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Abstract
Assisting impaired individuals with robotic devices is an emerging and potentially transformative technology. This paper
describes the design of an assistive robotic grasping system that allows impaired individuals to interact with the system
in a human-in-the-loop manner, including the use of a novel cranio-facial electromyography input device. The system uses
an augmented reality interface that allows users to plan grasps online that match their task-oriented intents. The system
uses grasp quality measurements that generate more robust grasps by considering the local geometry of the object and
the effect of uncertainty during grasp acquisition. This interface is validated by testing with real users, both healthy and
impaired. This work forms the foundation for a flexible, fully featured human-in-the-loop system that allows users to grasp
known and unknown objects in cluttered spaces using novel, practical human–robot interaction paradigms that have the
potential to bring human-in-the-loop assistive devices out of the research environment and into the lives of those that need
them.

Keywords
Human–robot interaction, grasp planning, shared control

1. Introduction

With recent advances in robotics and computer vision, it
is possible to imagine a robotic system to assist people
with severely limiting disabilities in activities of daily liv-
ing, improving their quality of life. Common daily activ-
ities frequently require the user to grasp an object stably
in a context-aware way. Complex hands and manipulators
increase the flexibility and grasping capabilities of a robotic
assistant but at the cost of requiring more complex control
of many simultaneous degrees of freedom (DoF).

This work presents an assistive grasping system for
people with upper limb mobility impairments using a
human-in-the-loop paradigm that allows a disabled user to
grasp objects from a table using a novel, noninvasive sur-
face electromyography (sEMG) based input device, even in
somewhat cluttered scenes. The sEMG technique involves
positioning electrodes on the surface of the skin and mea-
suring the combined electrical activation of underlying
motor units in the vicinity of the electrodes (Cram and
Criswell, 2011). The novel device measures only a single
differential sEMG signal at one muscle site on the user. The
system puts the user in control of a multi-phase grasping
pipeline that includes object recognition, integrated pre-
planning, and online grasp planning with feedback to help
the user plan robust grasps in near real time.

The individuals with the greatest need for assistive tech-
nologies are those with severe impairments. Because of
these impairments, individuals are often limited in their
ability to provide input to an assistive device. Some current
methods include sEMG, electroencephalography(EEG),
eye-tracking, and sip-puff devices. In general, these devices
are restricted to low bandwidth, noisy signals. Therefore,
using these devices to control high-DoF assistive grasping
device poses many challenges. Our solution is to combine
intelligent online grasp planning with limited human-in-
the-loop assistance.

Irrespective of the problems posed by limited input
devices, robotic grasping is challenging for a number of
reasons. Complex robotic hands have many degrees of
freedom, so the space of possible grasps is large and com-
putationally expensive to explore. Standard approaches to
planning in high-dimensional state spaces are likely to fail
with multi-fingered hands, especially as the grasp itself
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involves purposeful collision with the object but most of
the “near grasp” states will be overlapping the object in
some way. Second, evaluating grasps involves analyzing
several properties that are difficult to model, such as friction
and closed chain kinematics. Many state-of-the-art anal-
ysis tools are only effective if the contact points can be
perfectly predicted and the grasp acquisition can be per-
fectly controlled so that the object is not moved. Finally,
robotic hands are extremely heterogeneous in terms of their
physical size, the arrangement of their sensors, and their
actuators, which makes designing generic grasp planning
algorithms difficult.

In addition to all of these issues, in natural environments,
any set of grasps that is preplanned may overlap with obsta-
cles in the environment or fail to grasp the object in a way
that is well suited to the desired use of the object. Thus,
grasp planning algorithms must be fast enough to run online
and be able to reflect the intent of the use of the grasp
beyond simple stability.

This paper describes an sEMG-driven assistive grasping
platform integrating human-in-the-loop planning through
an augmented reality interface. We present the iterative
development process we have used to arrive at our final
system, comparing different user interface paradigms and
grasp planners presented in our previous papers address-
ing this problem (Weisz et al., 2012, 2013, 2014). Then we
present new results from our final user validation study of
our sEMG paradigm, which addresses grasping in clutter
with both known and unknown objects. The key contribu-
tions of this work include:

• design and comparison of three different user interfaces
for assistive grasping;

• integration with a novel sEMG input device, which
relies on only a single muscle site;

• a new UI that improves the disabled user’s ability to
understand the scene and produce correct grasps in
complex, cluttered environments.

2. Related work

2.1. Human–computer interfaces for assistive
robotics

There is a long history of assistive robotic systems using
electrophysiological signals as input, with work going back
as far as Schmidl (1965) and Sherman and Lippay (1965).
In the time since, there have been myriad approaches and
refinements of proposed interfaces for disabled individu-
als with robotic assistive systems, and this work will not
review even a small fraction of them. There are two ways
of categorizing these systems. One way is to categorize
a system by its input modality; i.e. whether it uses phys-
ical buttons or pointing devices, some external sensor of
motion, such as eye or hand trackers, or some specific elec-
trophysiological signal, such as EMG, electrooculagraphy
(EOG), or EEG. Within this category, modalities can be fur-
ther divided according to where the signals are recorded

from. For example, EMG can be recorded from distal
muscle sites, which may be larger, easier to record from, and
produce larger signals. However, more impaired individuals
tend to maintain control over muscle functions closer to the
head

Another way to categorize the systems is by the type
of control they engender—whether the control is at a task
level, allowing the user to designate what is to be done, or
at a state level, allowing the user to specify joint angles, or
end effector positions.

This work presents a system at an intermediate control
level, in which the user has some state-level control that
is task-oriented. This requires an online planning system
that generates robust grasps in real time. Next we describe
the different control paradigms used in related systems
using human–robot interface devices suitable for impaired
individuals.

2.1.1. Direct joint mimicry. The most intuitive, low level
of control of a robotic arm involves having the robot arm
directly mimic the motions of the user. The joint angles of
the robot are directly mapped to joint positions of a user
moving his or her own arm naturally. It is possible to recon-
struct a user’s movements using distal limb surface EMG
signals (Artemiadis and Kyriakopoulos, 2011; Castellini
and van der Smagt, 2009). One advantage of this type
of control allows users to express their desires explicitly,
enabling them to specify how the arm is to avoid obstacles.
This paradigm is not suitable for assistive robotic inter-
faces because many seriously impaired individuals have lost
exactly the capability used as the control input to this type
of interface.

2.1.2. Joint-level control. If direct mimicry is impractical,
the user can be given explicit control of joints of the robot.
This generally imposes a much higher cognitive load on the
user, who has to attend closely to each joint. The move-
ments of the joints are not directly related to the user’s
goal of manipulating some object. Control of a manipu-
lator through such an interface is generally not possible
because manipulators have many joints. The manipulator
is generally controlled by simple open and close com-
mands. For example, in Horki et al. (2011), hand opening
or closing and elbow flexion or extension are controlled by
EEG signals.

For a prosthetic arm with few degrees of freedom, such as
the two-joint arm of Horki et al. (2011), this control strategy
can be effective. However, higher-DoF arms require more
control channels and a high degree of coordination to per-
form complex tasks. For example, to grasp an object using
a six-DoF arm and a simple gripper, the user must move in
a straight line toward an object or the gripper might knock
the object over before it is in position. This requires pre-
cise real-time coordination of all six joint velocities, which
requires lower noise, higher bandwidth control inputs than
are available through noninvasive interfaces.
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2.1.3. End effector Cartesian control. The main goal of
a robotic manipulator is to interact with the world with
some end effector. Giving the user direct control over the
end effector location can be more intuitive, because the
end effector location is the variable that the user most
directly observes. This control scheme has been imple-
mented using both invasive high throughput systems (Vogel
et al., 2010), and less invasive systems with lower through-
put, such as surface facial EMG and EOG (Gomez-Gil et
al., 2011; Postelnicu et al., 2011; Ranky and Adamovich,
2010; Sagawa and Kimura, 2005; Shenoy et al., 2008).
Although this approach is similar to joint-level control in
requiring continuous attention to a relatively large number
of degrees of freedom simultaneously, the user’s control is
directly in the task space. This allows the user to decouple
the different controlled degrees of freedom.

2.1.4. Discrete state-level control. Robotic hands typically
have too many degrees of freedom to control directly. One
alternative is to allow a user to switch between hand pos-
tures designed for a specific task. A simple open and close
command is sufficient for some basic grasping applications.
More complex hands may allow several preset grasp config-
urations, such as a wider spread of the fingers for holding
a ball or a narrower spread for pinching a pencil. Other
configurations for common tasks, like button pressing, can
also be useful. Many such strategies have been explored,
as in Cipriani et al. (2008); Ho et al. (2011); Matrone
et al. (2011); Wołczowski and Kurzyński (2010); Yang
et al. (2009).

These control schemes represent a tradeoff between flex-
ibility and simplicity of use. This tradeoff is especially
important as the complexity of the hand increases. To
directly control the fingers for a hand as complex as, for
example, the BarrettHand, the user would need to coordi-
nate four separate signals (one for each finger, and one for
the angle between the fingers) in real time to avoid tangling
the fingers or knocking over the object. Discrete-level con-
trol allows more degrees of freedom to be controlled safely
with fewer inputs.

However, these schemes limit the user’s flexibility to the
preset configurations. Additionally, the user has to remem-
ber how to get to the configuration that they want to use at
a given time, which may require multiple steps through a
branching decision tree. Because there is not necessarily an
easy way of associating the path that must be taken in that
decision tree with the desired goal, these control schemes
have a steep learning curve.

2.1.5. Task-level control. The key challenges of using non-
invasive human–robot interfaces are that the bit rate is low
and that the input is somewhat unreliable. In addition, the
user experiences limited feedback, which makes direct con-
trol difficult. Under these conditions, it would seem intu-
itive that users would find task-level control, where the user
directs the robot on what to do but has little input as to

how to do it, more effective. Indeed, it has been shown that
users find human–robot interface control easier using even
higher-level, goal-oriented paradigms (Royer et al., 2011),
and we have begun to see work that attempts to exploit
higher-level abstractions to allow users to perform more
complex tasks with robotic arms.

Bell et al. (2008) used EEG signals to select targets for
pick and place operations for a small humanoid robot. Way-
towich et al. (2010) used EEG signals to control pick and
place operations of a four-DoF Stäubli robot. Bryan et al.
(2011) presented preliminary work, extending this approach
to a grasping pipeline on the PR2 robot. In that work, a
3D perception pipeline was used to find and identify target
objects for grasping and EEG signals were used to choose
between them. In Müller-Putz et al. (2005), grasping is
decomposed to a four-phase pipeline, where EEG signals
are used to control transitions between phases. Scherer et al.
(2011) demonstrate an interface to navigate in two dimen-
sions and select goals in a complex virtual environment and
propose a hierarchical control scheme for learning high-
level tasks dynamically. The drawback of this approach is
that while the system presents the user with a set of high-
level choices, the user is not able to effect the process by
which the choices are generated. In complex situations, the
software agent might not present the user with appropriate
choices.

2.1.6. Task-oriented shared control. An emerging alterna-
tive to the purely task-oriented approach is to blend end
effector control and task-oriented control (for example,
Javdani et al., 2015). In this approach, the user’s input
demonstrates some approximation of the desired solution
or constraint that an automated planner can make use of.
Mülling et al. (2015) showed that this strategy can improve
performance in grasping tasks even when using an inva-
sive brain–computer interface (BCI) device with relatively
high bandwidth. In our work, we show that this strategy
can allow noninvasive devices with much lower bandwidth
to exercise similar performance in accomplishing complex
tasks with high reliability.

2.2. The Eigengrasp grasp planner

In Ciocarlie and Allen (2009), our laboratory introduced the
Eigengrasp planner, which allowed the user to grasp objects
reliably by demonstrating only an approximate approach
direction. In this work, we have expanded on the Eigen-
grasp planner to show that task-oriented shared control is
a practical approach for allowing the flexibility of lower-
level control schemes with the ease of use of higher-level
task-level control.

The Eigengrasp planner allows a user to interact with an
online grasp planner in a virtual environment, to plan grasps
online in real time. The user is given control of a virtual
representation of the hand and uses this to indicate approx-
imately where to grasp the object. A grasp planner runs in
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the background and presents the user with a set of options
for completing the grasp. This strategy requires a respon-
sive planner that can handle the complex problem of grasp
planning in near real time. To make this computationally
tractable, Eigengrasps were introduced, a dimensionality
reduction technique in which control of the hand is mapped
to principle components identified in human grasping stud-
ies. With this dimensionality reduction, stochastic sampling
techniques can be used to generate reasonably good grasps
in real time using relatively simple grasp quality metrics.

The quality metric that is used by the planner evaluates
a projection of the desired contact points on the hand to
the target object. This projection provides a smooth energy
gradient in regions where the hand is not in contact with
the object. When good candidates are found, the planner
simulates completing the grasp by approaching the object
along a pre-specified direction orthogonal to the “palm” of
the robot hand and then closing the fingers.

This approach has a number of practical advantages. The
nature of the optimization approach, which gradually moves
toward lower values of the quality function, produces solu-
tions where nearby finger contacts will also provide similar
quality grasps. Grasps where the qualities of nearby config-
urations are much poorer will have narrow basins of attrac-
tion that are less likely to be found. This implies a certain
amount of robustness to small displacements and occlusion
of the object from nearby clutter during grasp acquisition.
The planner is easy to generalize because the only robot-
specific parameters are the state space reduction strategy
and a set of desirable contact locations, which can be easily
specified for any given robot.

In Ciocarlie and Allen (2009), the planner was demon-
strated by having the operator manually move the end
effector in real time (see Figure 1). This is analogous
to an extremely high-bandwidth, low-noise interface with
perfect knowledge of the environment. In this paper, we
have fleshed out this demonstration to more realistic, com-
plex situations. This required development of a full robotic
grasping platform that can handle cluttered scenes, realistic
input devices appropriate for disabled people, and an aug-
mented reality user interface. The development of such a
system is the central challenge addressed in this paper.

2.3. Roadmap of this paper

To address this challenge, we have iterated through three
designs of our assistive robotics system, denoted Systems
1 to 3. Section 3 describes user experiments using System
1 with five unimpaired subjects. In Section 4, we describe
System 2, which integrates the novel EMG interface device
and enables grasping in cluttered scenes, and test its effi-
cacy with an impaired user in a remote location. In Section
5, we describe System 3, which uses a different set of hard-
ware and also improves the speed and reliability of the user
interface and demonstrates it for a cohort of unimpaired
subjects.

Fig. 1. An operator demonstrating the Eigengrasp planner by
manually guiding the robotic hand to guide the planner in the
virtual environment (Ciocarlie and Allen, 2009).

3. System 1: A human–robot interface
grasping platform

In Weisz et al. (2013), we described a BCI-enabled grasp-
ing platform, through which we outlined a general strategy
for an online assistive grasping system, based on an ear-
lier system, which we described in Weisz et al. (2012). The
grasping task can be decomposed into four subtasks: Target
object identification and localization, generation of grasp
plans, picking an optimal plan, and executing the plan on
the robot. Each subtask can be fulfilled by different mod-
ules, which benefit from different user interaction strate-
gies. By decomposing the tasks into explicit phases of a
pipelined process, as in Figure 2, we can optimize user’s
interaction for each phase to make the best use of input
modalities with limited bandwidth while guiding the grasp-
ing platform. Although fully automated approaches for each
of these subtasks have been the subject of extensive and
ongoing research, integrating user input to create a shared-
control environment that uses as much input as the user is
able to supply is still a relatively unexplored field.

Putting the human in the loop when planning and execut-
ing the grasp in real time fundamentally changes the nature
of the problem, as compared with a fully automated system.
The key challenge becomes that of conveying information



Weisz et al. 5

Fig. 2. Top: Annotated screenshot of the prototype grasp plan-
ning user interface in GraspIt!. During online planning, the user is
presented with an augmented reality view of the target object and
three renderings of the hand interacting with the scene. The plan-
ner hand, which is the most transparent hand, demonstrates the
current state of the planner. The input hand, which is of interme-
diate transparency, is the hand through which the user directs the
planning system. Here you can see the rotational guides, which
allow the user to visualize the available control directions. The
solution hand, which is fully opaque, demonstrates the best grasp
currently available. This is the grasp that is closest to the approach
direction that the input hand is demonstrating and that also has the
best grasp quality. Bottom: The four phases of a basic grasp plan-
ning task. Breaking the task into phases allows customization of
the user interface for each phase independently to make optimal
use of low input bandwidth.

to the user effectively about the state of the system and then
using the low bandwidth information gained from the user
efficiently. This requires careful design of the interfaces
provided to the user and of the control scheme for infer-
ring intent from the user’s input. Additionally, to present the
user with reasonable grasping options, we need to extend
the existing grasp stability analysis to deal with the most
common problem that arises in unstructured environments,
object localization errors due to sensor noise. See Weisz and
Allen (2012) for an analysis of the effect of sensor noise on
the Eigengrasp planner.

3.1. Prototype design components

The manipulator arm for the initial prototype was com-
posed of an industrial Stäubli TX60L robotic arm and a
BarrettHand gripper. The object localization system was
based on point clouds captured by a Microsoft Kinect depth

Fig. 3. System 1 interface—online planner phase. The user inter-
face contains three windows: The main window containing three
labeled robot hands and the target object with the aligned point
cloud, the pipeline guide window containing hints for the user to
guide interaction with each phase of the planner, and the grasp
view window containing rendering of the ten best grasps found by
the planner so far.

camera. There are many possible paradigms for integrat-
ing human–robot interfaces with a shared-control assis-
tive robotic device. Traditional EMG and EEG setups are
expensive and difficult to deploy. In this work, we wanted
to explore the boundaries of what can be achieved with
devices that are more practical for a real-world assistive
device, in terms of convenience and cost. We experimented
with low-cost devices for detecting EMG, the Emotiv Epoc
(Emotiv Systems Inc., San Francisco, CA, USA). The Emo-
tiv Epoc comes with three built-in signal processing modal-
ities designed to detect emotional affect, facial movement,
and EEG evoked responses. Combining these classifiers, we
were able to derive a training paradigm for detection of four
facial gestures robustly (Weisz et al., 2013).

3.2. User interface

We augmented the Eigengrasp planner GUI in the GraspIt!
simulator (Miller and Allen, 2004) with a visualization of
the grasp planning scene that includes a number of guides
and virtual fixtures that allow the user to guide the planner
fully inside the simulator. The augmented grasp planning
scene is illustrated in Figures 2 and 3. To find the most eas-
ily detected facial gestures for each subject, we asked the
subjects to lift both eyebrows, wink with each eye, clench
each side of the jaw, and smile. This is a subset of the facial
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Fig. 4. Results of the object recognition system with known and unknown objects. (a) Point clouds with RGB texture from the vision
system. On the left is a flashlight along with its aligned point cloud in white. On the right is the point cloud of a juice bottle along with
the best model from the vision system’s object database, a shampoo bottle, in white. (b) The two objects that are aligned on the right of
(a). The shampoo bottle is in the object database; the juice bottle is not. The two are roughly the same width, and this shampoo bottle
can be an appropriate proxy for the juice bottle in the planner.

gestures that are detectable by the Epoc’s facial gesture clas-
sifiers that are easy to explain and demonstrate to subjects.
For each subject, we selected the four gestures that pro-
duced the least cross talk in the facial gesture detector on
a cursory examination.

Some facial gestures, such as eyebrow raising, are eas-
ier to maintain than others, such as winking. These were
assigned to control signals whose duration controlled some
continuous values, such as the position of the end effector
rotating along the guides, as shown in Figure 2. Two of the
gestures that are not as easy to maintain were mapped to
signals analogous to “yes” and “no” at decision points.

3.3. Software platform

3.3.1. Planning and kinematics. Planning for the motion
of the arm is done in OpenRAVE using a bidirectional ran-
dom tree planner (Berenson et al., 2009a), and small lin-
ear motions near the object are planned using the TX60L’s
built-in inverse kinematics planner.

3.3.2. Recognition system. We use the Model RANSAC
method described in Papazov and Burschka (2011) to iden-
tify and localize the target object in the scene. This method
generates features from pairs of oriented points on the sur-
face of the object. Prospective models are processed offline
and put into a feature database for testing model hypothe-
ses. Features are sampled from the sensor data matches in
the database. If a sufficient number of collisions occurs with
points on the same model, a variant of RANSAC is used to
test the hypothesis that a set of points in the sensor data cor-
responds to a particular model at a particular location. This
method has demonstrated good robustness and is extensi-
ble to multi-object scenes. The implementation used in this
system takes between 15 s and 30 s to process the scene.

Handling novel objects. To handle objects that are not
in the recognition system, we rely on the stochastic nature
of the planning and recognition system and the discern-
ment of the user. When automated systems fail, the user can
reject the proposed solution and wait for another. An exam-
ple of this alignment can be seen in Figure 4(a). To allow
the user to discern how well the detected object aligns to
the true geometry of the novel object in the scene, the UI
was modified to include a down-sampled point cloud from
the depth camera. The user is responsible for rerunning the
vision system until a reasonable alignment of the sensor
data and detected model is displayed. This interaction also
comes into play in the grasp planning phase, in which we
rely on the user to reject grasps that may seem appropriate
for the detected model but do not fit the actual unknown
model well.

3.4. Incorporating a grasp database

One useful aspect of mapping the object in the scene to
a set of objects from a database is that we can also pre-
plan a set of grasps for each object. This allows users to
grasp objects more quickly in cases where they judge that
one of the available preplanned grasps will work. In cases
where there is no reachable grasp from the direction users
want to use the object, for example, because of workspace
constraints or obstacles, they can still activate the online
Eigengrasp planner to find new grasps that are more appro-
priate to the current situation than the generic grasps in
the database. This can provide an optimized experience
for common cases while allowing the user flexibility and
control.

Using a grasp database also allows us to manually design
good grasps for particular affordances that are difficult for
an automated planner to recognize. Figure 5 demonstrates
such a grasp, which is realizable by the BarrettHand only
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Fig. 5. This handle grasp for the detergent bottle is not a force
closure grasp, but when chosen by the subjects in our experiments
it succeeded 100% of the time. Adding a grasp database allows
such semantically relevant grasps to be used in our system.

because the soft plastic surface of the object deforms during
grasp acquisition to allow the finger to pass through the hole
in the handle region of the bottle. In experiments, this grasp
was successful 100% of the time. Capturing this behavior in
a simulator would require the modeling of dynamic object
deformations. Currently, accurate simulations of such prop-
erties are too slow for sampling-based planners, so human
annotation of such grasps is necessary.

To generate the grasp database, we ran the Eigengrasp
planner offline six times for 20 min each, with the approach
direction of the palm aligned to the major axes in the posi-
tive and negative directions, using the best grasp from each
direction in the database. If there were fewer than ten grasps
in the database, including manually inserted grasps, the
highest quality grasps were selected from among all of the
available grasps until a full set of ten was available.

3.5. Grasping pipeline

Figure 6 includes a more detailed description of the
pipeline, incorporating three additional phases before the
planning–review–execute pipeline outlined previously, in
which the augmented visualizations are used to provide the
user with extra flexibility in initializing the planner. These
phases allow the user to: (1) Control the vision system’s
object detection and localization, (2) review the set of avail-
able grasps retrieved from the preplanned database, and (3)
choose whether to activate the online refinement or simply
execute the retrieved grasp. The phases of the pipeline and
transitions between them are outlined as a state machine in
Figure 6. In this pipeline, there are two possible paths to
the final phase of grasp execution, trading complexity for
potential speed improvements.

To help the user manage this complexity, we added a
“guide window” that displays the transition table for the cur-
rent phase, as shown in Figure 3. Throughout the pipeline,
two of the facial gestures are associated with transitions
between phases of the pipeline, while the other two provide
direction to the online planner. In the “guide window,” the

left side of the window shows the current phase in yellow,
the center of the window shows the result of the Gesture
1 transition in red, and the right side of the window shows
the result of the Gesture 2 transition in green. Showing the
current phase in the guide window acts as an important cue
to help the user manage the transitions between phases of
the pipeline, confirming that the chosen actions having their
intended effect, and helping users remember the goal of
each phase of the task. This is especially important when
the user intended to make a different decision than the one
that was detected, either by making the wrong gesture or
because the classifier was mistaken.

Below the “guide window,” we visualize the top ten
grasps available to the planner. This allows the user to
judge options as they are retrieved from the database or
repopulated by the online grasp planner.

3.6. Experiments

To test the efficacy of our system, we recruited five healthy
subjects to participate in an experiment to use the system
to lift three objects from a table. All testing was approved
by the Institutional Review Board of Columbia University
under Protocol AAAJ6951. The results of these experi-
ments were published in Weisz et al. (2013), and a video
illustrating all three systems can be found in the multimedia
extension or at https://youtu.be/vuiW02i3y44.

3.6.1. Task. Each subject was asked to grasp and lift three
objects using an Emotiv Epoc as input. The experimental
setup is illustrated in Figure 7. The subject is seated in front
of a computer monitor about 2 m from the workspace of the
robot, and is able to observe the robot and the target object.
The depth camera is aimed at the center of the workspace
from 1.5 m away. Two of the objects, a flashlight and a deter-
gent bottle, were in the database and available to the vision
system. One of the objects, a small juice bottle, was novel.
Each subject was asked to perform two grasps, one from
the top of the object and one from the side of the object.
Each grasp was repeated three times. For the novel object,
the alignment provided by the vision system may be off cen-
ter, and the subject has to decide which direction is the best
aligned. Because the direction was not specified, the sub-
jects were simply asked to grasp the object five times. The
object was placed in view of the subject on a marker on
the table that indicated a region in which the robot arm has
high manipulability. The exact position of the object was
not tightly controlled.

3.6.2. Training. The subject was asked to perform each
facial gesture ten times each to train the Emotiv Epoc clas-
sifiers and choose reasonable parameters for the classifiers.
To train the subject to perform the task, the subject was
asked to perform the task twice in the virtual environment
without executing the final grasp on the arm.
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Fig. 6. Phases of the modified grasping pipeline, incorporating more control over the vision system and the grasp database. If the user
chooses the nth grasp from the database, n + 4 user inputs are required. If none of the grasps is suitable, the online planner can be
invoked with a few simple inputs to refine one of the grasps further.

Fig. 7. A user grasping a laundry detergent bottle using System 1.

3.6.3. Results. The results of the experiments are reported
in Table 1. For each subject, we report the mean time to
completion and the fraction of successful attempts for each
grasp. Time to completion is measured from the end of the
object identification phase to the beginning of the execution
phase, which is the time taken to plan the grasp. Overall,
the average planning time was 104 s on the known objects
and 86 s on the unknown object. The mean success rate was
80%, with most failures on the first attempt at attempting a
new grasp. This shows that users are able to learn to use the
system effectively in only a few attempts.

At the end of the experiment, subjects were asked
whether they had experienced pain or discomfort during the
experiment. All five subjects reported facial muscle fatigue.
The subjects were asked if there was any part of the experi-
ence they particularly disliked. Three of the subjects men-
tioned that the setup time, which had taken over an hour
for all three tasks, was too long. Three of the subjects also
mentioned that they had trouble reading the guide window
while concentrating on the screen.

Table 1. Results using System 1: Subjects using this system
successfully grasped the target object in 80% of trials, with an
average grasping time of 104 s.

Grasp Subject Successes Mean time, s

Flashlight, side 1 3/3 125
2 3/3 53
3 2/3 103
4 3/3 95
5 3/3 82

Flashlight, top 1 3/3 132
2 2/3 75
3 2/3 96
4 3/3 93
5 2/3 125

Detergent bottle, 1 3/3 75
side 2 3/3 57

3 3/3 106
4 2/3 82
5 3/3 75

Detergent bottle, 1 1/3 151
top 2 2/3 114

3 2/3 142
4 2/3 161
5 3/3 145

Novel bottle 1 3/5 132
2 4/5 63
3 4/5 95
4 4/5 91
5 4/5 50

In these experiments, grasps from the side demonstrated
significantly more robustness and shorter planning times
than grasps from above. The grasp database contained only
one grasp from above for each of these objects, and this
grasp was a fingertip grasp, which may be sensitive to
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pose estimation error, and which resulted in longer planning
times while the subjects searched for a better grasp. In gen-
eral, grasping roughly cylindrical objects, such as the top of
the detergent bottle from above is somewhat problematic for
the BarrettHand, owing to its configuration and the low fric-
tion of its fingertips. In contrast, subjects were able to find a
reasonable grasp from the side of the object from among the
grasps pulled directly from the database. The difference in
planning times reflects the benefit of integrating the offline
planning phase.

3.7. Discussion

These experiments revealed a number of problems with the
device used in this experiment. For three of our subjects,
it took more than an hour to find the right thresholds and
position for the headset. After the experiment, subjects were
asked to describe their discomfort during the experiment
and their level of control. Subjects reported little discomfort
initially, but were frustrated with the difficulty of getting the
device to recognize their intended actions, especially with
false negatives making it difficult to continue to the next
phase of the pipeline at will. This led to overemphasis of the
facial gestures, which caused muscle fatigue. The subjects
reported significant muscle fatigue and some level of frus-
tration with the lengthy setup. Although these issues point
at major problems with the practicality of the input device,
the subjects were able to complete the task well enough to
validate the general strategy and user interface.

These difficulties are especially a large problem in test-
ing this system on a disabled subject. Since they are
dependent on carers, an indeterminately long setup time
poses a major problem in performing studies with that
population.

In addition to these issues, we also wanted a system that
would handle more complex scenes with multiple objects
and clutter in the target area. The clutter in the scene blocks
grasps from many directions. To find grasps that are not
blocked by clutter or outside the reachable region of the
arm, we needed to perform online reachability assessments
and provide feedback to users to allow them to understand
when their chosen approach direction is blocked or unreach-
able. Although we did not measure cognitive load explicitly
during this experiment, the subjects’ comments relating dif-
ficulty in both focusing on the task and reading the guide
window indicate that demands on the subjects’ visual atten-
tion were high. To address this, the visual interface must be
streamlined and simplified.

The minimal time this system can make a plan and
execute a grasp is around 45 s, owing to the time taken
by the vision system and the slow speed at which we
run the grasping trajectory. The performance of subjects
was within ≈300% of this minimum. Optimizations to the
vision pipeline and increasing the speed of arm motion
as subjects become more comfortable with the robot will
significantly decrease the time it takes to grasp an object.

In the next section, we describe a different interface
device that is designed specifically to measure facial EMG
signals, along with some of the changes we made to the user
interface to address the concerns that subjects expressed
during this experiment.

4. System 2: Novel sEMG device with
impaired user study

4.1. Introduction

In this section, we will introduce a significantly differ-
ent paradigm for interacting with our online planning sys-
tem, which is controlled through a cursor-based selection
scheme rather than facial gestures. We will also describe
revisions to the user interface to reduce visual clutter and
provide more useful online feedback about the reachabil-
ity of the demonstrated goals. We will then describe a short
pilot study with an impaired user.

4.2. Surface EMG recording

To address some of the issues experienced using the Epoc,
we adopted a novel input device under development at
the University of California Davis, which is designed to
be used by severely impaired individuals. This device has
an extremely noninvasive profile, requiring only a single
sEMG recording site behind the ear.

The muscles behind the ear are innervated by nerves
that come directly from the brain stem, without ever enter-
ing the spine. Even individuals with the most severe spinal
cord paralysis can still access these muscles. Friedman et
al. (1999) noted that this makes the auricular muscles a
promising target for control of assistive devices. Although
some individuals are able to move their ears independently,
we have found that even individuals who cannot move their
ears can learn to activate the muscles in that region without
achieving overt motion when they are given visual feed-
back. This activation produces signals that can be detected
by electrodes mounted on the surface of the skin.

A series of works (Joshi et al., 2011; Perez-Maldonado
et al., 2010; Skavhaug et al., 2012, 2016) have shown that
the input device can record two simultaneous channels from
a single recording site. This is achieved by training the
subject to modulate the activation of the muscles near the
recording site in order to control the power voluntarily
in two separate frequency bands. These two independent
degrees of control are used to drive a cursor, which selects
options by hitting targets on a screen. In those works, the
authors produced different user interfaces, such as a UI for
allowing a disabled individual to control a wheelchair.

The general methodology is outlined in Figure 8. The sin-
gle sEMG signal is first processed through a 60 Hz noise
filter to remove noise from the AC power supply. It is then
run through two different band-pass Butterworth filters to
extract two separate signals. The bands are then linearly
combined to compute the x and y cursor positions. This
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Fig. 8. The single sEMG signal is first processed through a 60 Hz
noise filter. It is then run through two different band-pass Butter-
worth filters to extract two separate signals. The bands are then
linearly combined to compute the cursor positions.

linear combination is necessary to generate independent
control channels ,since there are no perfect band-pass fil-
ters, and the subject might not be able to completely isolate
the frequency bands.

The total powers of two different frequency bands of the
single sEMG signal were computed using two band-pass
filters for 80–100 Hz (Band 1) and 130–150 Hz (Band 2).
These bands were selected ad hoc, based on previous expe-
rience. The output of the two filters produced comparable
powers during maximum voluntary contraction. The filter
outputs were combined linearly, as

[
x
y

]
=

[
1.75gain1 −0.75gain2

−0.75gain1 1.75gain2

] [
Channel1
Channel2

]

(1)
Without this transformation, the cursor could not reach

points along the x or y axis, as there can never be zero power
in either of the frequency bands. The gains for each band
are set for each subject after a short calibration procedure,
as described by Perez-Maldonado et al. (2010), to establish
the subject’s comfort level in maintaining a large enough
voluntary muscle contraction to move the cursor to any part
of the screen.

The sEMG signals are collected from the posterior auric-
ular muscle with two surface Ag–AgCl cup electrodes
connected to a model Y03 preamplifier (www.motion-
labs.com) with input impedance higher than 108 �,
15–2000 Hz signal bandwidth, and a gain of 300. The
electrodes were placed behind the subject’s left ear along
the axis of the muscle, with approximately 1.5 cm inter-
electrode distance (see Figure 9). A third electrode was
placed on the elbow as a reference. The cup electrodes were
type EL254S from Biopac Systems Inc. and were held in
place with Ten20 conductive paste.

To adapt this system to our use, we added some addi-
tional smoothing steps similar to those of Vernon and Joshi
(2011). The cursor position is further filtered through a low-
pass filter with a cutoff frequency of 0.5 Hz. This produces
a new position at 4 Hz. To smooth the visualization of the
cursor motion, we linearly interpolate seven intermediate
positions between each successive update, increasing the
refresh rate of the visualization from 4 Hz to 32 Hz. This
makes the system feel significantly more interactive, at the
cost of a 0.25 s delay between the calculated position and

Fig. 9. An impaired subject in the UC Davis RASCAL lab (top)
operating our sEMG assistive grasping interface to grasp a shav-
ing gel bottle in the Columbia Robotics Group Laboratory (bottom
right). The two small black clips behind the subject’s ear (bot-
tom left) are surface EMG electrodes (used in differential mode)
to detect activation of the posterior auricular muscle to direct the
system to pick up the object in this multi-object scene.

the visualization. This delay is not noticeable when the sub-
ject is making smooth, controlled motions and has been
used successfully in previous experiments.

4.3. sEMG GUI

To send signals to the grasping system, the user controls
a cursor to hit one of four targets, as illustrated in Figure
10. Each target represents a different input option. During
grasp planning, the targets are overlaid on the augmented
reality display. The user begins in a rest area and moves the
cursor to one of the targets. When the target is hit, the cur-
sor changes colors to reflect the user’s selection. The user
returns the cursor to the rest area, at which point the input
option selected is activated. After a selection, the other tar-
gets are disabled for 4 s. If an unintended target is selected,
the user can force the selection to timeout by avoiding rest
for these 4 s, canceling the selection.

We map these inputs following a strategy similar to that
used for each facial gesture in System 1. For the red and
green targets, denoted Inputs 1 and 2, the input is activated
a single time when the user returns to rest. For Inputs 3 and
4, the magenta and black targets, respectively, the activation
is sent continuously until the user exits the rest area again.
This allows the user to exert near continuous control over
the hand’s approach direction.

4.4. Handling cluttered scenes

In addition to an improved input device, we extended our
grasping system to handle more realistic scenes, includ-
ing some amount of clutter. In this work, we will define
“clutter” as objects being in close enough proximity that
many of the grasps for the objects may collide with other
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Fig. 10. The sEMG interface. (a) The user interface is composed of four targets overlaid on the grasping scene. Target 2 usually signals
acceptance of the current option. Target 1 toggles the next option. Targets 3 and 4 provide input to the planner. (b) Hitting one particular
target changes the color of the cursor to reflect the selection and makes the other targets unavailable. (c) If the user does not return to
the rest area after a few seconds, the selection times out and is deselected and all targets become available again for selection.

nearby objects, but that they are not actually in contact with
one another. We did not handle the problem of singulation,
which is a specialized manipulation designed to separate
objects that are too close together for the fingers to sur-
round the object without colliding with other objects. We
tested grasp planning scenes where there was at least 5 cm
of empty space between each object.

Handling cluttered scenes introduces a number of chal-
lenges. First, it slows down the online planning phase. There
are many fewer possible grasps and the obstacles divide the
state space into discontinuous regions, creating more local
minima in the value of the quality function, which slows
down convergence. Additionally, adding more geometry to
the planning scene slows down collision detection, which is
a bottleneck for grasp planning. Second, many of the grasps
produced by the planner might not have a reachable path to
grasp. In System 1, we made the optimistic assumption that
most grasps were reachable, but in clutter this is no longer
a valid assumption. Third, with more objects in the scene,
there is more visual clutter and it is more difficult to produce
a useful visualization.

To address the first two issues, we implemented an online
reachability test that a user can clearly interpret. When good
grasp candidates are found, System 2 checks that an entire
valid trajectory can be generated using the CBiRRT planner
described in Berenson et al. (2009b). Unreachable grasps
are placed at the end of the list of grasps and colored red in
the grasp preview window (see Figure 11(b)). This allows
the user to see that progress is being made even when no
new reachable grasps are being generated.

We maintain the list of unreachable grasps so that we can
reject nearby grasps without running more computationally
expensive analyses. Valid grasps are ranked by their dis-
tance from the demonstration hand and alignment with its
approach direction. This makes the planner more responsive
in cluttered scenes. The list is re-sorted as the demonstration
hand is moved.

The results of the reachability test are also used to train
a nearest-neighbors classifier. When the user moves the
demonstration hand, we find the five grasps for which the
normal of the palm of the hand is closest to the normal of

the demonstrated pose. If at least 50% of these grasps are
unreachable, we designate the current demonstration pose
as being in an unreachable region, which is indicated to the
user by highlighting the demonstration hand in the planner
interface in red. These measures are crucial for a naive user
who is not familiar with the kinematics of the robot arm
and might not have the intuition that the region from which
grasping is attempted is not within the robot’s workspace.

4.5. GUI modifications for sEMG interface

A number of changes were made to the user interface to
accommodate both the added visual complexity of overlay-
ing the sEMG control interface on the planning scene and
the added difficulty of interpreting the multi-object scene.
We redesigned the UI with a cleaner look and feel that
implements a number of new features.

The System 2 interface layout is outlined in Figure 11(a),
which illustrates the UI presented during the object selec-
tion phase. First, the point cloud displayed in the scene
has been upgraded to a higher-resolution color point cloud.
This change allows the user to discern the target object
more effectively in the cluttered scene. It also allows the
user to exercise more judgment in interpreting the scene,
since he or she might not be physically present to observe
it first hand. Second, we display only three grasp options
instead of ten to reduce the visual clutter. This also allows
us to enlarge the presentation of the grasp so that the user
can more easily discern how the hand might interact with
the rest of the objects in the scene. Third, we moved the
grasp preview window to the side of the screen and mod-
ified the way that the UI generates the view to share the
aspect ratio and alignment of the depth camera so that all
detected objects are visible and that the user’s intuition is
unimpeded by deformations due to the aspect ratio. Fourth,
we removed all of the window decorations and grasp metric
displays, as the subject is not expected to be able to inter-
pret them correctly. Overall, this provides a much cleaner,
streamlined view that is more suitable for non-expert users.
The sEMG interface is rendered as a translucent layer on
top of the grasp planning scene, allowing the subject to see



12 The International Journal of Robotics Research

Fig. 11. The System 2 interface. (a) System 2 interface—object
selection phase. The subject is able to see the planning scene in the
main UI window. The window on the bottom tells the user the cur-
rent phase and what the green and red inputs will do in this phase.
In this phase, the subject sees the point cloud and hits the red tar-
get until the desired object is highlighted in green and then hits the
green target to proceed to the next phase. (b) System 2 interface—
initial review phase. After the subject selects the object, the grasp
view pane on the right is populated with a set of grasps from a
database. Grasps that are reachable appear on a green background,
while unreachable grasps are given a red background. The topmost
grasp in the grasp view window is the currently selected grasp,
which is rendered in the planning scene with the planner hand.

both at the same time. The scene is chosen so that the rel-
evant objects are centered in the scene. While the user is
not actively using the cursor, it remains in the lower left
of the screen and the main grasp planning scene remains
unoccluded.

We placed Targets 1 and 2 in opposite corners of the
screen because these inputs control the progress of the
user through the grasping pipeline, and we wish to mini-
mize confusion between an accidental selection of these two
options. The middle two options modify the demonstrated
approach direction, and accidental selections have minimal
impact.

4.6. System 2 pipeline

We made a number of modifications to several of the stages
of the pipeline shown in Figure 6.

4.6.1. Initialization. The subject is presented with a view
of the scene from the perspective of the depth camera. The
user sends Input 1 to activate the object recognition system.
If the recognized objects align well with the point cloud
sent, the results can be accepted with Input 1. If not, the
recognition system can be rerun with Input 2.

4.6.2. Object selection. The first detected object is high-
lighted in green as the target object. To select an object as
a target, the user sends Input 2. To cycle to the next object
in the recognized object list, the user sends Input 1. The
non-target objects are all highlighted in red. The non-target
objects are replaced with lower resolution models when a
target is selected, which makes the planning phases faster.

4.6.3. Initial review. The user is presented with a list
of preplanned grasps from a precomputed database. This
phase has been modified from System 1 to present a clearer
visualization and reachability information. As the user iter-
ates through the grasp list, the grasps in the middle and
bottom rows shift up and the next grasp in the list moves to
the bottom position. When the user moves the demonstra-
tion hand, the grasp list is re-sorted, bringing grasps from
the new approach direction to the top of the list. Reachable
grasps are presented on a green background, while unreach-
able grasps are presented on a red background. The user
sends Input 1 to increment through the grasp list. When the
user finds a reasonable grasp, Input 2 is sent to select the
grasp.

4.6.4. Planner initialization. The user is presented with
the choice of accepting the grasp from the previous phase
with Input 1, proceeding straight to the grasp choice confir-
mation phase, or sending Input 2 to refine thee chosen grasp
further.

4.6.5. Grasp refinement. The online planner runs, present-
ing the user with updated options as new grasps are found.
The new grasps are displayed with a white background
in the grasp preview pane on the right side of the screen
while they are being analyzed for reachability. Moving the
demonstration hand causes the planner to generate grasps
from the demonstrated approach direction. Sending Input
2 stops the planner and proceeds to the final grasp review
phase.

4.6.6. Final grasp review. The list of available grasps is
static and the user is able to review all of the available grasps
before making a final selection from the list. The user inter-
face is the same as that presented in the initial review phase
(Figure 11(b)), except for the current stage indicator.
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The user is presented with three grasps at a time, which
can be iterated through to select one that represents the
user’s intent. The user sends Input 1 to switch to the next
grasp on the grasp list or Input 2 to select the current grasp.

4.6.7. Grasp choice confirmation. The user sends Input 1
to go back to the grasp refinement phase and Input 2 to send
the grasp for execution on the robot.

4.7. Validation

To validate this system, we recruited a 30-year-old man with
limited upper limb mobility owing to a C3–C4 spinal injury.
All testing of System 2 was approved by the Institutional
Review Board of the University of California, Davis under
Protocol 251192-10. This subject had previous experience
with the sEMG device but had not been trained in using this
interface. For this work, we measured the activity in the sub-
ject’s posterior auricular muscle to avoid the need to shave
his hair. The subject was recruited and trained at the UC
Davis site, and operated the robot without ever having any
interaction with it or the experiment site in the real world at
the Columbia University Robotics lab. The setup is shown
in Figure 9.

As with the previous task, the objects were placed with
their centers roughly aligned to markers on the table in the
middle of the workspace of the arm, in a region with high
manipulability. The objects were separated by at least 5 cm,
which allows the BarrettHand sufficient space to reach
between them without having to singulate.

4.7.1. Task. Owing to limitations on the impaired subject’s
time, we were only able to complete three trials using the
system. In these three trials, the subject was asked to pick
up an object from a cluttered, multi-object scene. In the
first two attempts, he was asked to use the online planner to
refine one of the preplanned grasps. In the first attempt, he
grasped the laundry detergent bottle. In the second attempt,
he grasped the shaving gel bottle. In the third attempt, he
was asked to grasp the detergent bottle using one of the
preplanned grasps directly from the grasp database. Other
than the image in the planner interface, the subject was not
given any information about the objects he was to grasp.
However, they are all well known household objects, so the
subject can be expected to have some implicit idea of the
weight and friction properties of the objects.

During the task, the subject reported which target he was
trying to reach and we tracked the number of mistaken tar-
get activations, which would lead the user to loop back
through that part of the pipeline. After the grasp is selected,
the target object is lifted from the table automatically so that
the user can see whether the grasp is stable. If no part of the
target object remains on the table, we consider the trial a
success.

Table 2. System 2: Experimental validation results.

Grasp Time, s Inputs Timeouts Mistaken
selections

Detergent 1 564 14 14 2
Detergent 2 609 9 50 0
Shaving gel 910 12 11 1

4.7.2. Training. To familiarize the subject with the inter-
face, we demonstrated the pipeline two times with the sub-
ject just watching and asking questions along the way. We
then went through the pipeline with the subject twice more
while verbally instructing him on which target to hit while
the experimenter controlled the cursor with a computer
mouse. This allowed the subject to familiarize himself with
the pipeline and navigate his way through it without hav-
ing also to focus on the task of hitting targets with the
sEMG interface. Once he appeared to be conversant with
the system, we turned control over to the subject’s sEMG
interface.

4.7.3. Results. The results of the experiment are shown in
Table 2. The subject was able to grasp the objects success-
fully on all three attempts. On average, it took the subject
694 s to grasp each object, including about 60 s for the
vision system to detect the objects in the scene. There were
an average of 25 timeouts, and one mistakenly selected
target per attempt. Timeouts are an expected part of this
interface, which allows the user to re-select the intended
target if the initially selected target is incorrect. Occasional
mistaken selections are also expected, and the pipeline is
designed to be robust to these errors, allowing the user to go
back to the previous step where necessary to correct mis-
takes. Several mistakes in a row are necessary to actually
realize mistaken actions on the robot.

At the end of the experiment, the subject was asked
whether he had experienced any pain or discomfort, but did
not report any. He was also asked whether there was any
part of the experience he particularly disliked. He reported
trouble controlling the cursor accurately enough, and also
stated that he had gotten confused several times about what
phase of the pipeline he was currently in whenever there
was a phase transition he did not intend.

4.7.4. Discussion. This study was a short, single-user
proof of concept with only a few results. Although these
results are quite promising from the perspective that a sin-
gle participant was able to understand and utilize the system
fairly quickly, the experiment also revealed some shortcom-
ings of the system. First, the user’s control over the sEMG
device was not very accurate, yielding many false initial
selections that had to be timed out. This may be because
the user was trained to use the posterior auricular mus-
cle, which is smaller and has more variable performance.
Time constraints did not allow for extensive training of the
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subject, and so when switching from training to task, the
additional cognitive load appears to have degraded perfor-
mance. Additionally, the subject’s difficulty in keeping track
of his current phase in the pipeline indicates that the visual
attention requirements of the user interface are still too high
to allow the subject to attend to both the task and the phase
indicator window at the same time. A second problem was
that the online reachability tester is fairly slow in using the
CBiRRT planner, and thus new available grasps appeared
slowly. This caused relatively few reasonable grasps to be
available, and so the user had more trouble because he had
to iterate through more grasps that were not reflective of his
intent while looking for a reasonable one. While indicat-
ing poor regions for grasping by shading the display hand
was somewhat effective at helping the user avoid long waits
in regions that were doomed to failure, this tactic was not
sufficient near border regions where grasps were possible
but unlikely because of occlusions. In light of the severity
of these issues, we proceeded directly to another iteration
of the system rather than following up with further user
studies.

5. System 3: A practical assistive grasping
platform

These results showed enough efficacy of this system that
we developed an enhanced system, System 3, which uses
a smaller, lighter robotic arm, the Kinova Mico. Systems 1
and 2 used an industrial arm, which is extremely accurate
and has a large workspace, but is too heavy and expensive
to be part of an assistive robotic setup. Additionally, this
large, high-precision arm does not reflect the performance
characteristics of an arm that is affordable and practical for
a portable assistive device that could be mounted on either
a table or a wheelchair. We also sought feedback from our
colleagues at the Columbia Medical Center who worked
with this same sEMG device in stroke patients. Their advice
was that our user interface needed further streamlining. We
also sought to resolve the online reachability checking issue
by integrating a faster planner.

5.1. Adaptations for the Mico manipulator

The Kinova Mico arm is a six-DoF arm with a two-finger
gripper. The fingers each have two joints coupled to a pas-
sive under-actuation mechanism that enables both envelop-
ing grasps of convex cross-sections of objects and fingertip
grasps. These fingers are made of a hard plastic that has rel-
atively little friction, which implies that the fingers of the
hand must be well aligned to the surface of the object to
achieve a stable grasp.

The transmission of the under-actuation mechanism of
the hand is designed such that the fingertips remain at
roughly the same angle relative to the palm through most of
the range of the finger’s motion, like the motion of a parallel
jaw gripper. For hands of this type, we can trivially estimate

the contact point of the grasps without performing the kine-
matic simulation of closing the hand in GraspIt!, which is
the most computationally expensive aspect of grasp analy-
sis. In this work, we applied a 10× multiplier to the qual-
ity measure of grasps whose estimated contacts aligned to
within 3◦ of the normal to the nearest surface. This was
sufficient to generate only well-aligned, reasonable grasp
candidates.

5.2. Improved online reachability checking

Given our previous insight that the online reachability test-
ing is a bottleneck for the online grasp refinement, we
wanted to explore different options for online reachability
checking. This motivated us to replace the CBiRRT trajec-
tory planner with the MoveIt! planning environment (see
Sucan and Chitta, 2013), which interfaces with a large num-
ber of planners in the OMPL planning library (Şucan et al.,
2012).

The OMPL planners have different strategies with differ-
ent performance properties. To investigate which is appro-
priate to grasping in the cluttered scenes with the Mico
arm, we captured 10 scenes similar to that shown in Fig-
ure 12(b) and ran the online reachability checker on the
set of default grasps for each of the objects in the scene.
Since many of the grasps in the online planner tend to be
very similar, we perturbed the grasps by a ±0.005 m in each
direction, testing 60 grasps for each of the three objects for
each scene.

The online reachability check is the final stage of filtering
before grasps are presented to the user. The sampling nature
of the planner implies that there will be a great deal of tem-
poral correlation between grasp requests. To take advantage
of this correlation, we implemented a plan caching scheme
that stores the start and end point of the arm trajectory in
a nearest-neighbors lookup tree. When planning a new tra-
jectory for online analysis, we first attempt to plan from the
end of the nearest endpoint. If that fails, we retry from the
original starting position. If this second attempt succeeds,
the planned path is inserted into the cache. For the actual
arm motion, we retry the planning until it succeeds from
the original starting location, so long as a valid cached plan
exists. This is because smoothing such plans to remove the
excess waypoints introduced by the initial segment from the
cached plan is still an open area of research that we did not
wish to address in this work.

Because the trajectory planners are stochastic, their per-
formance is highly task-specific and sensitive to such
parameters as minimum segment length and allowed plan-
ning time. We used a parameter sweep of the allowed
trajectory segment length from 0.01 to 0.1 in steps
of 0.01 with allowed planning times up to 20 s. This
parameter controls the sampling density of the planner
along the planned trajectory, and so trades between plan-
ning time and accuracy of collision detection along the
trajectory.
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Fig. 12. Screenshots of System 3 pipeline stages. (a) System 3—
object recognition and selection state. The graspable objects in the
scene are highlighted in red and green. Sending Input 1 selects
the green object as the target, Input 2 cycles to the next object,
and Input 3 triggers the object recognition system to refresh. The
background UI area is rendered in red while the recognition is still
processing. (b) System 3—grasp refinement state. The buttons on
the right function as guides for the result of hitting the color-coded
input options that will be presented to the user, as well as buttons
that the user and experimenter use during the training stage. The
sEMG is interface overlaid on the planning scene with the selected
target highlighted in green.

Two of the probabilistic road map planners (Kavraki
et al., 1996) performed best using the caching scheme, suc-
ceeding in 43% of the grasps, and the standard probabilis-
tic road map implementation had the fastest planning for
the caching version of the planner, with an average plan-
ning time of 5.5 s for arm motions in which the caching
fails, and 0.1 s when the cache succeeds. Note that we only
used single-query versions of the probabilistic road map
planners, so this improved performance does not leverage
the advantage that probabilistic road map planners have in
multi-query planning scenarios.

The single-query bidirectional variant of the probabilis-
tic road map planner (SBL) produced plans that seemed
smoother in the region near the object. Grasping objects in
a cluttered scene requires planning in a state space in which
there is a very narrow valid region near the goal state, so one
might expect a bidirectional planner to find a more optimal
path out of that region because it will spend more resources
directly on that part of the problem. This means that the
planned trajectory changes direction fewer times near the

goal, which leads the user to more easily understand and
supervise the motion of the robot (Dragan et al., 2013).

However, we found empirically, when the caching
scheme failed to find a reasonable neighbor, that the SBL
planner’s success rate dropped to 30%, whereas the proba-
bilistic road map planner’s success rate remained the same.
This led to a slight lag in performance as the cache was
populated. Thus, for the online reachability verification, we
used the probabilistic road map planner with a segment
length of 0.05, while to produce the actual grasp on the
robot we used the SBL planner. These changes removed the
online reachability checking as a bottleneck for the online
grasp refinement phase of the pipeline. (Although MoveIt!
includes a benchmarking suite for determining the optimal
parameters for a set of problems, it cannot be used with
MoveIt!’s pick-and-place grasping pipeline, which handles
the approach and lift phases of the path planning, or with
robots that have some joints with continuous joint ranges.
As such, we implemented our own ad-hoc optimization
script.)

5.3. Further UI improvements

In our previous systems, the two “continuous” inputs that
shifted the hand around the object were not part of the
pipeline guide display that showed users which phase they
were in and what their inputs would do. In every phase of
the pipeline, the inputs always did the same thing. However,
in this system, the purpose of these inputs can also change
in each phase. In addition, our previous test user indi-
cated that there should be a clearer differentiation between
the augmented reality region containing the grasp planning
scene and the rest of the UI and that fewer grasp options
should be presented during the parts of the pipeline where
they were not needed.

In this system, the UI window is adaptive, providing more
visual cues to the user as to what the goal is in each particu-
lar phase of the pipeline. The grasp previews are integrated
with the pipeline guide display, and the pipeline guide areas
also function as GUI buttons for the experimenter to use
when familiarizing the subject with the UI. Each of the tar-
gets now has a corresponding color-coded button. These
new UI elements are shown in Figures 12(a) and (b). While
this may seem like unnecessary complexity, the UI is more
visibly different in each phase and less extraneous informa-
tion is presented. This acts as a large visual cue that does not
require the subject to explicitly switch attention to check the
current phase.

5.4. System 3 pipeline

The updated pipeline is slightly shorter and makes more
varied use of Inputs 3 and 4.

5.4.1. Object recognition and selection. This phase com-
bines the first two phases of System 2. To select an object
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as a target, the user sends Input 2. To cycle to the next object
in the recognized object list, the user sends Input 3, which
will continuously iterate through the objects until the user
leaves the rest area. To rerun the object recognition system,
the user sends Input 1. While the recognition system is still
running, the whole screen is highlighted in red and it is not
possible to proceed to the next phase until the recognition
finishes.

5.4.2. Initial review. As in System 2, the user is pre-
sented with a list of preplanned grasps from a precomputed
database. The UI presented is shown in Figure 12(b), in
which the currently selected grasp is shown in the window
of the top of the guide area, with the color of the back-
ground again indicating the results of the online reachability
checker. The next grasp is shown in the bottom of the win-
dow. Input 1 begins the online refinement stage; Input 2
skips to the final grasp review phase. Input 3 will iterate
through the available grasps, whereas Input 4 will return to
the object recognition and selection phase.

5.4.3. Grasp refinement. This phase is similar to System 2,
but with one fewer grasp displayed more prominently. The
first grasp is shown in the top of the window and the next
grasp is shown in the bottom. Input 1 proceeds to the final
grasp review phase; Input 2 aligns the hand to the next grasp
and brings it up to the top window. Inputs 3 and 4 rotate the
hand around the object, as previously described.

5.4.4. Final grasp review. The list of available grasps is
static and the user is able to review all of the available grasps
before making a final selection from the list. As in the pre-
vious phase, this phase has been adapted to have only two
grasps, with the top showing the current selection and the
bottom showing the next selection. Input 1 proceeds to the
grasp choice confirmation phase; Input 2 aligns the hand to
the next grasp and brings it up to the top window. Inputs
3 and 4 rotate the hand around the object, as previously
described.

5.4.5. Grasp choice confirmation. This phase is similar to
that of System 2, but with only the selected grasp shown
in the grasp preview window. The user sends Input 1 to go
back to the grasp refinement phase and Input 2 to send the
grasp for execution on the robot.

5.5. Validation

To validate these design decisions, we tested our pipeline
on five healthy subjects, two men and three women, aged
22–30. All testing was approved by the Institutional Review
Board of Columbia University under Protocol AAAJ6951.
To simplify testing of the UI, we did not attempt to train
the subjects on the two-dimensional version of the user
interface. Instead, the subjects were given a similar user

interface, but the cursor was constrained to move toward
the target representing the “selected” input, which is out-
lined in green, as shown in Figure 12(b). To change which
target is currently “selected,” the user leaves the rest area
and returns to it without hitting a target. This cycles the
“selected” target forward by one. This change allowed us
to focus on testing improvements to the user interface and
grasp planning pipeline without needing the more exten-
sive training necessary to train a subject to achieve full 2D
control of the cursor.

5.5.1. sEMG device setup. In these experiments, we
placed the sEMG device behind the ear of the subject to
measure contractions of the posterior auricular muscle. To
stabilize the device and reduce noise due to motion of the
wires, we stabilize the electrodes by wrapping the head of
the electrodes in Silly PuttyTM silicone putty, as shown in
Figure 13. We find the correct placement of the device by
asking the subject to clench his or her jaw gently and raise
his or her eyebrows. We place the electrodes where we find
a large response to eyebrow raises and little response to jaw
motion.

5.5.2. Training.

sEMG device. Each subject was trained on the sEMG
user interface without the grasp planning system. In the
training system, the user is given a desired target high-
lighted in red, which is randomly selected at the beginning
of each trial. The user is then instructed to cycle the selected
target until it overlaps with the desired target, which is then
shown in gold. The subject was asked to perform sets of 30
trial blocks until they successfully completed at least 29 of
the 30 attempts. This took at most two blocks of trials for
any subject, with subjects who already had some ability to
move their ears frequently succeeding in their first block.

Grasp planning interface. To familiarize the subjects
with the grasp planning system, we manually showed them
three examples of grasping objects, once short circuiting the
online planning and twice allowing the online refinement
to run. Then we allowed the subjects to guide the pipeline
themselves five times, twice without the online planner and
three times with it. Then we repeated the training, allow-
ing the subjects to guide the planner to pick up the large
detergent bottle five times in whatever direction they chose,
using the UI through the on-screen button interface.

5.5.3. Task. We placed the objects on the table in proxim-
ity to one another, as shown in Figure 12(b), near the center
of the workspace of the Mico arm. We asked the subject to
grasp each object three times, the first time from any direc-
tion deemed reasonable, then once from the side, and once
from above. For each object, the placement of the objects
and grasps in the database were such that either the side
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Fig. 13. Top: A typical grasp of the shampoo bottle from the side
in the cluttered scene. Note that the hand is just able to fit between
the other objects to grasp the desired target. Note that the ability
to plan this grasp in such a restricted environment is an indication
that this system is very successful at handling the cluttered scene.
Bottom: The sEMG system electrodes. In these experiments, we
placed the electrodes behind the ear of the subject to measure
contractions of the posterior auricular muscle. We stabilize the
electrodes by wrapping the head of the electrodes in silicone putty.

or top grasp required online grasp refinement. Since the
workspace of the Mico arm is not very large, it is easy to
find such object positions.

5.5.4. Results. The results of the experiment for five sub-
jects are tabulated in Table 3. On average, the subjects were
successful in grasping 82% of the objects within 92 s of
the first time the cursor left the rest area. Subjects 2 and
3 were the best able to control the cursor, having previously
been able to move their ears already, and also performed
the best in these experiments. These results indicate that
the underlying planning system is providing options that
the less capable subjects are not exploring because they are
having more difficult with the UI.

At the end of the experiment, subjects were asked
whether they had experienced pain or discomfort during
the experiment. None of the subjects reported any discom-
fort or muscle fatigue. The subjects were asked whether
there was any part of the system they particularly disliked.
One subject reported a small amount of frustration with the

Table 3. Results from Experiment 3. On average, subjects were
successful in grasping 82% of the objects within 92 s of the first
time their cursor left rest area.

Grasp Subject Success Time

Detergent bottle, top 1 Yes 75
2 Yes 53
3 No 45
4 No 122
5 Yes 135
Mean 60% 86

Detergent bottle, side 1 No 66
2 Yes 40
3 Yes 52
4 Yes 80
5 Yes 85
Mean 80% 64

Detergent bottle, open choice 1 Yes 50
2 Yes 57
3 Yes 53
4 Yes 135
5 Yes 128
Mean 100% 85

Shampoo bottle, top 1 Yes 151
2 Yes 72
3 Yes 60
4 No 126
5 No 104
Mean 60% 102

Shampoo bottle, side 1 Yes 134
2 Yes 95
3 Yes 132
4 Yes 164
5 Yes 143
Mean 100% 133

Shampoo bottle, open choice 1 Yes 93
2 Yes 121
3 Yes 63
4 Yes 95
5 Yes 117
Mean 100% 98

Shaving gel, top 1 No 83
2 No 123
3 Yes 112
4 No 139
5 Yes 97
Mean 60% 111

Shaving gel, side 1 Yes 65
2 Yes 52
3 Yes 57
4 Yes 88
5 Yes 92
Mean 100% 71

Shaving gel, open choice 1 No 73
2 Yes 59
3 Yes 76
4 Yes 81
5 Yes 85
Mean 80% 75

(continued)



18 The International Journal of Robotics Research

Table 3. Continued

Grasp Subject Success Time

Average performance 1 66% 87
2 88% 75
3 88% 72
4 77% 114
5 88% 109
Mean 82% 92

speed of the online planner when grasping the detergent
bottle from the side in the center of the cluttered scene. Two
of the subjects felt that the experiments were repetitive.

For the shampoo bottle, relatively fewer grasps can suc-
ceed, compared with the rotationally symmetric shaving gel
bottle and the taller, sloping, detergent bottle. The only
feasible grasps from the side for the shampoo bottle are
directly from the side, aligned with the wide axis of the
bottle, as demonstrated in Figure 13. This narrow feasi-
ble region and the potential for many collisions with the
other objects in the scene during the reaching motion to
this region makes this a particularly difficult grasp, espe-
cially when the clearance around the grasp is as tight as
it is in Figure 13. Without the partial plan caching imple-
mented in the online trajectory planner, the online reacha-
bility checker cannot reliably find a path to this region. With
the cache enabled, plans are eventually found by connect-
ing lower-quality grasps produced by the planner that are
less occluded by clutter and therefore easier to reach. This
behavior allows us to keep the allowed planning time for
each individual grasp candidate low to increase the through-
put of the filter. The random nature of the grasp planner
combined with the solution cache allows us to compensate
for the uncertainty of the feasibility checker. This allows
the user the discretion to wait for a solution for particularly
hard goal regions.

6. Conclusions

In this paper, we have discussed the many details involved
in building a full assistive grasping system around an online
grasp planner. The key challenge was to find the right bal-
ance of complexity and usability, particularly with respect
to the design of the visual aspects of the interface. A clear
user interface is the key to allowing a non-expert user to
apply intuition to the grasping problem and provide the
added value that makes the system work well in spite of sen-
sor noise and any shortcomings in the heuristics applied by
the automated parts of the system. Careful development of
this platform has allowed us to produce an extremely capa-
ble system around components whose cost and complexity
is not prohibitive.

The iterative development strategy followed in this paper
has allowed us to uncover problems with each revision
quickly to reach a viable platform. As the platform and its

capabilities evolved, we made the tasks more challenging.
The drawback to this approach is that we cannot use it to
make strong statements comparing each iteration of the sys-
tem. To fully validate the improvements to the systems, we
will need to conduct further experiments with larger num-
bers of subjects using each system to perform the same
task.

Through this work with the UC Davis sEMG device,
we have pushed the boundaries of what can be accom-
plished with a minimally invasive, facial muscle driven
input. First, we extended our basic system design to a
more complex environment with multiple objects in close
proximity to one another. This involved augmenting the
user interface with additional phases to select the desired
object, adding an online reachability tester, and producing
a new UI with a dedicated interface, including a cleaner
UI with an integrated sEMG-driven option selection over-
lay. After initial validation of the interface on an impaired
user, we developed a series of improvements to the user
interface, online grasp planning, and the online reachabil-
ity filter to address the most challenging issues that caused
our initial user to take up to 8 min to make a single grasp
selection. We developed a novel control paradigm for test-
ing these changes without changing the visual interface,
which allowed us to validate the updated system on naive
users without the extensive training necessary to train an
individual to develop full 2D control.

This study serves as a pilot to validate the design choices
of the system on a path toward more experiments with
impaired users. We did not measure explicitly how long
the users spent in each stage of the pipeline, but one of
the most costly phases was observed to be the grasp refine-
ment stage, when it was used. To improve performance in
this stage, we would have to improve the performance of
the collision detection system, which is the dominant cost
of the simulated annealing driven grasp refinement. Over-
all, the majority of failures to grasp an object were caused
by the difficulty of grasping cylinders along the major axis
with a gripper, represented by grasping the detergent bottle
or shaving gel bottle from above. In these grasps, squeezing
the gripper can easily cause the object to be ejected. Sub-
jects cannot seem to learn to expect this behavior without
having experienced it a number of times, as they do not have
a good sense of the friction properties of the gripper. To
improve this behavior, we would have to implement a more
complex feedback controller during the grasping process.
It is also likely that with greater experience, the subjects
would have been more familiar with the kind of grasps that
cause ejection.

This work demonstrates one of the first EMG-driven
grasping systems that we know of that allows a user to grasp
an object in a somewhat cluttered scene, or integrates user
intent with the intermediate level of control we have pro-
posed. The sEMG device itself is very minimalistic, and
could itself be embedded in the frame of a pair of glasses,
which makes this device a real candidate for evolving to
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a consumer-level product. Future work for this paradigm
will be to refine the training paradigm to make learning
2D control over the device easier, exploring new control
paradigms, and extending the user interface to control the
locomotion of a motorized wheelchair or mobile manip-
ulator assistive platform. We have also begun integrating
more complex artificial intelligence techniques, such as
deep learning with online grasp planners (Varley et al.,
2015), which may be able to provide better grasps to the
user in spite of sensor and localization noise.
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Appendix: Index to multimedia extension

Archives of IJRR multimedia extensions published prior to
2014 can be found at http://www.ijrr.org; all videos pub-
lished after 2014 are available on the IJRR YouTube channel
at http://www.youtube.com/user/ijrrmultimedia.

Extension Media type Description

1 Video Demonstration of all three systems
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