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ABSTRACT 
Scene reconstruction, the task of generating a 3D model of a scene given multiple 2D photographs taken of 
the scene, is an old and difficult problem in computer vision. Since its introduction, scene reconstruction has 
found application in many fields, including robotics, virtual reality, and entertainment. Volumetric models 
are a natural choice for scene reconstruction. Three broad classes of volumetric reconstruction techniques 
have been developed based on geometric intersections, color consistency, and pair-wise matching. Some of 
these techniques have spawned a number of variations and undergone considerable refinement. This paper is 
a survey of techniques for volumetric scene reconstruction. 
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1.  INTRODUCTION 
We present a survey of techniques for volumetric scene 
reconstruction. In computer vision, scene reconstruction is an 
old and challenging problem whose aim is to create a 3D 
model of a scene, given 2D images of the scene. An 
important early application was robot navigation. Multimedia 
computing has generated renewed interest in the problem and 
has shifted the emphasis to generating new, “virtual” views 
of scenes. Applications include virtual reality, games, and 
special effects for motion pictures. In this paper, we focus on 
techniques developed primarily for reconstructing natural, 
real world scenes using off-the-shelf cameras. Therefore, we 
do not cover medical imaging or active light methods (such 
as those that use laser scanners) as these methods require 
specialized hardware. 

Volumetric data representations have been gaining 
importance since their introduction in the early 70’s in the 
context of 3D medical imaging [Greenleaf 70]. The 
exponential growth of computational storage and processing 
during the last three decades have enabled these 
representations to become practical alternatives to surface-
based geometrical representations for many applications in 
computer graphics and scientific visualization [Kaufman 91]. 
Volumetric representations have also become an important 
tool in the field of computer vision. In particular, volumetric 
models provide a flexible and powerful representation for 3D 
objects inferred from (typically) multiple images of a scene. 

Unfortunately there are some differences in the meaning of 
the word “volumetric” between the disciplines of computer 
graphics/scientific visualization and that of computer vision. 
In both cases, the term volumetric implies a representation 
that describes not only the surface of some region, but also 
the space that the region encloses. However in computer 
graphics, the term volumetric further implies a sampled 
representation. Various sampling patterns such as regular, 
non-isotropic, curvilinear, and unstructured are 
accommodated, and many of these allow extensions of signal 
and image processing methods to be applied. However, the 
term volumetric in the field of computer vision implies no 
such sampling; for example polyhedral representations are 
considered volumetric in this context. Papers such as 
[Pentland 90] and [Terzopoulos 91], described by vision 
researchers as involving volumetric representations [Fua 95], 
are examples of non-sampled representations. In this paper 
we restrict our usage of the term volumetric to imply sampled 
systems, those involving voxels, following the convention of 
the graphics and scientific visualization community. 

Currently, several restrictions on the scenes and the input 
photographs are required to make reconstruction tractable. 
All the techniques described here require calibrated input 
images, which means we know where any 3D point in the 
scene projects in each image. ([Saito 99] and [Garcia 98] can 
exploit a somewhat weaker form of calibration.) Image 
calibration is itself a challenging problem with a large 
literature devoted to it [Hartley 00]. With the exception of 
[Szeliski 99] and [De Bonet 99], the techniques assume all 
surfaces are entirely opaque. The visual hull techniques 
require that foreground objects in the input images can be 
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segmented from the background; the rest of the techniques 
assume that surfaces are Lambertian (they reflect light 
equally in all directions) or are nearly so. 

The rest of this paper is organized as follows. Section 2 
discusses methods for volumetric reconstruction of visual 
hulls, which are based on geometric intersection. Section 3 
considers voxel coloring methods, which rely upon the 
consistency of colors observed across images. Finally, 
Section 4 discusses a class of techniques based on pair-wise 
matching. 

2.  VOLUMETRIC VISUAL HULLS  
The earliest attempts at volumetric model reconstruction from 
photographs are those that approximate the visual hull of the 
imaged objects. This technique is also referred to as volume 
intersection in the vision literature. The visual hull of an 
object can be described as the maximal shape that gives the 
same silhouette as the actual object for all views outside the 
convex hull of the object [Laurentini 94]. Volume 
intersection methods use a finite set of viewpoints, and 
compute what we will call the inferred visual hull, as shown 
in Figure 1. Typically one starts with a set of source images 
that are simply projections of the object onto N known image 
planes. Each of these N images must then be segmented into 
a binary image containing foreground regions to which the 
object projects; everything else is background. If these 
foreground regions are then back-projected into 3D space and 
intersected, the resultant volume is the inferred visual hull of 
the object.  

 

 

 

 

 

 

 

The inferred visual hull has several interesting properties. 
First, although it is only an approximation to the true shape of 
the object, it is guaranteed to enclose the object. Second, in 
3D the inferred visual hull of an object can be a better or 
worse approximation of the object than the convex hull 
depending on the geometry of the object and the range of the 
viewpoints. Third, the size of the inferred visual hull 
decreases monotonically with the number of images used. 
However, even when an infinite number of images are used, 
not all concavities can be modeled with a visual hull. For the 
rest of this paper we will use the term “visual hull” to mean 
the inferred visual hull computed from N images. 

The earliest work reporting a volumetric representation of the 
visual hull is due to Martin and Aggarwal [Martin 83]. They 
recommend simple intensity thresholding of each input image 

to perform segmentation into object foreground and 
background. A connected component analysis of the resulting 
binary image yields the silhouette. An initial parallelogram 
structure is then extracted by combining orthographic back-
projections from multiple images. This is further processed 
into a volume segment representation, which is a set of line 
segments parallel to one axis of their coordinate system. This 
representation is then further processed into a surface 
description when desirable. 

Further work in Aggarwal’s lab led to explorations of octree 
representations for the visual hull [Chien 84, Chien 86]. The 
method starts with three binary images from orthogonal 
viewing directions. These are converted to three quadtree 
representations, which are subsequently merged into an 
octree representation of the visual hull. A disadvantage of 
this approach is the limitation on the number of input images 
and the strict requirement on the orthogonality of their optical 
axes. This limits the fidelity of the reconstructed volume. 
Additionally, the method appears limited to cameras with 
parallel projection transforms. Contemporary work by 
Shneier et al. [Shneier 84] also proposes building octrees 
from segmented images, however no examples were given 
since their implementation was not complete. For the special 
case of source images being available from 13 prescribed 
orthographic viewpoints, an octree reconstruction is 
described in [Veenstra 86].  

An early implementation on a PDP11 by [Massone 85] used 
actual photographic input from vidicon cameras to carve the 
visual hull from regularly sampled voxels. This method is 
flexible enough to handle both perspective and parallel 
projections. 

[Potmesil 87] also reconstructs an octree representation of 
objects from multiple images, now handling arbitrary 
viewpoints and perspective projections. He divides the task 
into three components. First he generates conic octree 
volumes from silhouettes of the objects. Second, he combines 
sequences of these conic octree volumes into a global model. 
Third, a 3D connected components algorithm is used to label 
individual objects. Surface normals and textures are then 
mapped onto the object with surface normals computed from 
the local octree topology. Textures are sampled from the 
original source images, averaging being performed when 
multiple images are available for a particular surface point. 
[Srivastava 90] also constructs an octree from arbitrary 
perspective images. They also propose thresholding for 
segmentation and then approximate the boundary of the 
silhouette polygonally. The polygons are then decomposed 
into convex components and efficient octree intersection tests 
with the back-projections are employed. Source images 
presented are computer generated, not photographic. 

[Szeliski 93] builds volumetric models directly from actual 
photographs. Although the approach is similar to the work of 
Potmesil, there are numerous significant differences. First, 
where Potmesil builds a separate octree per image and then 
combines them, Szeliski refines a single octree model with 
each successive frame. This allows significant increases in 
processing speed. Additionally Szeliski is the first to address 
many practical issues in this context, such as performing 

Figure 1. Object (hatched) and its inferred visual hull (bold).



adaptive background subtraction and morphological 
operations during the segmentation stage, and automatic 
determination of turntable orientation. His work is also 
leveraged in the Lumigraph system [Gortler 96] for finding 
approximate geometry to improve image quality during scene 
rendering.  A variant of the octree representation for volume 
intersection is given by [Garcia 98]. He uses a projective 
octree representation, defined by selecting two images with 
optical axes approximately at right angles to each other. 
Projective projections of these reference images define a 3D 
coordinate system on which the octree is defined. 
Interestingly, since only the fundamental matrix [Luong 96] 
is computed between these images by selecting 
correspondences, the actual geometrical deformation of the 
octree is not explicit. Binary segmentations from additional 
images can be incorporated by computing the trilinear tensor 
[Shashua 95] between such an image and the two reference 
images. A similar projective grid space is also used for voxel 
coloring in [Saito 99] and is discussed later in the paper. 

[Seitz 95] presents a novel Hough-like voting scheme that 
back-projects image features into a volumetric space. 
Although explicit voxels are not maintained, bins 
corresponding to regions of space containing features are 
allocated as needed. A contribution of the work is an implicit 
formulation that permits reconstruction of both point and line 
features within a common three-dimensional parameter 
space. The output of this method is a 3D representation of 
features, and an additional process would be needed for 
model reconstruction. This also applies to the work of 
[Collins 96] who back-projects features onto a plane that 
sweeps through space. Like Seitz’s work, a full volume is not 
maintained at any point in time to save memory. 

Work by Fromherz [Fromherz 94] sculpts a volume from a 
voxel array that is uniformly spaced with voxel projections 
on the scale of pixels in the source images. Results on a 
mannequin are verified by comparing with computed 
tomography scans. An automatic binary segmentation is used 
on the source images. After computing this volume 
representing the visual hull, a further refinement is performed 
that uses luminance information in the original source images 
[Fromherz 95].  At each iteration, surface voxels are 
projected into sequential image pairs from a rotation 
sequence. If the luminance of those pixels differ an amount 
greater than a threshold, the voxel is removed from the 
model. This work is the first example of luminance-based 
carving that we are aware of. 

During the later 90’s volumetric visual hulls were computed 
from video streams originating from multiple cameras for the 
first time. [Moezzi 96] describes a system of 17 cameras 
centered on a 1m x 1m x 2m dynamic scene. Each frame is 
segmented into a binary image employing background 
subtraction techniques with careful control of lighting. 
Volume intersection is employed offline to construct a visual 
hull model composed of voxels that measure 1 cubic cm. 
Subsequent isosurface extraction yields a polygonal surface 
where colors are assigned to each polygon from area-
weighted contributions from the source images. Improved 
surface coloring methods are introduced in [Moezzi 97].  

3. VOXEL COLORING METHODS 

3.1.  Color Consistency 
Many reconstruction algorithms use color consistency, 
introduced by [Seitz 97], to distinguish surface points from 
other points in a scene. As shown in Figure 2, cameras with 
an unoccluded view of a non-surface point see surfaces 
beyond the point, and hence inconsistent (i.e., dissimilar) 
colors, in the direction of the point. The consistency of a set 
of colors can be defined as their standard deviation or, 
alternatively, the maximum of the L1, L2, or L∞ norm 
between all pairs of the colors. Any of these measures can be 
computed for the colors of the set of pixels that can see a 
voxel; the voxel is considered to be on a surface if the 
measure is less than some threshold. 

Real world scenes often include surfaces with abrupt color 
boundaries. Voxels that span such boundaries are likely to be 
visible from a set of pixels that are inconsistent in color. 
Hence, for such voxels, color consistency can fail as a surface 
test. This problem can be solved with an adaptive threshold 
that increases when voxels appear inconsistent from single 
images.  

3.2.  Restricted Camera Placement 
[Fromherz 95] performed reconstructions by combining a 
consistency-based surface test, except using only luminance, 
with volume intersection. Seitz and Dyer [Seitz 97] 
demonstrated that a sufficiently colorful scene could be 
reconstructed using full-color-based consistency alone, 
without volume intersection. They called their algorithm 
Voxel Coloring. 

The Voxel Coloring algorithm begins with a reconstruction 
volume of initially opaque voxels that encompasses the scene 
to be reconstructed. As the algorithm runs, opaque voxels are 
tested for color consistency and those that are found to be 
inconsistent are carved, i.e. made transparent. The algorithm 
stops when all the remaining opaque voxels are color-
consistent. When these final voxels are assigned the colors 
they project to in the input images, they form a model that 
closely resembles the scene. 
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Figure 2. Color consistency can be used to distinguish 
points on a surface from points not on a surface. On the left, 
two cameras see consistent colors at a point on a surface. On 
the right, the cameras see inconsistent colors at a point not 
on the surface. 



 
Figure 3. Using occlusion bitmaps.  On the left, a voxel is found to be consistent, and a bit in the occlusion bitmap is set for 
each pixel in the projection of a consistent voxel into each image.  On the right, visibility of the lowest voxel is established by
examining the pixels to which the voxel projects.  These pixels are shown in black.  If the occlusion bits have been set for these 
pixels, then the voxel is occluded, as is the case for the two middle cameras.  
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As Voxel Coloring progresses, opaque voxels occlude each 
other from the input images in a complex and constantly 
changing pattern. To test the color consistency of a voxel, its 
visibility (the set of input image pixels that can see it) must 
first be determined. Since this is done many times during a 
reconstruction, it must be performed efficiently. Calculating 
visibility is a subtle part of algorithms based on color 
consistency and several interesting variations have been 
developed. 

To simplify the computation of voxel visibility and to allow a 
scene to be reconstructed in a single scan of the voxels, Seitz 
and Dyer imposed what they called the ordinal visibility 
constraint on the camera locations. It requires that the 
cameras be placed such that all the voxels are visited in a 
single scan in near-to-far order relative to every camera. 
Typically, this condition is met by placing all the cameras on 
one side of the scene and scanning voxels in planes that are 
successively further from the cameras. Thus, the transparency 
of all voxels that might occlude a given voxel is determined 
before the given voxel is checked for color consistency. This 
insures that the visibility of a voxel stops changing before it 
needs to be computed, which is important since every voxel 
is visited only once. An occlusion bit map, with one bit per 
input camera pixel, is used to account for occlusion. These 
bits are initially clear. When a voxel is found to be consistent, 
meaning it will remain opaque, all the occlusion bits in the 
voxel’s projection are set, as shown in Figure 3. The visibility 
set of a voxel is simply the pixels in the voxel’s projection 
whose occlusion bits are clear. 

The runtime for Voxel Coloring is related to the number of 
voxels. [Prock 98] achieves as much as a 40× speedup of the 
algorithm using multiple voxel resolutions. First, a rapid 
reconstruction is performed using coarse voxels. Some voxels 
will be mostly, but not entirely, unoccupied by scene objects. 
These voxels are likely to be carved yet, when subdivided 
into smaller voxels, they may contain small voxels that are 
mostly occupied. Hence, carved voxels that are adjacent to 
uncarved ones are added back into the model, i.e. are made 
opaque. Then the model is subdivided, usually by replacing 
each opaque voxel with eight smaller ones. This is used as 
the starting point for another pass of Voxel Coloring. These 

steps are repeated as long as warranted by the image 
resolutions. 

3.3.  Arbitrary Camera Placement 
Voxel Coloring is elegant and efficient. However, the ordinal 
visibility constraint is a significant limitation. Since the 
voxels can be ordered from near to far relative to all the 
cameras, the cameras cannot surround the scene. So, some 
surfaces will not be visible in any image and hence cannot be 
reconstructed. Because it is often desirable to obtain a model 
that resembles the scene from every direction, several 
variations of Voxel Coloring have been developed to 
circumvent this limitation. If we surround the scene with 
cameras, we give up the ordinal visibility constraint. Without 
the constraint, there is no order in which to scan voxels that 
guarantees their visibility will not change after we check their 
color consistency. Hence, algorithms that allow arbitrary 
camera placement must test voxels repeatedly for consistency 
until their visibility stabilizes.  

Figure 4 gives the general approach for Voxel Coloring 
algorithms that allow arbitrary camera placement. In the inner 
loop, the visibility of voxels is found, their consistency is 
checked, and they are carved if they are found to be 
inconsistent. If one voxel is carved, the visibility of other 
voxels potentially changes, invalidating any consistency tests 
they may have passed. Hence, there is an outer loop that 
repeats the consistency checking until no carving occurs in 
the inner loop. No carving occurs on the final iteration of the 
outer loop so no testing is invalidated and the final set of 
opaque voxels is guaranteed to be consistent. 

When the algorithm in Figure 4 begins to run, the model 
bears little resemblance to the scene. Yet, the algorithm 
computes the visibility for voxels, and carves those found to 
be inconsistent, based on this model. It is reasonable to 
wonder if the algorithm might fail due to carving voxels early 
on that would be color consistent in the final model. 
[Kutulakos 98] has shown that, in fact, this cannot happen if a 
suitable consistency measure is used. The measure must be 
monotonic: if it finds a set of pixels to be inconsistent, then it 
will find any superset of those pixels to also be inconsistent. 
Since the algorithm only changes opaque voxels to 



transparent and never vice versa, remaining opaque voxels 
can only become more visible as the algorithm runs and the 
pixels that can see a voxel at one point in time will be a 
subset of those that see the voxel at any later time. Thus, if 
the monotonic consistency measure ever finds a voxel to be 
inconsistent, the voxel will also be inconsistent in the final 
model. Therefore, the algorithm never carves a voxel it 
shouldn’tone that would be consistent in the final 
modeland so we say carving is conservative. Furthermore, 
Kutulakos and Seitz proved that the algorithm finds the 
unique color consistent model that is a superset of any other 
consistent model.  They call this unique model the photo hull. 

3.3.1.  Space carving 

[Kutulakos 98] describes an implementation of Figure 4 
called Space Carving. It always scans voxels for color 
consistency by evaluating a plane of voxels at a time, as is 
often done with Voxel Coloring. Unlike Voxel Coloring, 
Space Carving uses multiple scans, typically along the 
positive and negative directions of each of the three axes. 
Space Carving forces the scans to be near-to-far, relative to 
the cameras, by using only images whose cameras have 
already been passed by the moving plane. Thus, when a voxel 
is evaluated, the transparency is already known of other 
voxels that might occlude it from the cameras currently being 
used. Because carving is conservative, the set of uncarved 
voxels is a shrinking superset of the desired color-consistent 
model as the algorithm runs. 

Space Carving achieves the goal of allowing arbitrary camera 
placement but only implements the pseudocode in Figure 4 
approximately. Space Carving never carves voxels it 
shouldn’t but it is likely to produce a model that includes 
some color-inconsistent voxels. This is because, during 
scanning, cameras that are ahead of the moving plane are not 
used for consistency checking, even when the voxels being 
checked are visible from those cameras. Hence, the color 
consistency of a voxel is, in general, never checked over the 
entire set of images from which it is visible. (A later paper, 
[Kutulakos 00b], describes additional bookkeeping that 
enables Space Carving to compute visibility exactly.) 

In a practical setting, the camera calibration is not precisely 
known, so the visible pixels to which a voxel projects in an 
image can contain incorrect pixels. [Kutulakos 00a] presents 

a variation of space carving called “approximate space 
carving” that addresses this problem of inaccurate camera 
calibration. When evaluating a voxel’s consistency, this 
method considers a disk of radius r in each image, centered at 
the projection of the voxel center. If there is a pixel color that 
appears in all disks, then the voxel is said to be r-consistent, 
and remains in the volume. Otherwise, the voxel is carved. 
Using a larger value of r allows one to reconstruct the scene 
with poorly calibrated cameras. By reconstructing the scene 
with a range of decreasing values of r, a set of nested 
reconstructions are found, each of which is a tighter bound on 
the true 3D geometry being reconstructed. 

3.3.2.  Generalized Voxel Coloring 

[Culbertson 99] describes a reasonably efficient and simple 
implementation of Figure 4, called Generalized Voxel 
Coloring (GVC), that computes visibility exactly and hence, 
yields a color consistent model. They provide experimental 
results that show that exact visibility, when compared with 
the approximate visibility computed by Space Carving, can 
result in better looking reconstructions that are numerically 
more consistent with the input images. 

Two variants of the algorithm, called GVC-IB and GVC-
LDI, have been developed. They use different data structures, 
called item buffers (IBs) [Weghorst 84] and layered depth 
images (LDIs) [Max 96] [Shade 98], to compute the visibility 
of voxels. See Figure 5. An item buffer records, for every 
pixel in an image, the surface voxel that is visible from the 
pixel. An LDI records, for every pixel in an image, a depth-
sorted list of all surface voxels that project to the pixel. The 
information in an LDI is a superset of the information in an 
item buffer and generally consumes considerably more 
memory. As GVC-IB runs, an item buffer for each input 
image can be computed by rendering, using Z-buffering, the 
current set of surface voxels to the image viewpoint. Unique 
voxel identifiers are rendered to the item buffer in place of 
the colors normally rendered with Z-buffering. The rendering 
can be performed using software or a hardware graphics 
accelerator. LDIs are computed similarly but, instead of using 
Z-buffering to find the voxel closest to each pixel, all surface 
voxels that project to a pixel are inserted in sorted order in a 
list for the pixel. 

The visible pixels to which a voxel projects in an image are 
found as follows. First, the voxel is scan-converted to find the  

1 set all voxels opaque
2 loop {
3 AllVoxelsConsistent = TRUE
4 for every opaque voxel V {
5 find the set S of input image pixels from which V is visible
6 if S has consistent color {
7 assign V the average color of all pixels in S
8 } else {
9 AllVoxelsConsistent = FALSE
10 set V to be transparent
11 }
12 }
13 if AllVoxelsConsistent = TRUE
14 quit
15 }

Figure 4. Pseudocode for Voxel Coloring algorithms with unconstrained cameras. 



pixels in the voxel’s projection. In the GVC-IB case, the 
voxel is visible from the subset of these pixels whose item 
buffer values match the voxel’s identifier. The same method 
can be used to find the visibility of a voxel in GVC-LDI since 
the nearest voxel in a pixel’s LDI list is the same voxel that 
would be recorded for the pixel in an item buffer. 

Since carving a voxel can change the visibility of other 
voxels, carving invalidates the item buffers. Hence, it may 
seem reasonable to compute new item buffers whenever a 
voxel is carved. This indeed produces correct results but is 
very slow. Fortunately, because carving is conservative, the 
item buffers can be updated less frequently, and the resulting 
out-of-date item buffers can be used for carving, without 
carving voxels that should not be carved. On the last 
iteration, the item buffers remain valid so the final set of 
opaque voxels is consistent. It is convenient and efficient to 
update the item buffers in the outer loop, after line 3 in Figure 
4. 

Carving also invalidates an LDI. However, an LDI can be 
updated incrementally with minimal computation. Voxels 
may be added to, or deleted from, an LDI by first finding the 
pixels in the voxel’s projection and then adding or deleting 
the voxel from the LDI lists for those pixels. Hence, LDIs are 
updated immediately after carving occurs in GVC-LDI. The 
chief benefit of using LDIs, which compensates for their 
memory needs, is that they make it possible to tell precisely 

which voxels change visibility after a voxel is carved. When 
LDIs are updated, any voxel that moves into or out of the 
“nearest” position in a pixel’s LDI list has different visibility 
after the update. It is only necessary to recheck a voxel’s 
consistency if its visibility changes. Using item buffers, there 
is no efficient way to determine which voxels have increased 
visibility after carving occurs, so all voxels in the current 
model must have their consistency rechecked. Thus, GVC-
LDI performs many fewer consistency checks during a 
reconstruction than GVC-IB, but this comes at the expense of 
increased memory use. A GVC-IB reconstruction is shown in 
Figure 9. 

3.3.3.   Multi-Hypothesis Voxel  Coloring 

[Eisert 99] has proposed a multi-hypothesis voxel coloring 
technique. A hypothesis is a possible coloring of a voxel.  
Their approach begins with a hypothesis assignment step, 
which identifies a set of hypotheses for each voxel. Then 
their algorithm narrows down the hypotheses during a 
hypothesis removal step, which carves inconsistent voxels.  
The surface voxels that remain constitute the volumetric 
reconstruction. 

Hypothesis assignment begins by determining the color of the 
pixel to which a voxel center projects into each image. These 
pixel colors are compared for all pairs of views. If at least 
two cameras see a consistent color for the voxel, a hypothesis 
is assigned to the voxel. Consistency is determined by 
thresholding a distance measure in RGB space [Eisert 99] or 
normalized RGB space [Steinbach 00a] of the pixels.  This 
process is executed for each voxel. During hypothesis 
assignment, there is no reconstructed geometry yet, so no 
occlusion information is available, as shown in Figure 6. 
Consequently, the hypothesis assignment step may assign 
hypotheses that do not correspond to the correct color of the 
surface being reconstructed. 

Hypothesis removal takes occlusion into account to remove 
such hypotheses. For a given view, the voxel space is 
traversed in an occlusion-compatible direction [Steinbach 
00b]. A visible voxel is projected into the image, and the 
pixel to which the voxel center [Eisert 99] (or pixels in the 
footprint around the voxel center [Steinbach 00b]) projects is 
compared with the voxel's hypotheses. The hypotheses that 
are not consistent are removed, and this process is repeated 
for the other viewpoints. If all of a voxel's hypotheses are 
removed, then no consistent color is observed across the 
images that have visibility of the voxel, and the voxel is 
carved. Carving a voxel changes visibility of other voxels 
that are then processed. The algorithm iterates over the 
surface voxels and all images until no more hypotheses can 
be removed, resulting in a photo hull. 

Multi-hypothesis voxel coloring is quite similar to Voxel 
Coloring, Space Carving, and GVC. The key difference is 
that the decision to carve a voxel in these methods is made 
using all images simultaneously. In contrast, multi-hypothesis 
voxel coloring algorithms have an advantage in that 
hypothesis removal (and ultimately carving) is performed one 
image at a time. This simplifies visibility determination, since 
during hypothesis removal, the voxel space can be scanned 

  

Figure 5. The two variants of GVC use different data
structures, called item buffers and layered depth images
(LDIs), to compute the visibility of voxels. In (a), an item
buffer records, for every pixel in an image, the surface voxel
that is visible from the pixel. In (b), an LDI records, for every
pixel in an image, a depth-sorted list of all surface voxels that 
project to the pixel. 

Reconstruction 
volume 

B A ∅ 

(a) 

(b) 

  

 

LDI 

B A 

Reconstruction 
volume 

Item 
buffer 

AB A 



front-to-back for one camera at a time. Consequently, 
occlusion bitmaps, the very simple and memory efficient data 
structures used in Voxel Coloring, can always be used to 
establish the exact visibility of the scene for arbitrary camera 
placement. However, the price to be paid for this convenience 
is some extra computation, as hypotheses are assigned to all 
voxels in the voxel space, including interior voxels, those that 
are inside surfaces. In GVC, for example, interior voxels 
never become visible and are therefore not processed. 

3.4.  Volumetric Optimization 

3.4.1.  Opaque voxels 

The voxel coloring methods described above determine the 
consistency of a voxel by thresholding a color matching 
metric. This approach is intuitive and easy to implement. 
When reconstructing scenes with near Lambertian surfaces 
without abrupt color boundaries, and using accurately 
calibrated cameras, one can use a small threshold. This will 
produce a reconstruction that closely matches the true 3D 
geometry of scene surfaces. However, when these ideal 
conditions are not met, it is necessary to increase threshold so 
that scene surfaces reconstruct properly.   

In general, there is not a single threshold that is ideal for 
reconstructing all surfaces in the scene. For a given threshold, 
some surfaces could likely be more accurately reconstructed 
with a lower threshold. But lowering the global threshold can 
cause other surfaces to become carved that should be in the 
final reconstruction. Consequently, the reconstructed model 
computed by voxel coloring algorithms tends to be larger 
(fatter) than necessary. 

[Slabaugh 00b] presents a volumetric optimization method 
that refines a reconstruction to minimize reprojection error, 
the difference between a synthetic view formed by 
reprojecting the reconstruction to a camera and its reference 
image, summed over all views. The refinement effectively 
produces a spatially varying consistency threshold, tuned for 
each voxel in the scene, and results in a reconstruction that is 
typically a tighter fit to the true scene geometry. The 
volumetric optimization attempts to remove voxels, as well as 

add them, if it yields a more favorable surface reconstruction. 
The authors explore greedy and simulated annealing methods 
to perform the optimization. 

3.4.2.  Non-opaque voxels 

[Szeliski 98] describes a reconstruction algorithm that uses 
partial opacity to address the problem of mixed pixels, pixels 
that fall on an occlusion boundary and have a mixture of 
foreground and background colors. A virtual camera 
viewpoint is chosen and used to define a discretized 3D 
disparity space whose coordinates are the two virtual image 
coordinates plus disparity relative to the virtual image. For 
each sample point in this space, the set of input image pixels 
that project to the point is found. At this stage, occlusion is 
disregarded. These sets of pixels are checked for color 
consistency and the set of sample points where there is high 
consistency is used as an initial surface. This initialization 
process and the use of a disparity space force the input 
cameras to be on one side of the scene. The initial surface is 
considered to be opaque. Next, occlusion is taken into 
account and the consistency of sample points is checked 
repeatedly, as is done in some of the variations of Voxel 
Coloring, until a color and binary opacity are assigned to 
every sample point. Finally, the colors and opacities are 
refined through optimization. The optimization favors 
smooth surfaces and encourages, but does not require, binary 
opacities. Furthermore, the optimization favors colors and 
opacities that match the input images when composited and 
projected to the camera viewpoints. 

The Roxels algorithm [De Bonet 99] also attempts to 
determine continuous opacity values. It is more general than 
[Szeliski 98] in that it allows arbitrary camera placement and 
reconstructs objects that are semi-transparent. Roxels assigns 
colors and opacities to a uniform voxel space. The voxels can 
be rendered to the input image viewpoints using compositing 
with the over operator. Roxels also attempts to minimize the 
reprojection error. De Bonet and Viola point out that direct 
optimization of the colors and opacities to minimize the 
reprojection error is impractical because of the number of 
parameters and the fact that the error is a nonlinear function 
of the opacities. They observe, however, that the image pixels 

Figure 6.  Multi-hypothesis voxel coloring.  Hypothesis assignment for a voxel is shown on the left, where the striped voxel
is projected into each image, and hypotheses are stored for the voxel. On the right, hypotheses that are inconsistent with the 
active camera's observation are removed.  (The active camera is given a white color). Hypothesis removal considers the
visibility of the scene.  Thus, for the configuration of the voxel space on the right, the cameras that observe yellow for the 
voxel will not be considered.   
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are, in fact, linear combinations of the colors of the voxels 
along their rays. They call the coefficients of the linear 
combinations responsibilities, which can be found relatively 
efficiently. De Bonet and Viola use an iterative algorithm that 
solves for the responsibilities and then uses the 
responsibilities to estimate the opacities. 

3.5.  Alternate Voxel Spaces 

3.5.1.  Projective Grid Space 

Camera calibration can be tedious and time-consuming. To 
reduce the amount of effort it takes to calibrate the cameras, 
[Saito 99] proposes voxel coloring in projective grid space. 
This is a voxel space where the voxels have a non-uniform 
shape based on the epipolar geometry relating two views. In 
their method, voxels increase in size in proportion to their 
distance from the basis views. Once the projective grid space 
is specified, it is easy to project points in projective grid 
space into any of the remaining viewpoints. [Kimura 99] later 
develops a similar approach that uses three basis images. 

3.5.2.  Volumetric Warping 

The voxel-based reconstruction methods discussed in this 
paper are effective at reconstructing objects that are relatively 
close to the cameras. Applying them to large-scale scenes 
that contain surfaces very far from the cameras can become 
challenging, as doing so may require an unwieldy number of 
voxels that becomes prohibitive to process. Furthermore, it 
may be preferable to model far away objects with lower 
resolution voxels. Thus, one might like a spatially adaptive 
voxel size that increases away from the cameras.   

[Slabaugh 00a] presents a method that warps the voxel space 
so that such scenes can be modeled without an excessive 
number of voxels. The method divides the voxel space into 

two regions; an interior space and an exterior space, as shown 
in Figure 7. The volumetric warp does not affect the voxels in 
the interior space, providing backward compatibility with 
previous voxel coloring algorithms, and allowing 
reconstruction of objects in the foreground at a fixed voxel 
resolution. Voxels in the exterior space are warped according 
to a warping function that changes the size of the voxel based 
on its distance from the interior space. The further a voxel in 
the exterior space is located from the interior space, the larger 
its size, as shown in Figure 7. Voxels on the outer shell of the 
exterior space have coordinates warped to infinity, and have 
infinite volume. Note that while the voxels in the warped 
space have a variable size, the voxel space still has a regular 
3D lattice topology. They then reconstruct a large outdoor 
scene with GVC algorithm using this warped voxel space, 
shown in Figure 10. 

3.5.3.  Two Linked Voxel Spaces 

Any of the techniques discussed in this paper can reconstruct 
a time-varying scene recorded by multiple cameras by 
executing the algorithm once for each instant of time. 
However, such an approach does not take advantage of 
temporal coherency. [Vedula 00] presents a voxel coloring 
method that links two time-consecutive 3D voxel spaces 
together, forming a 6D space. A point in this space, a 6-
dimensional element called a hexel, is a voxel in the 3D voxel 
space at time t0 linked to another voxel in the 3D voxel space 
at time t1. The goal of their method is to simultaneously 
reconstruct the shape and motion of the scene for the two 
instants of time. 

To do so, they extend the notion of photo-consistency to this 
six-dimensional domain. A hexel is said to be photo-
consistent if the two voxels that constitute the hexel project to 
pixels of approximately the same color in all of the images in 
which they are visible. This definition of photo-consistency is 
stronger than that used in voxel coloring, for it requires the 
voxel project to similar colors (1) from all viewpoints, as well 
as (2) at both time instants. The authors then present an 
approach to sweep through the 6D space to carve hexels. 
They show that this stronger consistency measure can carve 
voxels that do not have consistent motion, producing better 
results than are possible if a separate reconstruction is 
performed at each time instant. The output of their method is 
two reconstructed voxel spaces, one at time t0 and another at 
time t1, as well as the motion of surfaces (scene flow) 
between the two voxel spaces. 

4.  VOLUMETRIC PAIR-WISE FEATURE 
MATCHING 

4.1  Image Space Methods 
A common approach to 3D scene reconstruction relies upon 
the challenging task of robustly matching features between 
image pairs. These methods typically employ normalized 
cross-correlation along epipolar lines. Several authors have 
pursued volumetric representations to assist in this task, 
typically with image coordinates for two axes and a disparity 
hypothesis being the third axis. The earliest example is given 

Interior space 
Exterior space 

Figure 7. Volumetric Warping.  Pre-warped (left) and
warped (right) voxel spaces are shown in two dimensions. 
The voxel space is divided into two regions; an interior space
shown with dark gray voxels, and an exterior space shown
with light gray voxels. Before the warping is applied, both
regions consist of voxels of uniform size. The warping does
not affect the voxels in the interior space, while the voxels in
the exterior space increase in size further from the interior
space. The outer shell of voxels in the warped voxel space
gets warped to infinity. These voxels are represented with
arrows in the figure. 



by [Marr 76] who develops a relaxation network that enforces 
uniqueness and continuity constraints by introducing 
inhibitory and excitatory connections between voxels 
representing disparity hypotheses. [Yang 93] develops a 
multi-resolution method that operates in a fine-to-coarse 
manner to construct, then enhance, a disparity surface. A 
dynamic programming method is developed by [Intille 94] in 
a framework allowing explicit modeling of occlusions. A 
coarse-to-fine approach is presented by [Chen 99] who 
identifies seed voxels (those with strong evidence for a 
disparity solution) that are used to search for the global 
disparity surface. 

Standard pair-wise matching methods are often limited for 
several reasons. First, input views can only be separated by a 
limited distance, or baseline, for correlation to be effective. 
Second, the result of pair-wise reconstruction is at best a 
2½D reconstruction.  Third, occlusion processes are difficult 
to model image space. Rather than approach the problem in 
image space, many successful techniques work instead in 
object space (i.e. 3D space). With a surface in 3D space, it is 
much easier to reason about occlusion relationships, as well 
as identify corresponding regions for correlation in image 
space. This is one of the reasons why voxel coloring is so 
effective. In the next subsection, we discuss a multi-view 
stereo vision technique that works in object space using level 
set theory. 

4.2  Object Space Methods 
Level set theory was developed by Osher and Sethian [Osher 
88] to model the evolution of propagating interfaces. For 3D 
surface evolution, these methods start with an initial surface, 
which then moves with speed F along its normal. The goal is 
to track the evolution of the surface over time. Level set 
methods were initially developed for modeling flame 
propagation, but have since been applied to an astonishingly 
diverse array of problems [Sethian 99]. 

Level set methods embed this time-varying surface as the 
zero level set of a function φ(x, y, z, t). Level set theory 
provides an accurate and stable numerical scheme that solves 
the partial differential equations (PDEs) that characterize the 
motion for the surface. This scheme operates on a discrete 3D 
computational grid, i.e. a voxel space. At any time ti, the 
surface can be extracted from the computational grid by 
identifying the zero level set, using Marching Cubes 
[Lorenson 87] to extract the isosurface where φ(x, y, z, ti) = 0.   

[Faugeras 98] adapts the level set method to the scene 
reconstruction problem. In this approach, the initial surface is 
one that encompasses the scene. This initial surface is then 

evolved along its inwardly pointing normal, towards the 
objects in the scene. The speed of the zero level set slows as 
it approaches the true scene geometry, and attempts to lock 
onto it. During the evolution, the level set formulation can 
handle arbitrary topological changes, so the zero level set can 
break apart and merge if necessary. 

Driving the surface evolution is the speed function, which is 
based on the cross-correlation of colors observed across pairs 
of views. When this cross-correlation is poor, the speed is 
high, which enables the zero level set to move through free 
space. However, as the zero level set gets near the 3D 
surfaces being reconstructed, the cross-correlation betters and 
the speed slows. The visibility of the zero level set is 
computed for each viewpoint, so that only the cameras that 
have an unoccluded view of a point on the zero level set 
contribute to the computation of the speed function of the 
point. This accurate handling of occlusion is provided by the 
object space approach. The results produced using this 
technique are impressive, and rival the best reconstructions 
achieved using voxel coloring methods. An example is 
provided in Figure 8. 

This level set approach and voxel coloring approaches have 
many commonalities. First, both work on a dense voxel grid, 
and move an initial surface to the true scene geometry. Both 
of these methods use a color similarity measure to guide the 
reconstruction. Also, both use the correct visibility of the 
scene, and can account for arbitrary topological changes 
during reconstruction. These methods differ mainly in that 
the level set method was developed in an analytic framework 
in which the surface propagation is characterized by PDEs. 
This framework provides an analytic computation of the 
surface, as well as its intrinsic geometric properties, such as 
the normal vector and curvature.   

5.  CONCLUSION 
We have presented a survey of methods for volumetric scene 
reconstruction, a topic that has received considerable interest 
in the past few years. We have discussed algorithms in three 
broad classes.  The first class reconstructs a visual hull using 
geometric intersections, and easily reconstructs non-
Lambertian scenes. The second class that we survey, voxel 
coloring, reconstructs a photo hull using color consistency 
measures. By taking advantage of the color information 
available in the images, voxel coloring methods can produce 
a reconstruction that is tighter fit to the true scene geometry 
than visual hull methods. Additionally, voxel coloring 
methods do not require that the images be segmentable into 
foreground / background regions. However, modeling non-
Lambertian scenes becomes more difficult in this context. 

Figure 8.  Reconstruction (left) and new view synthesis (right) of a two-headed object using the level set method. Images 
courtesy of Olivier Faugeras and Renaud Keriven. 



Finally, we examine methods based on pair-wise matching. 
We look at both image space and object space approaches, 
the latter of which has advantages in determining occlusion 
relationships and regions for correlation matching. We 
discuss a level set method based on PDEs that model surface 
propagation.  

Volumetric scene reconstruction has made significant 
progress over the last few decades, and many techniques have 
been proposed and refined. Future work in this field may 
include more sophisticated handling of non-Lambertian 
scenes, new methods for reconstruction of time-varying 
scenes, and more computationally efficient methods for real-
time reconstruction. 
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Figure 10. On the left is one of ten panoramic photographs used in a reconstruction using a warped voxel space. On the right is
a new view rendered from the reconstruction. 
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Figure 9. Scene reconstruction and new view synthesis.  Reference views are shown in (a) and (c), new views synthesized 
from the reconstruction are shown in (b) and (d).  The Voxel Coloring algorithm was used to produce (b).  GVC-IB was used 
to produce (d). 

 


