
Machine Vision and Applications
DOI 10.1007/s00138-006-0048-9

ORIGINAL PAPER

Shadow based texture registration for 3D modeling
of outdoor scenes

Alejandro Troccoli · Peter Allen

Received: 6 April 2006 / Accepted: 6 September 2006
© Springer-Verlag 2006

Abstract This paper presents a novel method for the
registration of texture images with a 3D model of out-
door scenes. We pose image registration as an optimiza-
tion problem that uses knowledge of the sun’s position
to estimate shadows in a scene, and use the shadows pro-
duced as a cue to solve for the registration parameters.
Results are presented on a controlled experiment and
for a large scale model of an archaeological site in Sicily.

Keywords 3D modeling · Texture registration ·
Shadows

1 Introduction

This paper presents a method for finding the pose of a 2D
camera with respect to an acquired 3D model of an out-
door scene where shadows are present. We developed
this method as a part of a larger modeling and visu-
alization system for archaeological site documentation
[1]. Our goal is to construct a photo-realistic and geo-
metrically accurate 3D model by combining geometric
measurements obtained from a range sensor with pho-
tographic observations taken with a freely moving 2D
camera. In this context, we solve the pose estimation
problem (with known camera intrinsics) by matching
the position of the shadows in the 2D image with the

A. Troccoli · P. Allen (B)
Department of Computer Science, Columbia University,
1214 Amsterdam Ave. MC 401,
New York, NY 10027, USA
e-mail: atroccoli@acm.org

P. Allen
e-mail: allen@cs.columbia.edu

position of the shadows in the 3D model and solving for
the location of the camera in the 3D world.

Automatic pose estimation is a difficult problem
which combines 3D and 2D feature extraction with
feature matching. Most systems that do automatic or
semi-automatic pose estimation use corners, lines or sil-
houettes [10,14] as features; but these are hard to come
by in an archaeological site. By using the shadows we
can overcome this inherent lack of traditional geomet-
ric features. In fact, shadows have been used in many
computer vision applications. For example, shadows can
reveal information about scene structure [7,12,13,24]
or light sources [21]. In our case, both scene structure
and light source position are known; we take advantage
of this information and use it to compute the camera
position.

Given that our technique is based on shadow detec-
tion and matching, the following pre-conditions apply:
shadows should be detectable in the image; the 3D
model’s geolocation (latitude, longitude and orienta-
tion with respect to North) must be known; and ob-
jects casting shadows should be present in the model.
With the exception of the first condition, which does
not hold on cloudy days, the other two assumptions are
typically met in archaeological excavations and other
3D outdoor modeling applications. On the other hand,
the requirement that shadows are present in the images
might not always be met. This does by no means invali-
date our method; it makes it one more tool available in
our 3D modeling system. For images with shadows, we
use the tool; for images without shadows, we fall back
to a user-based manual registration tool. The difference
between the two tools is the amount of user interac-
tion. Where the manual point and click registration tool
is very user intensive, the shadow-based method only

A. Troccoli, P. Allen

requires minimum user interaction. We have applied
the method we present in this paper to a Stanford Uni-
versity archeological excavation at the acropolis of Mt.
Polizzo, Sicily.

2 Background

In a typical 3D model acquisition pipeline [3], a 3D scan-
ner is used to acquire precise geometry and a digital
camera to capture texture information. Unless the 3D
scanner has a calibrated built in camera, the 3D model
and images are unconnected and must be registered.
Texture registration is a camera calibration task which
solves for a mapping between a 3D world coordinate
system and a 2D image plane. This mapping consists
of a rigid transformation that takes the 3D points from
the world coordinate system to the camera coordinate
frame, plus a projection model that maps these into the
image plane. The calibration is obtained by matching
features in the 3D model with features in the image.

Previous work on 3D modeling from range and inten-
sity images has approached the camera pose problem in
different ways. Some triangulation based scanners can
acquire both texture and geometry with the same cam-
era [4,17], hence not requiring a registration step. Some
other systems rigidly fix the camera to the 3D scanner
and run a camera calibration procedure only once, in a
laboratory setting with objects of known geometry, as
[15]. However, such systems constrain texture gather-
ing both in time and space, because the images must
be acquired at the same time the 3D scans are taken
with the position of the camera restricted to the loca-
tion of the scanner. In certain cases, it is desirable to be
able to acquire the images with a free-moving camera;
either to get a close shot, for example, or to re-shoot
poorly lit scenes. In this scenario, all images must be
individually registered with the 3D model. This regis-
tration could be done manually, by having a user select
corresponding points from the 3D model and the 2D
image as in [19], or (semi)-automatically, using a system
that finds correspondences. Lensch et al. [14] present
an automatic method for texture registration based on
silhouette matching, where the contour of a rendered
version of the object is matched against the silhouette of
the object in the image. No user intervention is required,
but their method is limited to cases where a single im-
age completely captures the object. In urban modeling,
Stamos and Allen [23] presented an automatic texture
registration algorithm method that uses line features. 3D
lines are extracted from the point clouds of buildings
and matched using a RANSAC-like approach against
edges extracted from the images. More recently, Liu

Fig. 1 A view of the archaeological excavation

and Stamos [16] extended the use of 3D and 2D line
features to develop an algorithm that groups the lines
into higher order features (3D parallelepipeds and 2D
rectangles) to efficiently search the space of 3D and
2D feature matches. Ikeuchi et al. [10] use reflectance
edges obtained from the 3D point cloud and match them
against edges in the image to obtain the camera position,
which is computed using a robust non-linear minimiza-
tion once a user selects an initial estimation.

3 Model acquisition

We build the 3D model by acquiring a set of range and
intensity images to cover the entire region of interest
within the archaeological site. Our range sensor is a Cy-
rax 2500 time-of-flight laser scanner, which can gather 1
million points within a field of view of 40 by 40 degrees.
Each point measurement consists of its 3D Cartesian
coordinates (x, y, z) in the scanner’s local coordinate
system and a fourth value representing the amplitude
of the laser light reflected back to the scanner. At each
scanning position we also acquire a photograph by plac-
ing the camera in close proximity to the scanner. Thus,
the complete acquisition process interleaves a 3D sens-
ing with 2D sensing.

The range scans are registered using fiduciary mark-
ers that are placed in the scene before scanning, and
that are optically designed to be recognized by the scan-
ner, shown in Fig. 1. The scanner measures the position
of each marker in its local coordinate system. In addi-
tion, we also measure the coordinates of each marker in
the site’s coordinate system using a total station device
that was initialized from a set of geo-referenced control
points. From the these point-clouds we build a triangular
mesh using the VripPack package developed by Curless
and Levoy [6].

Shadow based texture registration for 3D modeling of outdoor scenes

Fig. 2 Left Image of the Acropolis at Monte Polizzo. Right The same image after shadow pixels have been masked (shown here in
white)

4 The 3D to 2D registration algorithm

Consider an ideal pinhole camera C with a 3 × 4 projec-
tion matrix P, P = K[R|t], where K is a 3 × 3 camera
matrix (see [9] page 143), R is a rotation matrix that
describes the orientation of the camera and t is a trans-
lation vector that indicates the camera position in the
world. The camera matrix K is pre-computed using a
camera calibration package such as [5]; the unknowns
are R and t. If we knew the correct parameters (Rf , tf)
for the camera position and orientation, then an ortho-
graphic rendering of a textured version of the model
viewed from the position of the sun should show no
shadow pixels. However, if the texture is misaligned,
shadow pixels will be visible. Using this idea, we frame
our solution as an optimization problem. Given an initial
camera position (R0, t0), we search the parameter space
of Euclidean transformations in the vicinity of this initial
configuration for a point that minimizes a cost function
whose value is proportional to the number of visible
shadow pixels in the rendered model. We set the initial
position of the camera to the location of the scanner in
its corresponding range scan.

4.1 Shadow detection in the image

As a first step in our shadow based algorithm, shadows
in the input image are masked with a pre-defined color.
We detect the shadow regions in the image using global
thresholding on the luminance channel. The threshold
selection is done by a user. It is known that accurate
detection of cast shadows and their boundaries is a diffi-
cult task due to the complex effects of penumbrae and
inter-reflections. While this is generally true, shadows
cast by the sun are significantly dark because the inten-
sity of sun light is much greater than skylight. For this
reason, we have found that shadow detection by global
thresholding to produce good results in most of our test
cases, except for late afternoon images. Other methods

for shadow detection could be used [8,20]. It is important
to note that for the algorithm to work, perfect shadow
detection is not required, as long as the following condi-
tions are met: (i) some cast shadows should be detected,
but it is not necessary for all of them to be detected.
(ii) it is desirable that shadows due to surface normals
pointing away from the sun be also detected. (iii) a pixel
that is not in shadow should not mistakenly detected as
a shadow pixel. When using global thresholding, it can
be seen from these conditions that the ideal threshold
is the minimum luminance value of a non-shadow pixel.
In our system, the selection of the threshold is an inter-
active process in which a user picks a threshold value
that satisfies the above conditions (Fig. 2).

4.2 View setup

The effect of rendering the model as it would be “seen”
from the sun is achieved by setting up an orthographic
projection with the view vector parallel to the direc-
tion of the sun rays. This direction is calculated using an
astronomical formula [18] that takes as inputs the time-
stamp of the image and the latitude and longitude values
of the site. Our system sets the view direction automat-
ically, and lets the user translate the model until the
desired section of the model is visible. The view position
is chosen in such a way that the area of the model imaged
in the photograph is completely seen.

4.3 Search space parametrization

The cost function is optimized with respect to the six
dimensional space of camera positions and orientations.
For the optimization to converge, a suitable parame-
trization of this space is required. Note that the trivial
parametrization, using a 3-vector for the camera posi-
tion and a 3-vector with the euler angles of the camera
orientation, has the disadvantage that a small change in
the camera orientation can produce a big displacement

A. Troccoli, P. Allen

Fig. 3 Cost function parametrization. The camera frame is trans-
lated to the point where the camera’s optical axis intersects the
scene (from the initial camera configuration). Rotations and trans-
lations are described wrt to this translated camera frame

of scene elements within the image (specially those that
are far from the camera). To overcome this problem we
chose a parametrization in which the center of rotation
is placed in the scene and not in the camera. Consider a
camera restricted to lie on a sphere of radius r around a
fixed point Pc in the model; then the search space could
be defined by the 2D spherical coordinates of a point
in the sphere and a roll angle. To add the three remain-
ing degrees of freedom, we allow the sphere center to
translated away from Pc. This parametrization, shown
in Figure 3, describes the entire six dimensional space of
camera positions and orientations. The camera pose is
described by a 6-vector (θ , φ, ω, dx, dy, dz), where θ and
φ are the spherical coordinates of the camera position
in the sphere, ω is the camera’s roll angle and (dx, dy,
dz) is the displacement of the sphere center from Pc. We
set Pc by taking the initial camera pose and tracing a ray
along the camera’s view direction into the model.

4.4 Cost function

The cost function to minimize is the number of visible
shadow pixels in a rendering of the model. In practice,
however, we have found that this function will not con-
verge to the correct camera position if the optimizer
selects a candidate pose in which the area of the model
imaged by the camera is small. In this case, the reduction
on the number of visible shadow pixels will not be due
to a better camera pose estimate, but to the fact that the
camera is looking at a much smaller region of the model.
Therefore, a good cost function should penalize camera
configurations in which the intersection of the camera’s

viewing frustum and the scene is small or empty. This
can be achieved by keeping track of the number of tex-
tured pixels in the rendered model. The more pixels that
are textured, the larger the area the camera is viewing.

Let I denote the image to be registered, M the model,
and Ir a rendered image of M textured with I and cam-
era parameters (θ , φ, ω, dx, dy, dz). Then, we define the
cost function as:

f (Ir) =
{

shadow_count(Ir)
number_of_pixels(Ir)

if v(Ir) ≥ t
1.0 otherwise.

(1)

where v(Ir) is the count of textured pixels and t is a
threshold value. This threshold forces the camera to a
position that looks at the scene. In practice, we have
defined this threshold as a fraction of the total number
of textured pixels in the rendering produced when the
camera pose is set to its initial estimate.

4.5 Minimization

Since the cost function f defined in (1) has no analytical
derivatives and typically contains several local minima,
most gradient descent methods fail to converge to a good
solution. For this reason, we employ a variant of simu-
lated annealing [11], which has the advantage of avoid-
ing local minima by randomly sampling the parameter
space and occasionally accepting parameters that drive
the search uphill to a point of higher cost, as opposed to
gradient descent methods, that only take downhill steps.

4.6 Model rendering

At each iteration of the optimization, the minimizer pro-
vides a set of camera parameters ck. Using these param-
eters, the model is rendered and the cost function is
evaluated over the generated image. To obtain a cor-
rect rendering requires occlusions to be detected and
accounted for. Not every scene point is visible from the
texture camera. If projective texture mapping is used,
these occluded points will still be textured. We can avoid
this problem by applying a technique similar to shadow
mapping [22]. First, we render the scene from the posi-
tion of the camera and make a copy of the depth buffer.
Then we set the viewpoint to the position of the sun
and re-render the model with shadow testing enabled so
that scene points that are not visible from the camera
are neither textured nor rendered.

Shadow based texture registration for 3D modeling of outdoor scenes

5 Results

We have run a variety of simulation and real experi-
ments to test the performance and robustness of the pre-
sented algorithm with respect to the different sources of
error: (1) selection of shadow threshold, (2) resolution of
3D model (i.e accuracy of scanned geometry), (3) accu-
racy of the sun position. All of these three parameters
can affect the final registration result. To obtain ground
truth, we placed registration targets on the scene. The
3D position of these targets was measured by the range
scanner with a precision higher than 3 mm. We manu-
ally selected these targets in the image and computed the
camera pose using the linear pose estimation method of
[2] followed by nonlinear optimization.

For our simulation experiments, we created a se-
quence of camera positions by randomly perturbing the
orientation of the camera by as much as ±5◦ in each
rotation angle and the translation by ±0.25 m in each
axis. From each of these positions, we ran our algorithm
setting the visibility threshold to a 60% of the original
visible pixels.

Table 1 shows the results of 10 simulation runs. We
use the reprojection error of the mesh vertices as a
metric to evaluate the resulting camera: first the mesh
vertices are projected to image coordinates using the
ground-truth camera, then the image coordinates are
computed using the camera position resulting from our
algorithm. The reprojection error is the distance be-
tween the two points. Each column in Table 1 shows
the computed average reprojection error for different
shadow thresholds and model resolutions. Columns (A)
to (E) were obtained using a high resolution model and
varying shadow thresholds (30, 40, 60, 80 and 140). A
threshold value of 30 fails to select most of the pixels cor-
responding to cast shadows. As a result, the algorithm

performs poorly. This is explained by the fact that there
are many camera configurations for which the number
of shadow pixels is minimized. A threshold of 40 does
detect most of the cast shadows and some attached shad-
ows, improving the registration results. A value of 60 de-
tects more shadows and labels some non-shadow pixels
incorrectly as shadowed, but the results are not affected.
Only when the shadow threshold is increased signifi-
cantly to 140, where a large number of non-shadowed
pixels are masked as being in shadow, are the registra-
tion results affected. For this test image, our method
performs well over thresholds in the range [40,80]. All
images are extremely large, 3008 × 2000 pixels, hence
an average re-projection error of 4.9 pixels, as shown in
column (C), is unnoticeable. This error corresponds to
roughly 1.8 pixels for a 1024 × 768 image. The execution
time for each simulation run was approximately 12 min-
utes on a Pentium IV machine. This time corresponds to
3,000 minimization iterations. Figure 4 shows the mini-
mization progress over time. It shows cost of the the best
configuration found against the number of iterations for
each of the 10 simulations run in column (E).

5.1 Robustness against geometry resolution and sun
position

To evaluate the effects that errors in the geometry
can introduce in our algorithm, we have decimated the
model reducing the number of triangles by 80%, and
performed a set of simulation runs using a threshold of
60 for the shadow detection. The results are shown in
column (F) of Table 1. The average reprojection error
is higher than the error obtained for the same shadow
threshold (column (E)) using the full resolution model.
However, one advantage of using a decimated model is

Table 1 Shadow registration simulation results—initial and final average reprojection errors

Shadow threshold 30 40 60 80 140 60 60 60
Resolution (F/D) F F F F F D F F
Time offset (min) 0 0 0 0 0 0 −10 +10

Run no. Initial (A) (B) (C) (D) (E) (F) (G) (H)

1 143.5 10.3 5.4 6.0 5.1 6.9 14.1 5.6 6.0
2 101.4 5.8 5.8 4.1 5.0 7.0 9.0 6.0 5.9
3 208.3 9.2 5.8 4.5 4.9 6.8 14.5 5.9 5.8
4 125.3 10.7 5.7 4.9 5.6 6.4 16.8 5.2 5.6
5 171.2 7.8 5.0 4.9 6.0 6.1 11.3 6.0 5.3
6 81.1 6.8 5.0 4.7 5.2 7.0 14.4 5.3 6.7
7 207.4 8.8 4.7 4.9 5.7 6.2 12.4 5.0 8.5
8 77.0 10.1 5.3 5.2 4.9 6.4 11.4 5.5 5.3
9 238.4 7.7 4.8 4.8 5.0 6.3 12.7 5.8 5.1
10 180.6 7.2 5.4 4.8 5.8 6.9 13.0 5.4 4.9
Average 153.4 8.4 5.3 4.9 5.3 6.6 13.0 5.6 5.9

A. Troccoli, P. Allen

 0.01

 0.011

 0.012

 0.013

 0.014

 0.015

 0.016

 0.017

0 500 1000 1500 2000 2500 3000 3500

C
os

t f
un

ct
io

n

Iterations

Cost function vs iterations

Fig. 4 Cost function optimization. This plot shows the best cost
found against the number of iterations for ten simulation runs. It
can be seen how the optimization converges

an increase in running speed, since less geometry has to
be processed. This suggests an area of future explora-
tion that could allow a speed increase: to run the opti-
mization first with a highly decimated model and then
refine the obtained registration with a more detailed
one.

We also run the experiments introducing a small error
in the time of the day used to calculate the position of
the sun. The results for a time offset of ±10 minutes are
shown in columns (G) and (H) of Table 1. The reprojec-
tion errors are higher in these cases, but not significantly,
suggesting that a highly accurate time of the day (and
hence position of the sun) is not required.

Fig. 5 Six different views of the texture model as obtained with our method. The background is given by a panoramic mosaic

Shadow based texture registration for 3D modeling of outdoor scenes

5.2 Results on archaeological data

In addition, we used our registration method to align
the images of our Acropolis model. The model consists
of a 138K triangle mesh that is textured using 12 3,008 ×
2,000 pixel images. We were able to successfully align 10
of the 12 images. For these cases we do not know the
ground-truth, so we can not provide a quality measure
for the registration, but we noticed two cases in which
it failed. In one case the algorithm failed to find the
intersection of the camera’s optical axis and the scene
(i.e. point Pc) due to missing geometry . In the other
case, the algorithm failed because the shadows in the
image, which had been taken in a late afternoon, did not
have enough contrast and some non-shadowed regions
were incorrectly masked as shadowed. Figure 5 shows
the resulting model. In addition, a short video showing
the entire model in 3D from many different viewpoints
can be found at www.cs.columbia.edu/∼allen/sicily.avi.

6 Conclusions

We have presented an algorithm for texture registra-
tion that uses the shadows cast by the sun and which
we successfully applied to the registration of images of
an archaeological site. We have identified the different
sources that can introduce errors in the procedure and
shown quantitative results for the performance of the
algorithm.

The use of shadows as features places some limita-
tions on the type of applications in which the algorithm
can be used. The presence of strong cast shadows is
required for shadow detection, but we have have shown
that global thresholding works well, even for a range of
threshold values. Secondly, all geometry that is casting
shadows in the scene must be present in the 3D model.
In addition, it is also desirable, but not strictly required,
that there be geometry for every pixel in the image. We
have found that this is not always the case, and some-
times there is no geometry for distant objects or the sky.
A user can mask out these regions. It is important to
make a point here that this last restriction is not intrinsic
to our method but also applies to other texture registra-
tion techniques (e.g. silhouette based algorithms require
the background to be masked out).

Our current method can be improved by reducing
the execution time. This time is highly dependent on the
size of the rendered image Ir. By adopting a hierarchical
scheme in which the model is rendered on different win-
dow sizes, similar to the one used by Lensch et al. in [14],
the running speed could be improved.

Acknowledgement Ian Morris and the Stanford Archeology Cen-
ter graciously provided access to and images and data from Monte
Polizzo. This research was funded in part by NSF grant IIS-0121239.

References

1. Allen, P., Feiner, S., Troccoli, A., Benko, H., Ishak, E., Smith,
B.: Seeing into the past: Creating a 3D modeling pipeline for
archaeological visualization. In: Proceedings of 2nd Interna-
tional Symposium on 3D Data Processing, Visualization and
Transmission (2004)

2. Ansar, A., Daniilidis, K.: Linear pose estimation from points
or lines. IEEE Trans. Pattern Anal. Mach. Intell. 25(5),
578–589 (2003). DOI http://dx.doi.org/10.1109/TPAMI.2003.
1195992

3. Bernardini, F., Rushmeier, H.: The 3D model acquisition pipe-
line. Computer Graphics Forum 21(2), 149–172 (2002)

4. Bernardini, F., Rushmeier, H., Martin, I.M., Mittleman, J.,
Taubin, G.: Building a digital model of Michelangelo’s Flor-
entine Pietà. IEEE Comput. Graph. Appl. 22(1), 59–67 (2002)

5. Bouguet, J.Y.: Camera calibration toolbox for Matlab. (2001).
Http://www.vision.caltech.edu/bouguet/calib_doc

6. Curless, B., Levoy, M.: A volumetric method for building com-
plex models from range images. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive
Techniques, pp. 303–312. ACM Press (1996)

7. Daum, M., Dudek, G.: On 3-d surface reconstruction using
shape from shadows. In: CVPR ’98: Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition, p. 461. IEEE Computer Society, Washing-
ton (1998)

8. Funka-Lea, G., Bajcsy, R.: Combining color and geometry for
the active, visual recognition of shadows. In: ICCV ’95: Pro-
ceedings of the 5th International Conference on Computer
Vision, p. 203. IEEE Computer Society, Washington (1995)

9. Hartley, R., Zisserman, A.: Multiple View Geometry in Com-
puter Vision. Cambridge University Press, Cambridge (2000)

10. Ikeuchi, K., Nakazawa, A., Nishino, K., Oishi, T.: Creating
virtual buddha statues through observation. In: IEEE Work-
shop on Applications of Computer Vision in Architecture,
vol. 1 (2003)

11. Ingber, L.: Very fast simulated re-annealing. Math. Comput.
Modelling 12(8), 967–973 (1989)

12. Irvin, R.B., David M. McKeown, J.: Methods for exploiting
the relationship between buildings and their shadows in aer-
ial imagery. IEEE Trans. Syst. Man Cybern. 19(6), 1564–1575
(1989)

13. Kriegman, D.J., Belhumeur, P.N.: What shadows reveal about
object structure. In: ECCV ’98: Proceedings of the 5th Euro-
pean Conference on Computer Vision, vol. II, pp. 399–414.
Springer, Berlin Heidelberg New York (1998)

14. Lensch, H.P., Heidrich, W., Seidel, H.P.: A silhouette-based
algorithm for texture registration and stitching. Graph. Mod-
els 63(4), 245–262 (2001)

15. Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,
Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J.,
Shade, J., Fulk, D.: The digital Michelangelo project: 3D scan-
ning of large statues. In: Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques,
pp. 131–144 (2000)

16. Liu, L., Stamos, I.: Automatic 3d to 2d registration for the
photorealistic rendering of urban scenes. In: CVPR ’05: Pro-
ceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol.

A. Troccoli, P. Allen

2, pp. 137–143. IEEE Computer Society, Washington (2005).
DOI http://dx.doi.org/10.1109/CVPR.2005.80

17. Pulli, K., Cohen, M., Duchamp, T., Hoppe, H., Shapiro, L.,
Stuetzle, W.: View-based rendering: Visualizing real objects
from scanned range and color data. In: Rendering Techniques
’97, pp. 23–34. Springer, Berlin Heidelberg New York (1997)

18. Reda, I., Andreas, A.: Solar position algorithm for solar
radiation applications. Tech. Rep., National Renewable En-
ery Laboratory, Golden, Colorado (2003)

19. Rocchini, C., Cignomi, P., Montani, C., Scopigno, R.: Multiple
textures stitching and blending on 3D objects. In: Rendering
Techniques ’99, Eurographics, pp. 119–130. Springer, Wien
(1999)

20. Salvador, E., Cavallaro, A., Ebrahimi, T.: Cast shadow seg-
mentation using invariant color features. Comput. Vis. Image
Underst. 95(2), 238–259 (2004). DOI http://dx.doi.org/
10.1016/j.cviu.2004.03.008

21. Sato, I., Sato, Y., Ikeuchi, K.: Illumination from shadows.
IEEE Trans. Pattern Anal. Mach. Intell. 25(3), 290–300 (2003).
DOI http://dx.doi.org/10.1109/TPAMI.2003.1182093

22. Segal, M., Korobkin, C., van Widenfelt, R., Foran, J.,
Haeberli, P.: Fast shadows and lighting effects using texture
mapping. In: Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pp. 249–252.
ACM Press (1992)

23. Stamos, I., Allen, P.K.: Automatic registration of 2-D with
3-D imagery in urban environments. In: Proceedings of the
8th International Conference On Computer Vision (ICCV-
01), pp. 731–737. IEEE Computer Society, Los Alamitos, CA
(2001)

24. Yu, Y., Chang, J.T.: Shadow graphs and 3d texture reconstruc-
tion. Int. J. Comput. Vis. 62(1–2), 35–60 (2005). DOIhttp://
dx.doi.org/ 10.1007/s11263-005-4634-5

	Shadow based texture registration for 3D modelingof outdoor scenes
	Abstract
	Introduction
	Background
	Model acquisition
	The 3D to 2D registration algorithm
	Shadow detection in the image
	View setup
	Search space parametrization
	Cost function
	Minimization
	Model rendering
	Results
	Robustness against geometry resolution and sun position
	Results on archaeological data
	Conclusions
	Acknowledgement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

