by selecting
correspondences, the actual geometrical deformation of the
octree is not explicit. Binary segmentations from additional
images can be incorporated by computing the trilinear tensor
[Shashua 95] between such an image and the two reference
images. A similar projective grid space is also used for voxel
coloring in [Saito 99] and is discussed later in the paper.

[Seitz 95] presents a novel Hough-like voting scheme that
back-projects image features into a volumetric space.
Although explicit voxels are not maintained, bins
corresponding to regions of space containing features are
allocated as needed. A contribution of the work is an implicit
formulation that permits reconstruction of both point and line
features within a common three-dimensional parameter
space. The output of this method is a 3D representation of
features, and an additional process would be needed for
model reconstruction. This also applies to the work of
[Collins 96] who back-projects features onto a plane that
sweeps through space. Like Seitz’s work, a full volume is not
maintained at any point in time to save memory.

Work by Fromherz [Fromherz 94] sculpts a volume from a
voxel array that is uniformly spaced with voxel projections
on the scale of pixels in the source images. Results on a
mannequin are verified by comparing with computed
tomography scans. An automatic binary segmentation is used
on the source images. After computing this volume
representing the visual hull, a further refinement is performed
that uses luminance information in the original source images
[Fromherz 95]. At each iteration, surface voxels are
projected into sequential image pairs from a rotation
sequence. If the luminance of those pixels differ an amount
greater than a threshold, the voxel is removed from the
model. This work is the first example of luminance-based
carving that we are aware of.

During the later 90’s volumetric visual hulls were computed
from video streams originating from multiple cameras for the
first time. [Moezzi 96] describes a system of 17 cameras
centered on a 1m x 1m x 2m dynamic scene. Each frame is
segmented into a binary image employing background
subtraction techniques with careful control of lighting.
Volume intersection is employed offline to construct a visual
hull model composed of voxels that measure 1 cubic cm.
Subsequent isosurface extraction yields a polygonal surface
where colors are assigned to each polygon from area-
weighted contributions from the source images. Improved
surface coloring methods are introduced in [Moezzi 97].

3. VOXEL COLORING METHODS

3.1. Color Consistency
Many reconstruction algorithms use color consistency,
introduced by [Seitz 97], to distinguish surface points from
other points in a scene. As shown in Figure 2, cameras with
an unoccluded view of a non-surface point see surfaces
beyond the point, and hence inconsistent (i.e., dissimilar)
colors, in the direction of the point. The consistency of a set
of colors can be defined as their standard deviation or,
alternatively, the maximum of the L1, L2, or L∞ norm
between all pairs of the colors. Any of these measures can be
computed for the colors of the set of pixels that can see a
voxel; the voxel is considered to be on a surface if the
measure is less than some threshold.

Real world scenes often include surfaces with abrupt color
boundaries. Voxels that span such boundaries are likely to be
visible from a set of pixels that are inconsistent in color.
Hence, for such voxels, color consistency can fail as a surface
test. This problem can be solved with an adaptive threshold
that increases when voxels appear inconsistent from single
images.

3.2. Restricted Camera Placement
[Fromherz 95] performed reconstructions by combining a
consistency-based surface test, except using only luminance,
with volume intersection. Seitz and Dyer [Seitz 97]
demonstrated that a sufficiently colorful scene could be
reconstructed using full-color-based consistency alone,
without volume intersection. They called their algorithm
Voxel Coloring.

The Voxel Coloring algorithm begins with a reconstruction
volume of initially opaque voxels that encompasses the scene
to be reconstructed. As the algorithm runs, opaque voxels are
tested for color consistency and those that are found to be
inconsistent are carved, i.e. made transparent. The algorithm
stops when all the remaining opaque voxels are color-
consistent. When these final voxels are assigned the colors
they project to in the input images, they form a model that
closely resembles the scene.

Camera
sees

white

Camera
sees

white

Camera
sees

black

Camera
sees
gray

Figure 2. Color consistency can be used to distinguish
points on a surface from points not on a surface. On the left,
two cameras see consistent colors at a point on a surface. On
the right, the cameras see inconsistent colors at a point not
on the surface.

Figure 3. Using occlusion bitmaps. On the left, a voxel is found to be consistent, and a bit in the occlusion bitmap is set for
each pixel in the projection of a consistent voxel into each image. On the right, visibility of the lowest voxel is established by
examining the pixels to which the voxel projects. These pixels are shown in black. If the occlusion bits have been set for these
pixels, then the voxel is occluded, as is the case for the two middle cameras.

Occlusion bitmaps

Plane sweeping
through scene

Sweep
direction

As Voxel Coloring progresses, opaque voxels occlude each
other from the input images in a complex and constantly
changing pattern. To test the color consistency of a voxel, its
visibility (the set of input image pixels that can see it) must
first be determined. Since this is done many times during a
reconstruction, it must be performed efficiently. Calculating
visibility is a subtle part of algorithms based on color
consistency and several interesting variations have been
developed.

To simplify the computation of voxel visibility and to allow a
scene to be reconstructed in a single scan of the voxels, Seitz
and Dyer imposed what they called the ordinal visibility
constraint on the camera locations. It requires that the
cameras be placed such that all the voxels are visited in a
single scan in near-to-far order relative to every camera.
Typically, this condition is met by placing all the cameras on
one side of the scene and scanning voxels in planes that are
successively further from the cameras. Thus, the transparency
of all voxels that might occlude a given voxel is determined
before the given voxel is checked for color consistency. This
insures that the visibility of a voxel stops changing before it
needs to be computed, which is important since every voxel
is visited only once. An occlusion bit map, with one bit per
input camera pixel, is used to account for occlusion. These
bits are initially clear. When a voxel is found to be consistent,
meaning it will remain opaque, all the occlusion bits in the
voxel’s projection are set, as shown in Figure 3. The visibility
set of a voxel is simply the pixels in the voxel’s projection
whose occlusion bits are clear.

The runtime for Voxel Coloring is related to the number of
voxels. [Prock 98] achieves as much as a 40× speedup of the
algorithm using multiple voxel resolutions. First, a rapid
reconstruction is performed using coarse voxels. Some voxels
will be mostly, but not entirely, unoccupied by scene objects.
These voxels are likely to be carved yet, when subdivided
into smaller voxels, they may contain small voxels that are
mostly occupied. Hence, carved voxels that are adjacent to
uncarved ones are added back into the model, i.e. are made
opaque. Then the model is subdivided, usually by replacing
each opaque voxel with eight smaller ones. This is used as
the starting point for another pass of Voxel Coloring. These

steps are repeated as long as warranted by the image
resolutions.

3.3. Arbitrary Camera Placement
Voxel Coloring is elegant and efficient. However, the ordinal
visibility constraint is a significant limitation. Since the
voxels can be ordered from near to far relative to all the
cameras, the cameras cannot surround the scene. So, some
surfaces will not be visible in any image and hence cannot be
reconstructed. Because it is often desirable to obtain a model
that resembles the scene from every direction, several
variations of Voxel Coloring have been developed to
circumvent this limitation. If we surround the scene with
cameras, we give up the ordinal visibility constraint. Without
the constraint, there is no order in which to scan voxels that
guarantees their visibility will not change after we check their
color consistency. Hence, algorithms that allow arbitrary
camera placement must test voxels repeatedly for consistency
until their visibility stabilizes.

Figure 4 gives the general approach for Voxel Coloring
algorithms that allow arbitrary camera placement. In the inner
loop, the visibility of voxels is found, their consistency is
checked, and they are carved if they are found to be
inconsistent. If one voxel is carved, the visibility of other
voxels potentially changes, invalidating any consistency tests
they may have passed. Hence, there is an outer loop that
repeats the consistency checking until no carving occurs in
the inner loop. No carving occurs on the final iteration of the
outer loop so no testing is invalidated and the final set of
opaque voxels is guaranteed to be consistent.

When the algorithm in Figure 4 begins to run, the model
bears little resemblance to the scene. Yet, the algorithm
computes the visibility for voxels, and carves those found to
be inconsistent, based on this model. It is reasonable to
wonder if the algorithm might fail due to carving voxels early
on that would be color consistent in the final model.
[Kutulakos 98] has shown that, in fact, this cannot happen if a
suitable consistency measure is used. The measure must be
monotonic: if it finds a set of pixels to be inconsistent, then it
will find any superset of those pixels to also be inconsistent.
Since the algorithm only changes opaque voxels to

transparent and never vice versa, remaining opaque voxels
can only become more visible as the algorithm runs and the
pixels that can see a voxel at one point in time will be a
subset of those that see the voxel at any later time. Thus, if
the monotonic consistency measure ever finds a voxel to be
inconsistent, the voxel will also be inconsistent in the final
model. Therefore, the algorithm never carves a voxel it
shouldn’tone that would be consistent in the final
modeland so we say carving is conservative. Furthermore,
Kutulakos and Seitz proved that the algorithm finds the
unique color consistent model that is a superset of any other
consistent model. They call this unique model the photo hull.

3.3.1. Space carving

[Kutulakos 98] describes an implementation of Figure 4
called Space Carving. It always scans voxels for color
consistency by evaluating a plane of voxels at a time, as is
often done with Voxel Coloring. Unlike Voxel Coloring,
Space Carving uses multiple scans, typically along the
positive and negative directions of each of the three axes.
Space Carving forces the scans to be near-to-far, relative to
the cameras, by using only images whose cameras have
already been passed by the moving plane. Thus, when a voxel
is evaluated, the transparency is already known of other
voxels that might occlude it from the cameras currently being
used. Because carving is conservative, the set of uncarved
voxels is a shrinking superset of the desired color-consistent
model as the algorithm runs.

Space Carving achieves the goal of allowing arbitrary camera
placement but only implements the pseudocode in Figure 4
approximately. Space Carving never carves voxels it
shouldn’t but it is likely to produce a model that includes
some color-inconsistent voxels. This is because, during
scanning, cameras that are ahead of the moving plane are not
used for consistency checking, even when the voxels being
checked are visible from those cameras. Hence, the color
consistency of a voxel is, in general, never checked over the
entire set of images from which it is visible. (A later paper,
[Kutulakos 00b], describes additional bookkeeping that
enables Space Carving to compute visibility exactly.)

In a practical setting, the camera calibration is not precisely
known, so the visible pixels to which a voxel projects in an
image can contain incorrect pixels. [Kutulakos 00a] presents

a variation of space carving called “approximate space
carving” that addresses this problem of inaccurate camera
calibration. When evaluating a voxel’s consistency, this
method considers a disk of radius r in each image, centered at
the projection of the voxel center. If there is a pixel color that
appears in all disks, then the voxel is said to be r-consistent,
and remains in the volume. Otherwise, the voxel is carved.
Using a larger value of r allows one to reconstruct the scene
with poorly calibrated cameras. By reconstructing the scene
with a range of decreasing values of r, a set of nested
reconstructions are found, each of which is a tighter bound on
the true 3D geometry being reconstructed.

3.3.2. Generalized Voxel Coloring

[Culbertson 99] describes a reasonably efficient and simple
implementation of Figure 4, called Generalized Voxel
Coloring (GVC), that computes visibility exactly and hence,
yields a color consistent model. They provide experimental
results that show that exact visibility, when compared with
the approximate visibility computed by Space Carving, can
result in better looking reconstructions that are numerically
more consistent with the input images.

Two variants of the algorithm, called GVC-IB and GVC-
LDI, have been developed. They use different data structures,
called item buffers (IBs) [Weghorst 84] and layered depth
images (LDIs) [Max 96] [Shade 98], to compute the visibility
of voxels. See Figure 5. An item buffer records, for every
pixel in an image, the surface voxel that is visible from the
pixel. An LDI records, for every pixel in an image, a depth-
sorted list of all surface voxels that project to the pixel. The
information in an LDI is a superset of the information in an
item buffer and generally consumes considerably more
memory. As GVC-IB runs, an item buffer for each input
image can be computed by rendering, using Z-buffering, the
current set of surface voxels to the image viewpoint. Unique
voxel identifiers are rendered to the item buffer in place of
the colors normally rendered with Z-buffering. The rendering
can be performed using software or a hardware graphics
accelerator. LDIs are computed similarly but, instead of using
Z-buffering to find the voxel closest to each pixel, all surface
voxels that project to a pixel are inserted in sorted order in a
list for the pixel.

The visible pixels to which a voxel projects in an image are
found as follows. First, the voxel is scan-converted to find the

1 set all voxels opaque
2 loop {
3 AllVoxelsConsistent = TRUE
4 for every opaque voxel V {
5 find the set S of input image pixels from which V is visible
6 if S has consistent color {
7 assign V the average color of all pixels in S
8 } else {
9 AllVoxelsConsistent = FALSE
10 set V to be transparent
11 }
12 }
13 if AllVoxelsConsistent = TRUE
14 quit
15 }

Figure 4. Pseudocode for Voxel Coloring algorithms with unconstrained cameras.

pixels in the voxel’s projection. In the GVC-IB case, the
voxel is visible from the subset of these pixels whose item
buffer values match the voxel’s identifier. The same method
can be used to find the visibility of a voxel in GVC-LDI since
the nearest voxel in a pixel’s LDI list is the same voxel that
would be recorded for the pixel in an item buffer.

Since carving a voxel can change the visibility of other
voxels, carving invalidates the item buffers. Hence, it may
seem reasonable to compute new item buffers whenever a
voxel is carved. This indeed produces correct results but is
very slow. Fortunately, because carving is conservative, the
item buffers can be updated less frequently, and the resulting
out-of-date item buffers can be used for carving, without
carving voxels that should not be carved. On the last
iteration, the item buffers remain valid so the final set of
opaque voxels is consistent. It is convenient and efficient to
update the item buffers in the outer loop, after line 3 in Figure
4.

Carving also invalidates an LDI. However, an LDI can be
updated incrementally with minimal computation. Voxels
may be added to, or deleted from, an LDI by first finding the
pixels in the voxel’s projection and then adding or deleting
the voxel from the LDI lists for those pixels. Hence, LDIs are
updated immediately after carving occurs in GVC-LDI. The
chief benefit of using LDIs, which compensates for their
memory needs, is that they make it possible to tell precisely

which voxels change visibility after a voxel is carved. When
LDIs are updated, any voxel that moves into or out of the
“nearest” position in a pixel’s LDI list has different visibility
after the update. It is only necessary to recheck a voxel’s
consistency if its visibility changes. Using item buffers, there
is no efficient way to determine which voxels have increased
visibility after carving occurs, so all voxels in the current
model must have their consistency rechecked. Thus, GVC-
LDI performs many fewer consistency checks during a
reconstruction than GVC-IB, but this comes at the expense of
increased memory use. A GVC-IB reconstruction is shown in
Figure 9.

3.3.3. Multi-Hypothesis Voxel Coloring

[Eisert 99] has proposed a multi-hypothesis voxel coloring
technique. A hypothesis is a possible coloring of a voxel.
Their approach begins with a hypothesis assignment step,
which identifies a set of hypotheses for each voxel. Then
their algorithm narrows down the hypotheses during a
hypothesis removal step, which carves inconsistent voxels.
The surface voxels that remain constitute the volumetric
reconstruction.

Hypothesis assignment begins by determining the color of the
pixel to which a voxel center projects into each image. These
pixel colors are compared for all pairs of views. If at least
two cameras see a consistent color for the voxel, a hypothesis
is assigned to the voxel. Consistency is determined by
thresholding a distance measure in RGB space [Eisert 99] or
normalized RGB space [Steinbach 00a] of the pixels. This
process is executed for each voxel. During hypothesis
assignment, there is no reconstructed geometry yet, so no
occlusion information is available, as shown in Figure 6.
Consequently, the hypothesis assignment step may assign
hypotheses that do not correspond to the correct color of the
surface being reconstructed.

Hypothesis removal takes occlusion into account to remove
such hypotheses. For a given view, the voxel space is
traversed in an occlusion-compatible direction [Steinbach
00b]. A visible voxel is projected into the image, and the
pixel to which the voxel center [Eisert 99] (or pixels in the
footprint around the voxel center [Steinbach 00b]) projects is
compared with the voxel's hypotheses. The hypotheses that
are not consistent are removed, and this process is repeated
for the other viewpoints. If all of a voxel's hypotheses are
removed, then no consistent color is observed across the
images that have visibility of the voxel, and the voxel is
carved. Carving a voxel changes visibility of other voxels
that are then processed. The algorithm iterates over the
surface voxels and all images until no more hypotheses can
be removed, resulting in a photo hull.

Multi-hypothesis voxel coloring is quite similar to Voxel
Coloring, Space Carving, and GVC. The key difference is
that the decision to carve a voxel in these methods is made
using all images simultaneously. In contrast, multi-hypothesis
voxel coloring algorithms have an advantage in that
hypothesis removal (and ultimately carving) is performed one
image at a time. This simplifies visibility determination, since
during hypothesis removal, the voxel space can be scanned

Figure 5. The two variants of GVC use different data
structures, called item buffers and layered depth images
(LDIs), to compute the visibility of voxels. In (a), an item
buffer records, for every pixel in an image, the surface voxel
that is visible from the pixel. In (b), an LDI records, for every
pixel in an image, a depth-sorted list of all surface voxels that
project to the pixel.

Reconstruction
volume

B A ∅

(a)

(b)

LDI

B A

Reconstruction
volume

Item
buffer

AB A

front-to-back for one camera at a time. Consequently,
occlusion bitmaps, the very simple and memory efficient data
structures used in Voxel Coloring, can always be used to
establish the exact visibility of the scene for arbitrary camera
placement. However, the price to be paid for this convenience
is some extra computation, as hypotheses are assigned to all
voxels in the voxel space, including interior voxels, those that
are inside surfaces. In GVC, for example, interior voxels
never become visible and are therefore not processed.

3.4. Volumetric Optimization

3.4.1. Opaque voxels

The voxel coloring methods described above determine the
consistency of a voxel by thresholding a color matching
metric. This approach is intuitive and easy to implement.
When reconstructing scenes with near Lambertian surfaces
without abrupt color boundaries, and using accurately
calibrated cameras, one can use a small threshold. This will
produce a reconstruction that closely matches the true 3D
geometry of scene surfaces. However, when these ideal
conditions are not met, it is necessary to increase threshold so
that scene surfaces reconstruct properly.

In general, there is not a single threshold that is ideal for
reconstructing all surfaces in the scene. For a given threshold,
some surfaces could likely be more accurately reconstructed
with a lower threshold. But lowering the global threshold can
cause other surfaces to become carved that should be in the
final reconstruction. Consequently, the reconstructed model
computed by voxel coloring algorithms tends to be larger
(fatter) than necessary.

[Slabaugh 00b] presents a volumetric optimization method
that refines a reconstruction to minimize reprojection error,
the difference between a synthetic view formed by
reprojecting the reconstruction to a camera and its reference
image, summed over all views. The refinement effectively
produces a spatially varying consistency threshold, tuned for
each voxel in the scene, and results in a reconstruction that is
typically a tighter fit to the true scene geometry. The
volumetric optimization attempts to remove voxels, as well as

add them, if it yields a more favorable surface reconstruction.
The authors explore greedy and simulated annealing methods
to perform the optimization.

3.4.2. Non-opaque voxels

[Szeliski 98] describes a reconstruction algorithm that uses
partial opacity to address the problem of mixed pixels, pixels
that fall on an occlusion boundary and have a mixture of
foreground and background colors. A virtual camera
viewpoint is chosen and used to define a discretized 3D
disparity space whose coordinates are the two virtual image
coordinates plus disparity relative to the virtual image. For
each sample point in this space, the set of input image pixels
that project to the point is found. At this stage, occlusion is
disregarded. These sets of pixels are checked for color
consistency and the set of sample points where there is high
consistency is used as an initial surface. This initialization
process and the use of a disparity space force the input
cameras to be on one side of the scene. The initial surface is
considered to be opaque. Next, occlusion is taken into
account and the consistency of sample points is checked
repeatedly, as is done in some of the variations of Voxel
Coloring, until a color and binary opacity are assigned to
every sample point. Finally, the colors and opacities are
refined through optimization. The optimization favors
smooth surfaces and encourages, but does not require, binary
opacities. Furthermore, the optimization favors colors and
opacities that match the input images when composited and
projected to the camera viewpoints.

The Roxels algorithm [De Bonet 99] also attempts to
determine continuous opacity values. It is more general than
[Szeliski 98] in that it allows arbitrary camera placement and
reconstructs objects that are semi-transparent. Roxels assigns
colors and opacities to a uniform voxel space. The voxels can
be rendered to the input image viewpoints using compositing
with the over operator. Roxels also attempts to minimize the
reprojection error. De Bonet and Viola point out that direct
optimization of the colors and opacities to minimize the
reprojection error is impractical because of the number of
parameters and the fact that the error is a nonlinear function
of the opacities. They observe, however, that the image pixels

Figure 6. Multi-hypothesis voxel coloring. Hypothesis assignment for a voxel is shown on the left, where the striped voxel
is projected into each image, and hypotheses are stored for the voxel. On the right, hypotheses that are inconsistent with the
active camera's observation are removed. (The active camera is given a white color). Hypothesis removal considers the
visibility of the scene. Thus, for the configuration of the voxel space on the right, the cameras that observe yellow for the
voxel will not be considered.

Color hypotheses: yellow, blue

yellow

yellow blue

blue

yellow

yellow blue

blue

Color hypothesis: blue

are, in fact, linear combinations of the colors of the voxels
along their rays. They call the coefficients of the linear
combinations responsibilities, which can be found relatively
efficiently. De Bonet and Viola use an iterative algorithm that
solves for the responsibilities and then uses the
responsibilities to estimate the opacities.

3.5. Alternate Voxel Spaces

3.5.1. Projective Grid Space

Camera calibration can be tedious and time-consuming. To
reduce the amount of effort it takes to calibrate the cameras,
[Saito 99] proposes voxel coloring in projective grid space.
This is a voxel space where the voxels have a non-uniform
shape based on the epipolar geometry relating two views. In
their method, voxels increase in size in proportion to their
distance from the basis views. Once the projective grid space
is specified, it is easy to project points in projective grid
space into any of the remaining viewpoints. [Kimura 99] later
develops a similar approach that uses three basis images.

3.5.2. Volumetric Warping

The voxel-based reconstruction methods discussed in this
paper are effective at reconstructing objects that are relatively
close to the cameras. Applying them to large-scale scenes
that contain surfaces very far from the cameras can become
challenging, as doing so may require an unwieldy number of
voxels that becomes prohibitive to process. Furthermore, it
may be preferable to model far away objects with lower
resolution voxels. Thus, one might like a spatially adaptive
voxel size that increases away from the cameras.

[Slabaugh 00a] presents a method that warps the voxel space
so that such scenes can be modeled without an excessive
number of voxels. The method divides the voxel space into

two regions; an interior space and an exterior space, as shown
in Figure 7. The volumetric warp does not affect the voxels in
the interior space, providing backward compatibility with
previous voxel coloring algorithms, and allowing
reconstruction of objects in the foreground at a fixed voxel
resolution. Voxels in the exterior space are warped according
to a warping function that changes the size of the voxel based
on its distance from the interior space. The further a voxel in
the exterior space is located from the interior space, the larger
its size, as shown in Figure 7. Voxels on the outer shell of the
exterior space have coordinates warped to infinity, and have
infinite volume. Note that while the voxels in the warped
space have a variable size, the voxel space still has a regular
3D lattice topology. They then reconstruct a large outdoor
scene with GVC algorithm using this warped voxel space,
shown in Figure 10.

3.5.3. Two Linked Voxel Spaces

Any of the techniques discussed in this paper can reconstruct
a time-varying scene recorded by multiple cameras by
executing the algorithm once for each instant of time.
However, such an approach does not take advantage of
temporal coherency. [Vedula 00] presents a voxel coloring
method that links two time-consecutive 3D voxel spaces
together, forming a 6D space. A point in this space, a 6-
dimensional element called a hexel, is a voxel in the 3D voxel
space at time t0 linked to another voxel in the 3D voxel space
at time t1. The goal of their method is to simultaneously
reconstruct the shape and motion of the scene for the two
instants of time.

To do so, they extend the notion of photo-consistency to this
six-dimensional domain. A hexel is said to be photo-
consistent if the two voxels that constitute the hexel project to
pixels of approximately the same color in all of the images in
which they are visible. This definition of photo-consistency is
stronger than that used in voxel coloring, for it requires the
voxel project to similar colors (1) from all viewpoints, as well
as (2) at both time instants. The authors then present an
approach to sweep through the 6D space to carve hexels.
They show that this stronger consistency measure can carve
voxels that do not have consistent motion, producing better
results than are possible if a separate reconstruction is
performed at each time instant. The output of their method is
two reconstructed voxel spaces, one at time t0 and another at
time t1, as well as the motion of surfaces (scene flow)
between the two voxel spaces.

4. VOLUMETRIC PAIR-WISE FEATURE
MATCHING

4.1 Image Space Methods
A common approach to 3D scene reconstruction relies upon
the challenging task of robustly matching features between
image pairs. These methods typically employ normalized
cross-correlation along epipolar lines. Several authors have
pursued volumetric representations to assist in this task,
typically with image coordinates for two axes and a disparity
hypothesis being the third axis. The earliest example is given

Interior space
Exterior space

Figure 7. Volumetric Warping. Pre-warped (left) and
warped (right) voxel spaces are shown in two dimensions.
The voxel space is divided into two regions; an interior space
shown with dark gray voxels, and an exterior space shown
with light gray voxels. Before the warping is applied, both
regions consist of voxels of uniform size. The warping does
not affect the voxels in the interior space, while the voxels in
the exterior space increase in size further from the interior
space. The outer shell of voxels in the warped voxel space
gets warped to infinity. These voxels are represented with
arrows in the figure.

by [Marr 76] who develops a relaxation network that enforces
uniqueness and continuity constraints by introducing
inhibitory and excitatory connections between voxels
representing disparity hypotheses. [Yang 93] develops a
multi-resolution method that operates in a fine-to-coarse
manner to construct, then enhance, a disparity surface. A
dynamic programming method is developed by [Intille 94] in
a framework allowing explicit modeling of occlusions. A
coarse-to-fine approach is presented by [Chen 99] who
identifies seed voxels (those with strong evidence for a
disparity solution) that are used to search for the global
disparity surface.

Standard pair-wise matching methods are often limited for
several reasons. First, input views can only be separated by a
limited distance, or baseline, for correlation to be effective.
Second, the result of pair-wise reconstruction is at best a
2½D reconstruction. Third, occlusion processes are difficult
to model image space. Rather than approach the problem in
image space, many successful techniques work instead in
object space (i.e. 3D space). With a surface in 3D space, it is
much easier to reason about occlusion relationships, as well
as identify corresponding regions for correlation in image
space. This is one of the reasons why voxel coloring is so
effective. In the next subsection, we discuss a multi-view
stereo vision technique that works in object space using level
set theory.

4.2 Object Space Methods
Level set theory was developed by Osher and Sethian [Osher
88] to model the evolution of propagating interfaces. For 3D
surface evolution, these methods start with an initial surface,
which then moves with speed F along its normal. The goal is
to track the evolution of the surface over time. Level set
methods were initially developed for modeling flame
propagation, but have since been applied to an astonishingly
diverse array of problems [Sethian 99].

Level set methods embed this time-varying surface as the
zero level set of a function φ(x, y, z, t). Level set theory
provides an accurate and stable numerical scheme that solves
the partial differential equations (PDEs) that characterize the
motion for the surface. This scheme operates on a discrete 3D
computational grid, i.e. a voxel space. At any time ti, the
surface can be extracted from the computational grid by
identifying the zero level set, using Marching Cubes
[Lorenson 87] to extract the isosurface where φ(x, y, z, ti) = 0.

[Faugeras 98] adapts the level set method to the scene
reconstruction problem. In this approach, the initial surface is
one that encompasses the scene. This initial surface is then

evolved along its inwardly pointing normal, towards the
objects in the scene. The speed of the zero level set slows as
it approaches the true scene geometry, and attempts to lock
onto it. During the evolution, the level set formulation can
handle arbitrary topological changes, so the zero level set can
break apart and merge if necessary.

Driving the surface evolution is the speed function, which is
based on the cross-correlation of colors observed across pairs
of views. When this cross-correlation is poor, the speed is
high, which enables the zero level set to move through free
space. However, as the zero level set gets near the 3D
surfaces being reconstructed, the cross-correlation betters and
the speed slows. The visibility of the zero level set is
computed for each viewpoint, so that only the cameras that
have an unoccluded view of a point on the zero level set
contribute to the computation of the speed function of the
point. This accurate handling of occlusion is provided by the
object space approach. The results produced using this
technique are impressive, and rival the best reconstructions
achieved using voxel coloring methods. An example is
provided in Figure 8.

This level set approach and voxel coloring approaches have
many commonalities. First, both work on a dense voxel grid,
and move an initial surface to the true scene geometry. Both
of these methods use a color similarity measure to guide the
reconstruction. Also, both use the correct visibility of the
scene, and can account for arbitrary topological changes
during reconstruction. These methods differ mainly in that
the level set method was developed in an analytic framework
in which the surface propagation is characterized by PDEs.
This framework provides an analytic computation of the
surface, as well as its intrinsic geometric properties, such as
the normal vector and curvature.

5. CONCLUSION
We have presented a survey of methods for volumetric scene
reconstruction, a topic that has received considerable interest
in the past few years. We have discussed algorithms in three
broad classes. The first class reconstructs a visual hull using
geometric intersections, and easily reconstructs non-
Lambertian scenes. The second class that we survey, voxel
coloring, reconstructs a photo hull using color consistency
measures. By taking advantage of the color information
available in the images, voxel coloring methods can produce
a reconstruction that is tighter fit to the true scene geometry
than visual hull methods. Additionally, voxel coloring
methods do not require that the images be segmentable into
foreground / background regions. However, modeling non-
Lambertian scenes becomes more difficult in this context.

Figure 8. Reconstruction (left) and new view synthesis (right) of a two-headed object using the level set method. Images
courtesy of Olivier Faugeras and Renaud Keriven.

Finally, we examine methods based on pair-wise matching.
We look at both image space and object space approaches,
the latter of which has advantages in determining occlusion
relationships and regions for correlation matching. We
discuss a level set method based on PDEs that model surface
propagation.

Volumetric scene reconstruction has made significant
progress over the last few decades, and many techniques have
been proposed and refined. Future work in this field may
include more sophisticated handling of non-Lambertian
scenes, new methods for reconstruction of time-varying
scenes, and more computationally efficient methods for real-
time reconstruction.

6. REFERENCES
[Chen 99] Q. Chen and G. Medioni, “A Volumetric Stereo Matching
Method: Application to Image-Based Modeling,” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, June
1999, pp. 29-34.

[Chien 84] C. H. Chien and J. K. Aggarwal, “A Volume/Surface
Representation,” Proceedings of the International Conference on
Pattern Recognition, Montreal, Canada, July 30 – Aug. 2, 1984, pp.
817-820.

[Chien 86] C. H. Chien and J. K. Aggarwal, “Volume / Surface
Octrees for the Representation of Three-Dimensional Objects,”
Computer Vision, Graphics, and Image Processing, Vol. 36, No. 1,
Oct. 1986, pp. 100-113.

[Collins 96] R. Collins, “A Space-Sweep Approach to True Multi-
Image Matching,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 18-20, 1996, pp. 358-363.

[Culbertson 99] W. B. Culbertson, T. Malzbender, and G. Slabaugh,
“Generalized Voxel Coloring,” Proceedings of the ICCV Workshop,
Vision Algorithms Theory and Practice, Springer-Verlag Lecture
Notes in Computer Science 1883, September 1999, pp. 100-115.

[De Bonet 99] J. De Bonet and P. Viola, “Roxels: Responsibility
Weighted 3D Volume Reconstruction,” Proceedings of the IEEE
International Conference on Computer Vision, 1999, Vol. 1, pp. 415-
425.

[Eisert 99] P. Eisert, E. Steinbach, and B. Girod, “Multi-Hypothesis,
Volumetric Reconstruction of 3-D Objects From Multiple Calibrated
Camera Views,” Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, 1999, pp. 3509-3512.

[Faugeras 96] O. Faugeras, Three-Dimensional Computer Vision, A
Geometrical Viewpoint, MIT Press, 1996.

[Faugeras 98] O. Faugeras and R. Keriven, “Variational Principles,
Surface Evolution, PDE's, Level Set Methods, and the Stereo
Problem,” IEEE Transactions on Image Processing, Vol. 7, No. 3,
March 1998, pp. 336-344.

[Fromherz 94] T. Fromherz and M. Bichsel, “Shape from Contours
as Initial Step in Shape from Multiple Cues,” ISPRS Commission III
Symposium on Spatial Information from Digital Photogrammetry
and Computer Vision, Munich, Germany, 1994, pp. 240-256.

[Fromherz 95] T. Fromherz and M. Bichsel, “Shape from Multiple
Cues: Integrating Local Brightness Information,” Fourth

International Conference for Young Computer Scientist, ICYCS 95,
Beijing, P. R. China, 1995, pp. 855-862.

[Fua 95] P. Fua and Y. G. LeClerc, “Object-Centered Surface
Representations: Combining Multiple-Image Stereo and Shading,”
International Journal of Computer Vision, Vol. 16, No. 1, Sept.
1995, pp. 35-56.

[Garcia 98] B. Garcia and P. Brunet, “3D reconstruction with
Projective Octrees and Epipolar Geometry,” Proceedings of the IEEE
International Conference on Computer Vision, Jan. 4-7, 1998, pp.
1067-1072.

[Gortler 96] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen,
“The Lumigraph,” Proceedings of A.C.M. SIGGRAPH, 1996, pp. 43-
54.

[Greenleaf 70] J. F. Greenleaf, T. S. Tu, and E. H. Wood, “Computer
Generated 3-D Oscilloscopic Images and Associated Techniques for
Display and Study of the Spatial Distribution of Pulmonary Blood
Flow,” IEEE Transactions on Nuclear Science, Vol. 17, No. 3, June
1970, pp. 353-359.

[Hartley 00] R. Hartley and A. Zisserman, Multiple View Geometry,
Cambridge University Press, 2000.

[Kaufman 91] A. Kaufman, Volume Visualization, IEEE Computer
Society Press, Los Alamitos, California, 1991.

[Kimura 99] M. Kimura, H. Saito, and T. Kanade, “3D Voxel
Construction Based on Epipolar Geometry,” Proceedings of the
International Conference on Image Processing, 1999, pp. 135-139.

[Kutulakos 00a] K. N. Kutulakos, “Approximate N-View Stereo,”
Proceedings of the European Conference on Computer Vision,
Springer Lecture Notes in Computer Science 1842, June/July 2000,
Vol. 1, pp. 67-83.

[Kutulakos 00b] K. N. Kutulakos and S. M. Seitz, “A Theory of
Shape by Space Carving,” International Journal of Computer Vision,
Vol. 38, No. 3, July 2000, pp. 199-218.

[Kutulakos 98] K. N. Kutulakos and S. M. Seitz, “What Do N
Photographs Tell Us about 3D Shape?” TR680, Computer Science
Dept. U. Rochester, January 1998.

[Laurentini 94] A. Laurentini, “The Visual Hull Concept for
Silhouette-Based Image Understanding,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 16, No. 2, Feb.
1994.

[Lorenson 87] W. Lorenson and H. Cline, “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm,” Proceedings of
A.C.M. SIGGRAPH, 1987, pp. 163-170.

[Luong 96] Q. Luong and O. Faugeras, “The Fundamental Matrix:
Theory, Algorithms and Stability Analysis,” International Journal on
Computer Vision, Vol. 17, No. 1, Jan. 1996, pp. 43-75.

[Marr 76] D. Marr and T. Poggio, “Cooperative Computation of
Stereo Disparity,” Science, Vol. 194, No. 4262, Oct. 1976, pp. 283-
287.

[Martin 83] W. Martin and J. K. Aggarwal, “Volumetric Descriptions
of Objects from Multiple Views”, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 5, No. 2, March 1983, pp.
150-158.

[Massone 85] L. Massone, P. Morasso, and R. Zaccaria, “Shape from
Occluding Contours,” Proceedings of the SPIE Conference on
Intelligent Robots and Computer Vision, SPIE Vol. 521, Nov. 1985,
pp. 114-120.

[Max 96] N. Max, X. Pueyo, and P. Schroder, “Hierarchical
Rendering of Trees from Precomputed Multi-Layer Z-Buffers,”
Proceedings of the Eurographics Rendering Workshop, 1996, pp.
165-174.

[Moezzi 96] S. Moezzi, A. Katkere, D. Kuramura, and R. Jain,
“Reality Modeling and Visualization from Multiple Video
Sequences,” IEEE Computer Graphics and Applications, Vol. 16,
No. 6, Nov. 1996, pp. 58-63.

[Moezzi 97] S. Moezzi, L. Tai, and P. Gerard, “Virtual View
Generation for 3D Digital Video,” IEEE Multimedia, Vol. 4, No. 1,
Jan. - Mar. 1997, pp. 18-26.

[Osher 88] S. Osher and J. Sethian, “Fronts Propagating with
Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi
Formulations,” Journal of Computational Physics, 79, 1988, pp. 12-
49.

[Pentland 90] A. Pentland, “Automatic Extraction of Deformable
Part Models,” International Journal of Computer Vision, Vol. 4, No.
2, March 1990, pp. 107-126.

[Potmesil 87] M. Potmesil, “Generating Octree Models of 3D
Objects from Their Silhouettes in a Sequence of Images,” Computer
Vision, Graphics and Image Processing, Vol. 40, No. 1, Oct. 1987,
pp. 1-29.

[Prock 98] A. Prock and C. Dyer, “Towards Real-Time Voxel
Coloring,” Proceedings of the DARPA Image Understanding
Workshop, 1998, pp. 315-321.

[Saito 99] H. Saito and T. Kanade, “Shape Reconstruction in
Projective Grid Space from Large Number of Images”, Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, June 23-25, 1999, Vol. 2, pp. 49-54.

[Seitz 95] S. Seitz and C. Dyer, “Complete Scene Structure from
Four Point Correspondences,” Proceedings of the IEEE International
Conference on Computer Vision, June 1995, pp. 330-337.

[Seitz 97] S. Seitz and C. Dyer, “Photorealistic Scene Reconstruction
by Voxel Coloring,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, June 1997, pp. 1067-
1073.

[Seitz 99] S. Seitz and C. Dyer, “Photorealistic Scene Reconstruction
by Voxel Coloring,” International Journal of Computer Vision, Vol.
35, No. 2, 1999, pp. 151-173.

[Sethian 99] J. Sethian, Level Set Methods and Fast Marching
Methods, Cambridge University Press, Second Edition, 1999.

[Shade 98] J. Shade, S. Gortler, L. He, and R. Szeliski, “Layered
Depth Images,” Proceedings of A.C.M. SIGGRAPH, 1998, pp. 231-
242.

[Shashua 95] A. Shashua and M. Werman, “On the Trilinear Tensor
of Three Perspective Views and its Underlying Geometry,”
Proceedings of the IEEE International Conference on Computer
Vision, 1995, pp. 920-925.

[Shneier 84] M. Shneier, E. Kent, and P. Mansbach, “Representing
Workspace and Model Knowledge for a Robot with Mobile

Sensors,” Proceedings of the International Conference on Pattern
Recognition, Montreal, Canada, July 1984, pp. 199-202.

[Slabaugh 00a] G. Slabaugh, T. Malzbender, and W. B. Culbertson,
“Volumetric Warping for Voxel Coloring on an Infinite Domain,''
Proceedings of the Workshop on 3D Structure from Multiple Images
for Large-scale Environments (SMILE), July 2000, pp. 41-50.

[Slabaugh 00b] G. Slabaugh, W. B. Culbertson, T. Malzbender, and
R. Schafer, “Improved Voxel Coloring Via Volumetric
Optimization,” Center for Signal and Image Processing Technical
Report TR3, Georgia Institute of Technology, 2000.

[Srivastava 90] S. Srivastava and N. Ahuja, “Octree Generation from
Object Silhouettes in Perspective Views,” Computer Vision,
Graphics and Image Processing, Vol. 49, No. 1, Jan. 1990, pp. 68-
84.

[Steinbach 00a] E. Steinbach, B. Girod, P. Eisert, and A. Betz, “3-D
Object Reconstruction Using Spatially Extended Voxels and Multi-
Hypothesis Voxel Coloring,” Proceedings of the International
Conference on Pattern Recognition, 2000, Vol. 1, pp. 774-777.

[Steinbach 00b] E. Steinbach, B. Girod, P. Eisert, and A. Betz, “3-D
Reconstruction of Real-World Objects Using Extended Voxels,”
Proceedings of the International Conference on Image Processing,
2000, Vol. III, pp. 138-141.

[Szeliski 93] R. Szeliski, “Rapid Octree Construction from Image
Sequences,” Computer Vision, Graphics and Image Processing:
Image Understanding, Vol. 58, No. 1, July 1993, pp. 23-32.

[Szeliski 99] R. Szeliski and P. Golland, “Stereo Matching with
Transparency and Matting,” International Journal of Computer
Vision, Vol. 32, No. 1, 1999, pp. 45-62.

[Terzopoulos 91] D. Terzopoulos and D. Metaxas, “Dynamic 3D
Models with Local and Global Deformations: Deformable
Superquadrics,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 13, No. 7, July 1991, pp. 703-714.

[Tsai 87] R. Tsai, “A Versatile Camera Calibration Technique for
High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf
TV Cameras and Lenses,” IEEE Transactions on Robotics and
Automation, Vol. 3, No. 4, Aug. 1987, pp. 323-344.

[Vedula 00] S. Vedula, S. Baker, S. Seitz, and T. Kanade, “Shape
and Motion Carving in 6D,” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2000, Vol. 2, pp. 592-
598.

[Veenstra 86] J. Veenstra and N. Ahuja, “Efficient Octree Generation
from Silhouettes,” Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Miami Beach, Florida, June 1986,
pp. 537-542.

[Weghorst 84] H. Weghorst, G. Hooper, D. P. Greenberg,
“Improving Computational Methods for Ray Tracing”, ACM
Transactions on Graphics, Vol. 3, No. 1, January 1984, pp. 52-69.

[Yang 93] Y.Yang, A. Yuille, and J. Lu, “Local, Global, and
Multilevel Stereo Matching,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 1993, pp. 274-279.

Figure 10. On the left is one of ten panoramic photographs used in a reconstruction using a warped voxel space. On the right is
a new view rendered from the reconstruction.

(a) (b)

(c) (d)

Figure 9. Scene reconstruction and new view synthesis. Reference views are shown in (a) and (c), new views synthesized
from the reconstruction are shown in (b) and (d). The Voxel Coloring algorithm was used to produce (b). GVC-IB was used
to produce (d).

