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Abstract— This work provides an architecture that incorpo-
rates depth and tactile information to create rich and accurate
3D models useful for robotic manipulation tasks. This is
accomplished through the use of a 3D convolutional neural
network (CNN). Offline, the network is provided with both
depth and tactile information and trained to predict the object’s
geometry, thus filling in regions of occlusion. At runtime, the
network is provided a partial view of an object. Tactile infor-
mation is acquired to augment the captured depth information.
The network can then reason about the object’s geometry
by utilizing both the collected tactile and depth information.
We demonstrate that even small amounts of additional tactile
information can be incredibly helpful in reasoning about object
geometry. This is particularly true when information from
depth alone fails to produce an accurate geometric prediction.
Our method is benchmarked against and outperforms other
visual-tactile approaches to general geometric reasoning. We
also provide experimental results comparing grasping success
with our method.

I. INTRODUCTION

Robotic grasp planning based on raw sensory data is diffi-
cult due to occlusion and incomplete information regarding
scene geometry. Often, one sensory modality does not pro-
vide enough context to enable reliable planning. For example,
a single depth sensor image cannot provide information
about occluded regions of an object, and tactile information
is incredibly sparse. This work uses a 3D convolutional
neural network to enable stable robotic grasp planning by
incorporating both tactile and depth information to infer
occluded geometries. This multi-modal system uses both
tactile and depth information to form a more complete model
of the space the robot can interact with and also to provide
a complete object model for grasp planning.

At runtime, a point cloud of the visible portion of the
object is captured, and multiple guarded moves are executed
in which the hand is moved towards the object, stopping
when contact with the object occurs. The newly acquired
tactile information is combined with the original partial view,
voxelized, and sent through the CNN to create a hypothesis
of the object’s geometry.

Depth information from a single point of view often
does not provide enough information to accurately predict
object geometry. There is often unresolved uncertainty about
the geometry of the occluded regions of the object. To
alleviate this uncertainty, we utilize tactile information to
generate a new, more accurate hypothesis of the object’s 3D
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Fig. 1: Completion example from tactile and depth data.
Small amounts of additional tactile data can significantly
improve the systems ability to reason about 3D geometry.
The Depth Only Completion for the pitcher does not capture
the handle well, whereas the tactile information gives a better
geometric understanding. The additional tactile data allowed
the CNN to correctly identify a handle in the completion
mesh and similar completion improvement was found for
the novel rubber duck not in the training set.

geometry, incorporating both visual and tactile information.
Fig. 1 demonstrates an example where the understanding of
the object’s 3D geometry is significantly improved by the
additional sparse tactile data collected via our framework.
An overview of our sensory fusion architecture is shown in
Fig. 2.

This work is differentiated from others [1] in that our CNN
is acting on both the depth and tactile as input information
fed directly into the model rather than using the tactile infor-
mation to update the output of a CNN not explicitly trained
on tactile information. This enables the tactile information
to produce non-local changes in the resulting mesh. In many
cases, depth information alone is insufficient to differentiate
between two potential completions, for example a pitcher
vs a rubber duckie. In these cases, the CNN utilizes sparse
tactile information to affect the entire completion, not just
the regions in close proximity to the tactile glance. If the
tactile sensor senses the occluded portion of a drill, the CNN
can turn the entire completion into a drill, not just the local
portion of the drill that was touched.

The contributions of this work include: 1) a framework
for integrating multi-modal sensory data to holistically rea-
son about object geometry and enable robotic grasping,
2) an open source dataset for training a shape completion



system using both tactile and depth sensory information,
3) open source code for alternative visual-tactile general
completion methods, 4) experimental results comparing the
completed object models using depth only, the combined
depth-tactile information, and various other visual-tactile
completion methods, and 5) real and simulated grasping
experiments using the completed models. This dataset, code,
and extended video are freely available at http://crlab.
cs.columbia.edu/visualtactilegrasping/.

II. RELATED WORK

The idea of incorporating sensory information from vi-
sion, tactile and force sensors is not new [2]. Despite the
intuitiveness of using multi-modal data, there is still no
concensus on which framework best integrates multi-modal
sensory information in a way that is useful for robotic manip-
ulation tasks. While prior work has been done to complete
geometry using depth alone, none of these works consider
tactile information[3][4]. In this work, we are interested in
reasoning about object geometry, and in particular, creating
models from multi-modal sensory data that can be used for
grasping and manipulation.

Several recent uses of tactile information to improve esti-
mates of object geometry have focused on the use of Gaus-
sian Process Implicit Surfaces (GPIS) [5]. Several examples
along this line of work include [6][7] [8][9][10][11][12].
This approach is able to quickly incorporate additional tactile
information and improve the estimate of the object’s geom-
etry local to the tactile contact or observed sensor readings.
There has additionally been several works that incorporate
tactile information to better fit planes of symmetry and
superquadrics to observed point clouds [13][14][15]. These
approaches work well when interacting with objects that
conform to the heuristic of having clear detectable planes
of symmetry or are easily modeled as superquadrics.

There has been successful research in utilizing continuous
streams of visual information similar to Kinect Fusion [16]
or SLAM [17] in order to improve models of 3D objects for
manipulation, an example being [18][19]. In these works,
the authors develop an approach to building 3D models of
unknown objects based on a depth camera observing the
robot’s hand while moving an object. The approach integrates
both shape and appearance information into an articulated
ICP approach to track the robot’s manipulator and the object
while improving the 3D model of the object. Similarly,
another work [20] attaches a depth sensor to a robotic hand
and plans grasps directly in the sensed voxel grid. These
approaches improve their models of the object using only a
single sensory modality but from multiple points in time.

In previous work [21], we created a shape completion
method using single depth images. The work provides an
architecture to enable robotic grasp planning via shape
completion, which was accomplished through the use of
a 3D CNN. The network was trained on an open source
dataset of over 440,000 3D exemplars captured from varying
viewpoints. At runtime, a 2.5D point cloud captured from a
single point of view was fed into the CNN, which fills in the

occluded regions of the scene, allowing grasps to be planned
and executed on the completed object. The runtime of shape
completion is rapid because most of the computational costs
of shape completion are borne during offline training. This
prior work explored how the quality of completions vary
based on several factors. These include whether or not the
object being completed existed in the training data, how
many object models were used to train the network, and the
ability of the network to generalize to novel objects, allowing
the system to complete previously unseen objects at runtime.
The completions are still limited by the training datasets and
occluded views that give no clue to the unseen portions of
the object. From a human perspective, this problem is often
alleviated by using the sense of touch. In this spirit, this
paper addresses this issue by incorporating sparse tactile data
to better complete the object models for grasping tasks.

III. VISUAL-TACTILE GEOMETRIC REASONING

Our framework utilizes a trained CNN to produce a mesh
of the target object, incorporating both depth and tactile
information. We utilize the same architecture as found in
[21]. The model was implemented using the Keras [22] deep
learning library. Each layer used rectified linear units as
nonlinearities except the final fully connected (output) layer
which used a sigmoid activation to restrict the output to the
range [0, 1]. We used the cross-entropy error E(y, y′) as the
cost function with target y and output y′:

E(y, y′) = − (y log(y′) + (1− y) log(1− y′))

This cost function encourages each output to be close to
either 0 for unoccupied target voxels or 1 for occupied
target voxels. The optimization algorithm Adam [23], which
computes adaptive learning rates for each network parameter,
was used with default hyperparameters (β1=0.9, β2=0.999,
ε=10−8) except for the learning rate, which was set to
0.0001. Weights were initialized following the recommenda-
tions of [24] for rectified linear units and [25] for the logistic
activation layer (batch size=32).

IV. COMPLETION OF SIMULATED GEOMETRIC SHAPES

Three networks with the architecture from [21] were
trained on a simulated dataset of geometric shapes (Fig.
3) where the front and back were composed of two differ-
ing shapes. Sparse tactile data was generated by randomly
sampling voxels along the occluded side of the voxel grid.
We trained a network that only utilized tactile information.
This performed poorly due to the sparsity of information. A
second network was given only the depth information during
training and performed better than the tactile-only network
did. It still encountered many situations where it did not have
enough information to accurately complete the obstructed
half of the object. A third network was given depth and
tactile information which successfully utilized the tactile
information to differentiate between plausible geometries of
occluded regions.

The Jaccard similarity improved from 0.890 in the depth
only network to 0.986 in the depth and tactile network. This
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Fig. 2: Both tactile and depth information are independently captured and voxelized into 403 grids. These are merged into
a shared occupancy map which is fed into a CNN to produce a hypothesis of the object’s geometry.

Fig. 3: Example training pair from the geometric shape
dataset. For the left, red dots represent tactile readings and
blue dots represent the the depth image. The blue points on
the right are the ground truth 3D geometry.

Algorithm 1 Simulated YCB/Grasp Tactile Data Generation

1: procedure SAMPLE TACTILE(vox gt)
2: grid dim = 40 // resolution of voxel grid
3: npts = 40 // num locations to check for contact
4: vox gt cf = align gt to depth frame(vox gt)
5: xs = rand ints(start=0, end=grid dim-1, size=npts)
6: ys = rand ints(start=0, end=grid dim-1, size=npts)
7: tactile vox = []
8: for x, y in xs, ys do
9: for z in range(grid dim-1, -1, -1) do

10: if vox gt cf[x, y, z] == 1 then
11: tactile vox.append(x, y, z)
12: continue
13: tactile points = vox2point cloud(tactile vox)
14: return tactile points

task demonstrated that a CNN can be trained to leverage
sparse tactile information to decide between multiple object
geometry hypotheses. When the object geometry had sharp
edges in its occluded region, the system would use tactile
information to generate a completion that contained similar
sharp edges in the occluded region. This completion is more
accurate not just in the observed region of the object but also
in the unobserved portion of the object.

V. COMPLETION OF YCB/GRASP DATASET OBJECTS

We used the dataset from [21] to create a new dataset
consisting of half a million triplets of oriented voxel grids:

depth, tactile, and ground truth. Depth voxels are marked as
occupied if visible to the camera. Tactile voxels are marked
occupied if tactile contact occurs within the voxel. Ground
truth voxels are marked as occupied if the object intersects
a given voxel, independent of perspective. The point clouds
for the depth information were synthetically rendered in the
Gazebo [26] simulator. This dataset consists of 608 meshes
from both the Grasp [27] and YCB [28] datasets. 486 of these
meshes were randomly selected and used for a training set
and the remaining 122 meshes were kept for a holdout set.

The synthetic tactile information was generated according
to Algorithm 1. In order to generate tactile data, the vox-
elization of the ground truth high resolution mesh (vox gt)
(Alg.1:L1) was aligned with the captured depth image
(Alg.1:L4). 40 random (x, y) points were sampled in order to
generate synthetic tactile data (Alg.1:L5-6). For each of these
points (Alg.1:L7), a ray was traced in the −z, direction and
the first occupied voxel was stored as a tactile observation
(Alg.1:L11). Finally this set of tactile observations was
converted back to a point cloud (Alg.1:L13).

Two identical CNNs were trained where one CNN was
provided only depth information (Depth Only) and a second
was provided both tactile and depth information (Tactile
and Depth). During training, performance was evaluated on
simulated views of meshes within the training data (Training
Views), novel simulated views of meshes in the training data
(Holdout Views), novel simulated views of meshes not in
the training data (Holdout Meshes), and real non-simulated
views of 8 meshes from the YCB dataset (Holdout Live).

The Holdout Live examples consist of depth information
captured from a real Kinect and tactile information captured
from a real Barrett Hand attached to a Staubli Arm. We used
depth filtering to mask out the background of the captured
depth cloud. The object was fixed in place during the tactile
data collection process. While collecting the tactile data, the
arm was manually moved to place the end effector behind the
object and 6 exploratory guarded motions were made where
the fingers closed towards the object. Each finger stopped
independently when contact was made with the object, as
shown in Fig. 4.

Fig. 5 demonstrates that the difference between the Depth
Only CNN completion and the Tactile and Depth CNN
completion becomes larger on more difficult completion



(a) Hand approach (b) Finger contact (c) Finger curl

Fig. 4: Barrett hand showing contact with a fixed object. (a) The hand is manually brought to an approach position, (b)
approaches the object, and (c) the fingers are curled to contact the object and collect tactile information. This process is
repeated 6 times over the occluded surface of the object.

Completion
Method

Train
View(Sim)

Holdout
View(Sim)

Holdout
Model(Sim)

Holdout
(Live)

Partial 0.01 0.02 0.01 0.01
Convex Hull 0.50 0.51 0.46 0.43

GPIS 0.47 0.45 0.35 0.48
Depth CNN 0.68 0.65 0.65 0.37

Ours 0.69 0.66 0.65 0.64

TABLE I: Jaccard similarity results, measuring the intersection
over union of two voxelized meshes, as described in Section VI.
(Larger is better)

Completion
Method

Train
View(Sim)

Holdout
View(Sim)

Holdout
Model(Sim)

Holdout
(Live)

Partial 7.8 7.0 7.6 11.9
Convex Hull 32.7 45.1 49.1 11.6

GPIS 59.9 79.2 118.0 17.9
Depth CNN 6.5 6.9 6.5 16.5

Ours 5.8 5.8 6.2 7.4

TABLE II: Hausdorff distance results, measuring the mean
distance in millimeters from points on one mesh to points on
another mesh, as described in Section VI. (Smaller is better)

Completion
Method

Train
View(Sim)

Holdout
View(Sim)

Holdout
Model(Sim)

Holdout
(Live)

Partial 19.9mm 21.1mm 16.6mm 18.6mm
Convex Hull 13.9mm 16.1mm 14.1mm 10.5mm

GPIS 17.1mm 16.0mm 21.3mm 20.8mm
Depth CNN 12.1mm 13.7mm 12.4mm 22.9mm

Ours 7.7mm 13.9mm 13.6mm 6.2mm

TABLE III: Pose error results from simulated grasping exper-
iments. This is the average L2 difference between planned and
realized grasp pose averaged over the 3 finger tips and the palm
of the hand, in millimeters. (Smaller is better)

Completion
Method

Train
View(Sim)

Holdout
View(Sim)

Holdout
Model(Sim)

Holdout
(Live)

Partial 8.19◦ 6.71◦ 8.78◦ 7.67◦

Convex Hull 3.53◦ 4.01◦ 4.59◦ 3.77◦

GPIS 4.65◦ 4.79◦ 4.95◦ 5.92◦

Depth CNN 3.09◦ 3.56◦ 4.52◦ 6.83◦

Ours 2.48◦ 3.41◦ 4.95◦ 2.43◦

TABLE IV: Joint error results from simulated grasping ex-
periments. This is the mean L2 distance between planned and
realized grasps in degrees averaged over the hand’s 7 joints. Our
method’ smaller error demonstrates a more accurate geometry
reconstruction. (Smaller is better)

Fig. 5: As the difficulty of the data splits increase, the delta
between the Depth Only CNN completion accuracy and the
Tactile and Depth CNN completion accuracy increases. The
additional tactile information is more useful on more difficult
completion problems.

problems. The performance of the Depth Only CNN nearly
matches the performance of the Tactile and Depth CNN
on the training views. Because these views are used during
training, the network is capable of generating reasonable
completions. Moving from Holdout Views to Holdout Meshes
to Holdout Live, the completion problems move further
away from the examples experienced during training. As the
problems become harder, the Tactile and Depth network

outperforms the Depth Only network by a greater margin,
as it is able to utilize the sparse tactile information to dif-
ferentiate between various possible completions. This trend
shows that the network is able to make more use of the tactile
information when the depth information alone is insufficient
to generate a quality completion. We generated meshes from
the output of the combined tactile and depth CNN using a
marching cubes algorithm. We also preserve the density of
the rich visual information and the coarse tactile information
by utilizing the post-processing from [21].

VI. COMPARISON TO OTHER COMPLETION METHODS

In this work we benchmarked our framework against the
following general visual tactile completion methods.

Partial Completion: The set of points captured from
the Kinect is concatenated with the tactile data points.
The combined cloud is run through marching cubes, and
the resulting mesh is then smoothed using Meshlab’s [29]
implementation of Laplacian smoothing. These completions
are incredibly accurate where the object is directly observed
but make no predictions in unobserved areas of the scene.

Convex Hull Completion: The set of points captured from
the Kinect is concatenated with the tactile data points. The
combined cloud is run through QHull to create a convex
hull. The hull is then run through Meshlab’s implementation
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Fig. 6: The entire Holdout Live dataset. These completions were all created from data captured from a real Kinect and a
real Barrett Hand attached to a Staubli Arm. The Depth and Tactile Clouds have the points captured from a Kinect in
red and points captured from tactile data in blue. Notice many of the Depth Only completions do not extend far enough
back but instead look like other objects that were in the training data (ex: cell phone, banana). Our method outperforms the
Depth Only, Partial, and Convex Hull methods in terms of Hausdorff distance and Jaccard similarity. Note that the GPIS
completions form large and inaccurate completions for the Black and Decker box and the Rubbermaid Pitcher, whereas our
method correctly bounds the end of the box and finds the handle of the pitcher.

of Laplacian smoothing. These completions are reasonably
accurate near observed regions. However, a convex hull will
fill regions of unobserved space.

Gaussian Process Implicit Surface Completion (GPIS):
Approximated depth cloud normals were calculated us-
ing PCL’s KDTree normal estimation. Approximated tactile

cloud normals were computed to point towards the camera
origin. The depth point cloud was downsampled to size
M and appended to the tactile point cloud. We used a
distance offset d to add positive and negative observation
points along the direction of the surface normal. We then
sampled the Gaussian process using [30] with a n3 voxel



Completion
Method Partial Convex

Hull GPIS Depth
CNN Ours

Lift Success (%) 62.5% 62.5% 87.5% 75.0% 87.5%
Joint Error (◦) 6.37◦ 6.05◦ 10.61◦ 5.42◦ 4.67◦

Time (s) 1.533s 0.198s 45.536s 3.308s 3.391s

TABLE V: Lift Success is the percentage of successful
lift executions. Joint Error is the average error per joint
in degrees between the planned and executed grasp joint
values. While GPIS and our method have the same lift
success, our method is 1340% faster and has 41% of the joint
error, making the process more reliable. (Smaller is better).
Average time to complete a mesh using each completion
method. While the convex hull completion method is fastest,
ours has a superior tradeoff between speed and quality.

grid and a noise parameter s to create meshes from the point
cloud. We empirically determined the values of M, s, n, d by
sampling the Jaccard similarity of GPIS completions where
M = [200, 300, 400], s = [0.001, 0.005], n = [40, 64, 100],
and d = [0.005, 0.0005]. We found M = 300 to be a good
tradeoff between speed and completion quality. Additionally
we used s = 0.001, d = 0.0005, and n = 100.

In prior work [21] the Depth Only CNN completion
method was compared to both a RANSAC based approach
[31] and a mirroring approach [32]. These approaches make
assumptions about the visibility of observed points and
do not work with data from tactile contacts that occur in
unobserved regions of the workspace.

A. Geometric Comparison Metrics

The Jaccard similarity was used to compare 403 CNN
outputs with the ground truth. We also used this metric to
compare the final resulting meshes from several completion
strategies. The completed meshes were voxelized at 803 and
compared with the ground truth mesh. The results are shown
in Table I. Our method results in higher similarity to the
ground truth meshes than do all other described approaches.

The Hausdorff distance metric computes the average dis-
tance from the surface of one mesh to the surface of another.
A symmetric Hausdorff distance was computed with Mesh-
lab’s Hausdorff distance filter in both directions. Table II
shows the mean values of the symmetric Hausdorff distance
for each completion method. In this metric, our tactile and
depth CNN mesh completions are significantly closer to the
ground truth compared to the other approaches’ completions.

Both the partial and Gaussian process completion methods
are accurate when close to the observed points but fail to
approximate geometry in occluded regions. We found that
in our training, the Gaussian Process completion method
would often create a large and unruly object if the observed
points were only a small portion of the entire object or
if no tactile points were observed in simulation. Using a
neural network has the added benefit of abstracting object
geometries, whereas the alternative completion methods fail
to approximate the geometry of objects which do not have
points bounding their geometry.

B. Grasp Comparison in Simulation

In order to evaluate our framework’s ability to enable grasp
planning, the system was tested in simulation using the same
set of completions. The use of simulation allowed for the
quick planning and evaluation of 7900 grasps. GraspIt! was
used to plan grasps on all of the completions of the objects
by uniformly sampling different approach directions. These
grasps were then executed not on the completed object but
on the ground truth meshes in GraspIt!. In order to simulate
a real-world grasp execution, the completion was removed
from GraspIt! and the ground truth object was inserted in its
place. Then the hand was placed 20 cm away from the ground
truth object along the approach direction of the grasp. The
spread angle of the fingers was set, and the hand was moved
along the approach direction of the planned grasp either until
contact was made or a maximum approach distance was
traveled. Then fingers closed to the planned joint values and
each finger continued to close until either contact was made
with the object or the joint limits were reached.

Table III shows the average difference between the planned
and realized Cartesian finger tip and palm poses. Table IV
shows the difference in pose of the end effector between the
planned and realized grasps averaged over the 7 joints of the
hand. Using our method, the end effector ended up closer
to its intended location in both joint space and the palm’s
Cartesian position versus other completion methods’ grasps.

C. Live Grasping Results

To further test our network’s efficacy, the grasps were
planned and executed on the Holdout Live views using a
Staubli arm with a Barrett Hand. The grasps were planned us-
ing meshes from the different completion methods described
above. For each of the 8 objects, we ran the arm once using
each completion method. The results are shown in Fig. 6
and Table V. Our method enabled an improvement over the
other visual-tactile shape completion methods in terms of
grasp success rate and resulted in executed grasps closer to
the planned grasps, as shown by the lower average joint error
(and much faster than GPIS).

VII. CONCLUSION

Our method provides an open source novel visual-tactile
completion method which outperforms other general visual-
tactile completion methods in completion accuracy, time
of execution, and grasp posture utilizing a dataset which
is representative of household and tabletop objects. We
demonstrated that even small amounts of additional tactile
information can be incredibly helpful in reasoning about
object geometry. Experimental results verified that utilizing
both vision and tactile was superior to using depth alone. In
the future we hope to relax the fixed object assumption by
using novel tactile sensors [33] we are developing with fast
dynamic response that allow object contact without motion.
We are also interested in using Next-Best-View planning
[34], [35] for refining and optimizing the tactile exploration
strategy to recover unseen geometry.
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