
SHREC’08 Entry: Training Set Expansion via Autotags

Corey Goldfeder Haoyun Feng Peter Allen

Columbia University

ABSTRACT

Training a 3D model classifier on a small dataset is very
challenging. However, large datasets of partially classified models
are now commonly available online. We use an external training
set of models with associated text tags to automatically assign tags
to both training and query models. The similarity between these
tags, used in conjunction with a standard shape descriptor, yields a
multiclassifier that outperforms the standalone shape descriptor.

KEYWORDS: Classification, labeling, autotagging.

INDEX TERMS: H.3.1 [Information Storage and Retrieval]:
Content Analysis and Indexing

1 INTRODUCTION

In this SHREC entry we use an existing shape descriptor and
standard -Nearest Neighbor classification. Our contribution lies
in automatically providing text labels for both the training and
query models and using the resulting tags alongside geometry as a
multiclassifier. Text descriptions can link models that belong to
the same semantic class but have significantly different geometry;
if an airplane and a helicopter are both tagged as “aircraft” we can
link them as belonging to the same class even if they are
geometrically too different to match.

The 3D classification problem is often posed with a very
unbalanced selection of training models. The dataset provided for
SHREC was a good example of this; at the finest classification the
class sizes ranged from as small as 1 model to as large as 21
models, with an average class size of 3.9 and a standard deviation
of 3.96. Training a classifier on this sort of data is very
challenging, even with a good shape descriptor. Our algorithm
produces autotags by appealing to an external training set, which
can help us handle very small training classes, as there may be a
larger class in the external training data that links a small training
class and a query model.

2 TRAINING SET EXPANSION

To classify the query models, we first classify both the query
models and all of the training models on a larger training set. We
could then use the classes from the larger training set to connect
query models to our actual training set – models that were
assigned into the same classes using the larger set should be
assumed to be in the same classes for the smaller set as well.
However, this assumes that the classifications of the larger
training set were done in a similar way to the classifications of the
smaller set, which is not necessarily the case.

To avoid this problem, we use text tags rather than explicit
classes on the larger set and automatically propagate a set of
possible tags to the training and query sets. There is no
requirement that the tags on the training class neatly break down
into classes; a model can have multiple overlapping tags that do
not fit into a hierarchy. There is also no requirement that the tags
be entirely trustworthy. We can assign an initial probability to a
tag and model pair representing our confidence in the
appropriateness of that tag for that model.

2.1 Autotagging

Our approach is to augment the training set using an external set
of tagged models. To do this, we make use of our autotagging
algorithm [1] which uses a corpus of known tagged models

 to probabilistically propagate text labels
drawn from the set of all possible labels to an
untagged model . We start with a geometric shape distance (we
use Zernike descriptors [2]) and find the nearest neighbors of
within some threshold. The distances are normalized to lie in the
range . We take

 (1)

to be an estimate of the probability that and represent the

same type of object and therefore should have similar text tags.

Then given our untagged model , a possible text tag , and a

neighbor from the corpus, the probability that our query

model should have the tag, is

 . (2)

Intuitively this means that the probability that is appropriate for

 is the probability that it is appropriate for and that and

are similar enough to share tags. (We can think of as a

measure of how much we trust the original annotation of the

corpus.) When considered over the full set of neighbors this

generalizes to

 . (3)

By analogy to the tf-idf method from text processing [3] we

reweight these probabilities such that

. (4)

For each untagged model, we get a vector of probabilities for

each tag. Once we have these tag vectors, they can be compared

using either the cosine between them or their Euclidean distance;

we chose to use the latter.

2.2 Autotagging Implementation

In our SHREC entry we used a corpus containing 1959 3D
models, 1814 of which were taken from the Princeton Shape
Benchmark (PSB) [4] and 145 of which were the pre-training set
distributed by the organizers several days before the competition.
For each PSB model, we parsed the included classification of the
PSB and tagged the model with the names of each class it
belonged to. For example, a commercial airliner was tagged as
{“aircraft”, “airplane”, “commercial”}, corresponding to the three
classes that it belongs to in the PSB. The remaining 145 models
were hand tagged with text labels.

For each model in the corpus we computed a Zernike descriptor
with 20 levels of moments, on a voxel grid with 128 voxels to a
side and with a binary thickening kernel of 4. The resulting 121
dimensional vectors were then transformed via PCA onto a new
basis such that more variance was packed into the first few
dimensions. As we did not discard any dimensions, the PCA
transform does not affect the results. We used a hypercube-pruned
projection search [5] over a PostgreSQL database to find nearest
neighbors. Packing most of the variance into a few dimensions
allows us to search higher-variance dimensions first and prune
most datapoints very early in the search.

3 CLASSIFICATION

In a training stage, we autotag each of the 425 models in the
training set. To classify a query model we first compute its
autotags. We then calculate two distances between the query
model and each training model; the Zernike descriptor distance,
and the Euclidean distance between the weighted autotag vectors.
We normalize both sets of values to zero mean, unit variance and
combine them into a single multiclassifier distance using a
weighted average. (Our experiments confirmed the results of Min
et al. [6] that a linear weighted average with geometry weighted
by 0.9 and text distances weighted by .1 produced a good
multiclassifier.)

We use a k-Nearest Neighbor approach to classification. We
find the distances to the k nearest neighbors, and clamp them to lie
in the range (-3, 3) which represents 3 standard deviations from
the mean. (These “distances” can be negative since we have
previously subtracted the mean). We then subtract the distances
from the maximum possible distance, which is 3, and treat the
results as affinities, with a higher value indicating a more likely
classification. The sum of these affinities is normalized to 1, and
the affinities for each class are combined, resulting in a final
output of positive probabilities for up to k classes, and zero
probabilities for the remaining classes.

For the medium and fine classifications, it was necessary to use
a fairly small value of in order to avoid drowning out
results from the smaller classes. For the coarse classification,
which has more evenly balanced classes, we submitted runs with
both and .

4 RESULTS

For each query model our algorithm produces between 1 and

classification attempts, ranked by the confidence our algorithm

has that the classification is correct. For the coarse classification

(12 classes), and with , the best-ranked attempt was correct

67.1% of the time, the second ranked attempt 78.9% of the time,

and the third ranked 82.9%. With the accuracies were

61.8% for the first attempt, 80.3% for the second, and 85.5% for

the third, with no increase in accuracy beyond the third attempt.

For the medium classification (39 classes) the accuracies were

60.5%, 65.8%, and 67.1%, while for the fine classification (109

classes) the accuracies were 50%, 55.3%, and 56.6%.

In this work we proposed a distance metric for 3D models

consisting of the Euclidean distances between vectors of tags

learned from an external corpus. Our claim was that this distance,

when combined with a geometric shape distance, yields improved

classifications. Figure 1 shows the accuracy of classification with

out combined classifier, compared to the accuracy of a classifier

that uses only the geometric Zernike distances and ignores tags.

For the coarse classification, and with , our multiclassifier

was 2.6% more successful on the first and second ranked attempts

and 3.9% more successful on the third attempt. With our

multiclassifier was 3.6% less successful on the first attempt, but

jumped to 6.6% better than the geometric classifier by the third.

For the medium classification, our multiclassifier was 5.3% better

than the geometric classifier on the first attempt, 2.6% better on

the second, and 1.3% better on the third. For the fine classification

the performances of the two classifiers on their first attempts were

identical, with our multiclassifier performing 1.3% better on the

second attempt and 1.3% worse on the third. Overall, our

approach provided improved accuracy for the coarse and medium

classifications and comparable accuracy for the fine classification.

5 CONCLUSIONS

We have shown that autotag distances can be combined with a
geometric classifier to form an improved multiclassifier. Although
we used Zernike descriptor distances for the geometric portion of
the classifier, our algorithm can in principle be used with any
other geometric shape distance, and in future work we would like
to examine which shape distances are most appropriate.

In our experiments, we observed that the classification results
of our algorithm and the Zernike classifier differed not only in
accuracy but also in which models were correctly classified. We
correctly classified some models that the Zernike classifier could
not, but we also incorrectly classified some models that the
Zernike classifier was correct on. In the future we will examine
other methods of combining classifiers in the hopes of preserving
more of the good classifications from the geometric approach
while still adding new good classifications from the tags.

REFERENCES

[1] C. Goldfeder, P. Allen. Autotagging To Improve Text Search for 3D

Models. Joint Conference on Digital Libraries, 2008. (to appear)

[2] M. Novotni, R. Klein. 3D Zernike descriptors for content based

shape retrieval. Solid Modeling and Applications, 2003.

[3] G. Salton. Term-weighting approaches in automatic text retrieval.

Information Processing and Management 24(5), 1988.

[4] P. Shilane, P. Min, M. Kazhdan, T. Funkhouser. The Princeton

Shape Benchmark. Shape Modeling International, 2004.

[5] S. A. Nene, S. K. Nayar. A simple algorithm for nearest neighbour

search in high dimensions. Transactions on Pattern Analysis and

Machine Learning 19(9), 1997.

[6] P. Min, M. Kazhdan, T. Funkhouser. A comparison of text and shape

matching for retrieval of online 3D models. European Conference on

Digital Libraries, 2004.

Figure 1. The classification accuracy of our text and geometry
multiclassifier, as compared to the geometry classifier alone.

