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ABSTRACT 

Training a 3D model classifier on a small dataset is very 
challenging. However, large datasets of partially classified models 
are now commonly available online. We use an external training 
set of models with associated text tags to automatically assign tags 
to both training and query models. The similarity between these 
tags, used in conjunction with a standard shape descriptor, yields a 
multiclassifier that outperforms the standalone shape descriptor. 
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1 INTRODUCTION 

In this SHREC entry we use an existing shape descriptor and 
standard -Nearest Neighbor classification. Our contribution lies 
in automatically providing text labels for both the training and 
query models and using the resulting tags alongside geometry as a 
multiclassifier. Text descriptions can link models that belong to 
the same semantic class but have significantly different geometry; 
if an airplane and a helicopter are both tagged as “aircraft” we can 
link them as belonging to the same class even if they are 
geometrically too different to match.  

The 3D classification problem is often posed with a very 
unbalanced selection of training models. The dataset provided for 
SHREC was a good example of this; at the finest classification the 
class sizes ranged from as small as 1 model to as large as 21 
models, with an average class size of 3.9 and a standard deviation 
of 3.96. Training a classifier on this sort of data is very 
challenging, even with a good shape descriptor. Our algorithm 
produces autotags by appealing to an external training set, which 
can help us handle very small training classes, as there may be a 
larger class in the external training data that links a small training 
class and a query model. 

2 TRAINING SET EXPANSION 

To classify the query models, we first classify both the query 
models and all of the training models on a larger training set. We 
could then use the classes from the larger training set to connect 
query models to our actual training set – models that were 
assigned into the same classes using the larger set should be 
assumed to be in the same classes for the smaller set as well. 
However, this assumes that the classifications of the larger 
training set were done in a similar way to the classifications of the 
smaller set, which is not necessarily the case.  

To avoid this problem, we use text tags rather than explicit 
classes on the larger set and automatically propagate a set of 
possible tags to the training and query sets. There is no 
requirement that the tags on the training class neatly break down 
into classes; a model can have multiple overlapping tags that do 
not fit into a hierarchy. There is also no requirement that the tags 
be entirely trustworthy. We can assign an initial probability to a 
tag and model pair representing our confidence in the 
appropriateness of that tag for that model. 

2.1 Autotagging 

Our approach is to augment the training set using an external set 
of tagged models. To do this, we make use of our autotagging 
algorithm [1] which uses a corpus of known tagged models 

 to probabilistically propagate text labels 
drawn from the set of all possible labels  to an 
untagged model . We start with a geometric shape distance (we 
use Zernike descriptors [2]) and find the  nearest neighbors of  
within some threshold. The distances are normalized to lie in the 
range . We take 
 

   (1) 

 

to be an estimate of the probability that  and  represent the 

same type of object and therefore should have similar text tags. 

Then given our untagged model , a possible text tag , and a 

neighbor   from the corpus, the probability that our query 

model should have the tag, is 
 

 .  (2) 
 

Intuitively this means that the probability that  is appropriate for  

 is the probability that it is appropriate for  and that  and  

are similar enough to share tags. (We can think of  as a 

measure of how much we trust the original annotation of the 

corpus.) When considered over the full set of  neighbors this 

generalizes to  
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By analogy to the tf-idf method from text processing [3] we 

reweight these probabilities such that 
 

.  (4) 

 

For each untagged model, we get a vector of probabilities for 

each tag. Once we have these tag vectors, they can be compared 

using either the cosine between them or their Euclidean distance; 

we chose to use the latter.  

2.2 Autotagging Implementation 

In our SHREC entry we used a corpus containing 1959 3D 
models, 1814 of which were taken from the Princeton Shape 
Benchmark (PSB) [4] and 145 of which were the pre-training set 
distributed by the organizers several days before the competition. 
For each PSB model, we parsed the included classification of the 
PSB and tagged the model with the names of each class it 
belonged to. For example, a commercial airliner was tagged as 
{“aircraft”, “airplane”, “commercial”}, corresponding to the three 
classes that it belongs to in the PSB. The remaining 145 models 
were hand tagged with text labels.  



For each model in the corpus we computed a Zernike descriptor  
with 20 levels of moments, on a voxel grid with 128 voxels to a 
side and with a binary thickening kernel of 4. The resulting 121 
dimensional vectors were then transformed via PCA onto a new 
basis such that more variance was packed into the first few 
dimensions. As we did not discard any dimensions, the PCA 
transform does not affect the results. We used a hypercube-pruned 
projection search [5] over a PostgreSQL database to find nearest 
neighbors. Packing most of the variance into a few dimensions 
allows us to search higher-variance dimensions first and prune 
most datapoints very early in the search. 

3 CLASSIFICATION 

In a training stage, we autotag each of the 425 models in the 
training set. To classify a query model we first compute its 
autotags. We then calculate two distances between the query 
model and each training model; the Zernike descriptor distance, 
and the Euclidean distance between the weighted autotag vectors. 
We normalize both sets of values to zero mean, unit variance and 
combine them into a single multiclassifier distance using a 
weighted average. (Our experiments confirmed the results of Min 
et al. [6] that a linear weighted average with geometry weighted 
by 0.9 and text distances weighted by .1 produced a good 
multiclassifier.) 

We use a k-Nearest Neighbor approach to classification. We 
find the distances to the k nearest neighbors, and clamp them to lie 
in the range (-3, 3) which represents 3 standard deviations from 
the mean. (These “distances” can be negative since we have 
previously subtracted the mean). We then subtract the distances 
from the maximum possible distance, which is 3, and treat the 
results as affinities, with a higher value indicating a more likely 
classification. The sum of these affinities is normalized to 1, and 
the affinities for each class are combined, resulting in a final 
output of positive probabilities for up to k classes, and zero 
probabilities for the remaining classes.  

For the medium and fine classifications, it was necessary to use 
a fairly small value of  in order to avoid drowning out 
results from the smaller classes. For the coarse classification, 
which has more evenly balanced classes, we submitted runs with 
both  and . 

4 RESULTS 

For each query model our algorithm produces between 1 and   

classification attempts, ranked by the confidence our algorithm 

has that the classification is correct. For the coarse classification 

(12 classes), and with , the best-ranked attempt was correct 

67.1% of the time, the second ranked attempt 78.9% of the time, 

and the third ranked 82.9%. With  the accuracies were 

61.8% for the first attempt, 80.3% for the second, and 85.5% for 

the third, with no increase in accuracy beyond the third attempt. 

For the medium classification (39 classes) the accuracies were 

60.5%, 65.8%, and 67.1%, while for the fine classification (109 

classes) the accuracies were 50%, 55.3%, and 56.6%.  

In this work we proposed a distance metric for 3D models 

consisting of the Euclidean distances between vectors of tags 

learned from an external corpus. Our claim was that this distance, 

when combined with a geometric shape distance, yields improved 

classifications. Figure 1 shows the accuracy of classification with 

out combined classifier, compared to the accuracy of a classifier 

that uses only the geometric Zernike distances and ignores tags.  

For the coarse classification, and with , our multiclassifier 

was 2.6% more successful on the first and second ranked attempts 

and 3.9% more successful on the third attempt. With  our 

multiclassifier was 3.6% less successful on the first attempt, but 

jumped to 6.6% better than the geometric classifier by the third. 

For the medium classification, our multiclassifier was 5.3% better 

than the geometric classifier on the first attempt, 2.6% better on 

the second, and 1.3% better on the third. For the fine classification 

the performances of the two classifiers on their first attempts were 

identical, with our multiclassifier performing 1.3% better on the 

second attempt and 1.3% worse on the third. Overall, our 

approach provided improved accuracy for the coarse and medium 

classifications and comparable accuracy for the fine classification.  

5 CONCLUSIONS 

We have shown that autotag distances can be combined with a 
geometric classifier to form an improved multiclassifier. Although 
we used Zernike descriptor distances for the geometric portion of 
the classifier, our algorithm can in principle be used with any 
other geometric shape distance, and in future work we would like 
to examine which shape distances are most appropriate.  

In our experiments, we observed that the classification results 
of our algorithm and the Zernike classifier differed not only in 
accuracy but also in which models were correctly classified. We 
correctly classified some models that the Zernike classifier could 
not, but we also incorrectly classified some models that the 
Zernike classifier was correct on. In the future we will examine 
other methods of combining classifiers in the hopes of preserving 
more of the good classifications from the geometric approach 
while still adding new good classifications from the tags.  
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Figure 1. The classification accuracy of our text and geometry      
multiclassifier, as compared to the geometry classifier alone.               

 


