
From Robotic Hands to Human Hands: A Visualization and Simulation Engine

for Grasping Research

A. Miller†, P. Allen†, V. Santos‡, F. Valero-Cuevas‡∗

†Dept. of Computer Science, Columbia University, NY, USA
‡Neuromuscular Biomechanics Laboratory, Cornell University, NY, USA

∗The Hospital for Special Surgery, NY, USA

E-mail: {amiller, allen}@cs.columbia.edu,{vj14, fv24}@cornell.edu

Abstract

Robotic hands are still a long way from matching the

grasping and manipulation capability of their human coun-

terparts. One way to push the research further along is to

use computer modeling and simulation to learn more about

human and robotic grasping. We have created a publicly

available simulator to serve this purpose. It can accom-

modate a wide variety of hand designs, and it can evaluate

grasps formed by these hands, as well as perform full dy-

namic simulation of the grasping process. In this paper, we

present the various components of the system, and we de-

scribe two projects which use it as an integral part of larger

grasp planning systems. We also discuss the development

of a human hand model that uses accurate geometry and

kinematics derived from experimental measurements. This

is part of our current project to create a biomechanically

realistic human hand model to better understand what fea-

tures are most important to mimic in the designs of robotic

hands.

1 Introduction
The progress in building capable robotic hands has been

slow. An important factor that has affected the progress in

this field is the lack of easily obtainable, low cost exper-

imental robotic hands that can be used as test beds. The

high cost and difficulty of building a robotic hand, along

with the associated electronics, control systems, and inte-

grated sensing has led to a serious lack of experimental de-

vices in the field. In fact, were one desirous of purchasing

a robotic hand today, there appear to be few, if any, avail-

able. Custom designs exist, but usually are lacking in the

higher levels of system integration that can turn a mechan-

ical device into a full-fledged grasping system.

What can push this research further along? How can we

design intelligent systems with the ability to grasp objects?

A partial solution to this problem is to use computer mod-

eling and simulation to effectively design and test robotic

hands in typical task environments. As the computer mod-

els get better, and the hardware faster, realistic simulation

can be used to learn more about robotic grasping.

At Columbia University, we have created a publicly

available simulator to serve as a useful tool for grasping re-

search. The system, called GraspIt!1, can accommodate a

1The source code for GraspIt! is available for download from

http://www.cs.columbia.edu/˜amiller/graspit.

wide variety of hand and robot designs. It includes a rapid

collision detection and contact determination system that

allows a user to interactively manipulate the joints of the

hand and create new grasps of a target object. Each grasp

is evaluated with numeric quality measures, and visualiza-

tion methods allow the user to see the weak point of the

grasp and create arbitrary 3D projections of the 6D grasp

wrench space. The dynamics engine within GraspIt! com-

putes the motions of a group of connected robot elements,

such as an arm and a hand, under the influence of con-

trolled motor forces, joint constraint forces, contact forces

and external forces. This allows the dynamic simulation of

an entire grasping task, as well as the ability to test custom

robot control algorithms.

In this paper we present further details regarding the

various components of the system, and we also describe

two projects which use GraspIt! as an integral part of

a larger grasp planning system: one generates candidate

grasps using heuristics and predefined grasp taxonomies,

and the other uses a support vector machine to learn high

quality grasps of parametric objects. Finally, we discuss

our development of a human hand model that uses accu-

rate geometry and kinematics derived from experimental

measurements. This is part of an ongoing project to create

a biomechanically realistic human hand model to better un-

derstand what features are most important to mimic in the

designs of robotic hands. Such a model will also enable

studies of the functional abilities of the intact and impaired

human hand using the rigorous mathematical framework of

robotics.

2 GraspIt!

In building GraspIt!, we were aware of several com-

mercial robotics simulators available, including Delmia’s

IGRIP, Flow Software Technologies’ Workspace5, MCS

Software’s ADAMS, and the Easy-Rob system, as well as

past and present research projects in robot simulation, in-

cluding among others Corke’s Robotics Toolbox for MAT-

LAB [4], Speck and Klaeren’s RoboSiM [29], and Rus-

pini and Khatib’s Simpact [25]. There are a number of

important elements that set GraspIt! apart from this body

of previous work, the most important being that it has

been developed specifically to analyze and visualize the

robotic grasping task. Accordingly, none of the simulators

above have the capability to compute dynamic frictional



Figure 1: GraspIt! robot models of (from left to right): a parallel jaw gripper, Barrett hand, DLR hand, NASA Robonaut hand, Rutgers

hand, and Puma 560 arm.

contact forces accurately, which is an essential component

of grasping problems. Further, they also lack the grasp

analysis and planning algorithms that are incorporated in

GraspIt!. Finally, GraspIt! is a total package that includes

not only models and a simulation engine, but a power-

ful and advanced user interface that facilitates its use. In

the following sections we provide a brief overview of the

components and features of the system, as well as describe

some of its applications. Further information regarding the

system and its applications can be found in the following

papers[12, 14, 15, 16, 17, 23].

2.1 GraspIt! World Elements

Body Types: A basic body consists of a pointer to its

geometry, a material specification, a list of contacts, and

a transform that specifies the body’s pose relative to the

world coordinate system. The body geometry is read from

an Inventor model file that has essentially the same format

as VRML 1.0. The material is one of a set of predefined

material types and is used when computing the coefficient

of friction between two contacting bodies.

A dynamic body inherits all of the properties of a body

and defines the mass of the body, the location of its center

of mass, and its inertia tensor. If the mass distribution is

unknown, the system can compute the inertia tensor by as-

suming a uniform mass distribution. The reason for distin-

guishing between bodies and dynamic bodies is that some

bodies are simply considered obstacles, and while they are

elements of the collision detection system and can provide

contacts on other bodies, they are not part of the dynamics

computations and remain static. This makes it possible to

create a complex world full of obstacles without making

the dynamics intractable to compute.

Robots: We have tried to make the definition of a robot

as general as possible to allow a wide variety of robot de-

signs to be imported. The system reads the kinematic pa-

rameters (specified in standard Denavit-Hartenberg nota-

tion) for each chain of links and joints from a text file, loads

the geometry for each link, and constructs the robot. Our

definition separates degrees of freedom (DOF) from joints

and allows multiple joints to be driven by the same DOF

because it is common in many hand designs to have cou-

pled joints that are passively controlled by other joints.

A hand is a special type of robot that can form grasps of

objects, and these grasps will be analyzed by the system. It

also includes an auto-grasp method which closes the joints

of the hand at preset velocities. Each joint stops when it

has reached its limit or when a link that follows it in the

kinematic chain contacts an object or another finger link.

The Robot Library: The ability to easily add new

robot designs is a key benefit of our system. It is a rela-

tively simple process of specifying the parameters required

by the configuration file, creating the link geometry files,

and in most cases takes less than an hour or two to set up.

We have already created models of a parallel jaw gripper, a

Puma 560 arm, and a simplified Nomadics XR4000 mobile

robot. Additionally, through collaboration with other re-

search sites we have obtained CAD models and kinematic

descriptions of four different articulated hand designs (see

figure 1).

Another feature of GraspIt! is the ability to attach mul-

tiple robots to create robotic platforms. The system al-

lows the definition of a tree of robots where any number

of robots can be attached to the last link of a kinematic

chain of another robot. This allows us to construct more

complex manipulation systems, and together with a world

model specifying the robot’s environment, we can plan and

test our entire grasping task so that we can avoid planning

grasps that will conflict with these obstacles.

2.2 User Interface

One of the design goals we believe we achieved was to

make the user interface as intuitive and transparent as pos-

sible. When a user starts a new session, he is presented

with an empty world into which he can import new ob-

stacles, graspable bodies, or robots, and at any point the

current state of the world can be saved to be loaded again

later in another session. The primary element of the main

window is a standard viewer, which displays a projection

of a 3D world in a 2D window. The virtual camera can be

rotated, panned, or zoomed, and a seek tool allows close

up inspection of a particular detail in the scene.

When the dynamics are not being used, obstacles, gras-

pable bodies, and robots may be translated and rotated in

3D using an appropriate manipulator that appears upon

clicking on the object. Manipulating the individual degrees

of freedom of a robot is equally intuitive. Clicking on a

kinematic chain of the robot brings up an interactive ma-

nipulator for each actively controllable joint in the chain.

Revolute joints are controlled by dragging a disc whose

axis of rotation is coincident with the joint axis (see fig-

ure 2), and prismatic joints are controlled by dragging an

arrow which is aligned with the joint axis. These manipula-

tors obey the joint limits defined in the robot configuration



Figure 2: Left: The user interface makes manipulating joints simple. The angle of a revolute joint can be changed by dragging a disc

manipulator located at the joint. The passive distal joint moves in a fixed relationship with the medial joint. The quality of a grasp is

shown as “Unstable” until a force-closure grasp is formed. Right: A force-closure grasp of a mug using a parallel jaw gripper. The worst

and average case quality values are displayed in the lower left portion as the values e and v. The pair of purple indicators show the force

and torque components of the worst case disturbance wrench. In the upper left is a projection of the grasp wrench space that shows the

space of forces that can be applied to the mug without creating a moment, and in the lower left is a projection that shows the space of

torques that can be applied without a net force acting on the object.

file and prevent the user from moving beyond them.

Another important feature is the ability to interact with

portions of GraspIt! through MATLAB. The system can

be run as a server that accepts TCP socket connections,

and then in MATLAB, compiled MEX functions are used

to communicate with the server to set robot motor torques,

step the dynamic simulation by one time step, and retrieve

the state of the world including all of the contact forces and

the current position and velocity of each body. This allows

external MATLAB functions to control the simulation.

2.3 Contacts

To prevent bodies from passing through each other

while they are being manipulated by the user, the system

performs real-time collision detection using the Proximity

Query Package [13]. If a collision is detected, the motion

of the bodies must be reversed back to the point when the

contact first occurs. To find this instant, GraspIt! performs

a binary search that ends when the bodies are separated by

a distance that is less than the contact threshold (currently

set at 0.1mm). Then the system determines the convex re-

gions of contact between the two bodies and draws a red

friction cone at each contact point, which serves to visu-

ally mark the position of the contact and its normal. The

width of this cone identifies how large any frictional forces

can be with respect to a force applied along the contact

normal.

2.4 Grasp Analysis

When GraspIt! is used in the static mode, the fingers of

a hand may be closed around the object without causing

it to move, and every time a contact is formed or broken

the system evaluates the current grasp. This evaluation is

done using one or more quality metrics. The current met-

rics evaluate the ability of the grasp to resist disturbance

forces, but future metrics will evaluate object manipula-

bility and the grasp’s robustness with respect to errors in

contact placement.

To evaluate a grasp’s efficiency against disturbances, the

system builds the 6D grasp wrench space using a convex

hull operation on the set of possible contact wrenches given

a unit strength grasp [14]. The volume of this space is used

as an average case quality measure, since the larger the

space is, the more efficient the grasp is. The point on the

hull boundary that is closest to the origin represents the

grasp’s weakest point (i.e. the wrench that is most difficult

for the grasp to apply). The distance to this point is used as

a worst case quality measure.

These numeric results allow an objective comparison

between grasps, but in some cases it is desirable to visual-

ize more of the grasp’s characteristics. To support this, the

system can produce arbitrary 3D projections of the grasp

wrench space which give a better sense of a particular

grasp’s strengths and weaknesses. It can also display the

worst case disturbance wrench, which is the force-torque

combination that is most difficult for the grasp to resist.

Figure 2 shows an example of these results, and demon-

strates why parallel jaw grippers are not good at grasping

round objects. Because the flat plates only contact the mug

surface in two places, the grasp cannot easily resist a torque

about the axis between those two contact regions, as shown

by the purple worst case disturbance wrench indicator.

2.5 Simulating Dynamics

The system allows the user to form grasps of an object

and analyze these grasps without using dynamics. To study

the evolution of a grasp and to test grasping control algo-

rithms, however, we must consider how the hand and ob-

ject move over time under the influence of controlled motor

forces, gravity, inertial forces, and in response to collisions.

To compute the motion of each dynamic body in the world,

we use a numerical integration scheme that computes the

change in velocity of each body over a small finite time

step given a set of external forces acting on the body and

any joint constraints, non-interpenetration constraints, and

friction constraints that may also be present. These con-

straints are linearized and formulated as a linear comple-

mentarity problem (LCP) [1], that is solved using Lemke’s

algorithm [5], a pivoting method similar to the simplex al-

gorithm for linear programming. The solution provides not

only the new velocity of the bodies, but also the normal and



frictional impulses at the contact points. After each itera-

tion of the dynamics is completed, the system can draw the

contact forces at each contact point, and at any time the dy-

namics may be paused to examine the state of the system

or to change the current simulation parameters.

With the dynamics in place, it is possible to study the

temporal formation of grasps. In the example presented

in figure 3, the Barrett hand is positioned above a wine

glass which rests on its side on the table. The PD joint

controllers of the Puma robot hold the wrist in place, and

the desired final position of the hand joints is set to fully

closed. The figure shows the initial setup and 5 different

time slices during the simulation. The default time step is

2.5 ms, but smaller steps may occur due to contact events.

Because there is very little friction between the plastic and

glass surfaces, and because the glass is tapered, the hand

squeezes the glass out of its grasp. As the simulation con-

tinues, the wine glass slides and rolls off the table, hitting

the Puma robot on its way down to the floor.

3 Applications

GraspIt! has become a platform that supports research

in a variety of areas related to grasping. With its integrated

grasp analysis methods, we have applied it to the problem

of planning high quality grasps of objects. Below we de-

scribe two different systems we have built with GraspIt!

that approach this challenging problem in different ways.

Finally, we present some of our most recent work in creat-

ing a biomechanically realistic human hand model that will

not only help clinicians better understand the mechanics of

the hand and plan reconstructive surgeries, but will also

help robotic hand designers build hands that come closer

to matching the capabilities of our own hands.

3.1 Grasp Planning

The grasp planning problem is extremely difficult be-

cause of the number of degrees of freedom of a robotic

hand. For example, the relatively simple Barrett hand has

10 degrees of freedom, 6 for orientation relative to the ob-

ject, and 4 for finger manipulation. This number of DOF’s

creates a large search space of hand configurations. Of

course, large portions of this space are worthless because

the fingers are not in contact with the object, but even if the

problem were reparameterized, a brute force search would

still be intractable.

A variety of other approaches have been used to tackle

this problem. A number of papers present contact-level

grasp synthesis algorithms [6, 18, 24]. These algorithms

are concerned only with finding a fixed number of contact

locations without regard to hand geometry. Other systems

built for use with a particular hand restrict the problem to

choosing precision fingertip grasps, where there is only one

contact per finger [3, 11]. These types of grasps are good

for manipulating an object, but are not necessarily the most

stable grasps because they do not use inner finger surfaces

or the palm.

One way of limiting the large number of possible hand

configurations is to use grasp preshapes. Before grasping

an object, humans unconsciously simplify the task to se-

lecting one of only a few different prehensile postures ap-

propriate for the object and for the task to be performed.

These postures have been enumerated in various grasp tax-

onomies (e.g. [19]).

Our first planner takes advantage of this fact, in order to

reduce the search space size to a small number of grasps

that are more likely to have a high quality. The system

consists of two parts, one to generate a set of starting grasp

locations based on a simplified object model, and one to

test the feasibility and evaluate the quality of these grasps.

The simplified object model is constructed from a small set

of shape primitives such as spheres, cylinders, cones and

boxes, and heuristic grasping strategies for these shapes al-

low the system to generate a set of grasp possibilities. The

grasp tester moves the hand from a grasp starting position

toward the object, closes the fingers around the object, and

evaluates the grasp. After testing all of the generated grasp

possibilities, the user is presented with the best grasps of

the object in descending order of quality (see figure 4). In

order to prevent infeasible grasps from being planned, the

user may import a world model containing obstacles, as

well as a robot arm model so that reachability constraints

may be considered (see figure 5).

The drawback of this approach is that since it only con-

siders a subset of the possible grasps, it may miss a bet-

ter possibility. Humans may initially choose a sub-optimal

grasp of a novel object, but with experience they will adapt

their grasp to the most appropriate one for the task. Our

most recent planning system applies new machine learning

techniques to this problem to effectively have robots learn

how to grasp arbitrary objects.

We are using supervised training to learn what is a good

grasp for a robotic hand. This requires a method that al-

lows us to try a large number of grasps of an object and

report a metric on the quality of each grasp in the training

set, and GraspIt! is perfectly suited for this. Using this

training set, we can then generate basis functions that can

effectively both predict the quality of an arbitrary new set

of grasping parameters and also use these basis functions

to find an optimal set of grasping parameters for an object.

These parameters correspond to the degrees of freedom of

an actual hand, rather than the placement of point contacts

on the object surface. It is also important to note that our

method is not dependent on a single type of robotic hand

or class of objects. It provides a robust system for testing

different robotic hands and analyzing the quality space that

they span.

For our tests we again used the Barrett hand, and the

objects in our training set were 9 different superellipsoids,

which can be described with two shape parameters, ε1 and

ε2. For each superellipsoid we generated 1,600 grasps,

which consisted of 100 random roll and spread angle com-

binations for each of 16 regularly sampled grasp starting

positions, as shown in the left portion of figure 6. This

gave us a total of 14,400 grasps, which were evaluated

by GraspIt! over the course of approximately 4 hours on

a Pentium IV 2.3 GHz Windows machine.

We then used an SVM regression to create a mapping

between object shape, grasp parameters and grasp quality.

Our learned regression mapping accepts a fixed length in-



Figure 3: The Barrett hand attempts a grasp of the wine glass, but due the low degree of friction at the contacts and the taper of the glass,

the glass is squeezed out of the grasp. The first frame shows the initial setup, and following from left to right, snapshots are taken at 0.5103,

0.5425, 0.6148, 0.6586, 0.6956 seconds of simulation time. The full movie is at http://www.cs.columbia.edu/˜amiller/graspit/movies.html.

Figure 4: The first image shows the primitive model used for planning grasps for the coffee mug and shows the generated set of grasp

positions to be tested. The other images show three of the best grasps of the mug in descending quality order.

Figure 5: The best planned grasp of the mug in the presence of

obstacles and using the reachability constraints of the Puma arm.

put vector that contains the shape and grasping parame-

ters and returns a single scalar which estimates the grasp

quality. If only provided with a subset of the input vector

(i.e. the shape parameters), the regression algorithm will

perform an efficient search for the optimal setting of the

missing input vector values (i.e. the grasp parameters) that

maximize grasp quality. The middle and right portions of

figure 6 show the results of these searches for both a shape

that was in the training set and one that wasn’t.

Our initial superquadric models are clearly not able to

model the full range of possible objects to be grasped, so

our next task is to extend this technique to more complex

shapes, which could be composite models composed of

multiple superquadric shapes. Possible methods for solv-

ing this multi-superquadric grasping problem are discussed

in [23].

3.2 Modeling the Human Hand

There is an inherent mismatch between the mechan-

ical design and capabilities of robotic hands versus hu-

man hands. Why is this so? Robotics-based models of

the human hand use idealized simple joints, torque mo-

tors and finger-pad elements. It has been shown that these

simplifications do not suffice to create a realistic model



Figure 6: Left: For each superquadric in the training set we generate 1,600 grasp starting poses. These cover 16 positions over 1/8th of

the total surface area, with 100 random combinations of different thumb orientations and finger spread angles. Here the long vector from

each point denotes the grasp approach direction and the collection of short vectors shows the various thumb orientations. The spread

angle is not shown. Middle: The optimal grasp of the SVM regression function for a superquadric shape previously seen in the training

set (ε1 = 1, ε2 = 0.3). The quality of this grasp as tested in GraspIt! is 0.402. Right: The optimal grasp of the SVM regression function

for novel a superquadric (ε1 = 0.6, ε2 = 0.5) The quality of this grasp as tested in GraspIt! is 0.315.

of the thumb because they do not replicate the complex

functional interactions among bones, ligaments and mus-

cles [30]. If we truly desire to create hand-like functions

in a robot, we need to learn from a working system such as

the human hand.

Our current efforts are focused on constructing a biome-

chanically realistic human hand model that would allow us

to determine what features of the human hand are the most

important to be mimicked when designing a robotic hand.

These beneficial features will be identified by creating sev-

eral versions of the human hand model, each with different

sets of features, and analyzing the ability of each hand to

perform a set of grasping and manipulation tasks. These

iterative refinements begin with developing a hand model,

with rigid bodies modeling the geometry of the digits, that

has a simplified version of the actual human kinematics.

This will then be compared to a version of the hand that has

links that deform in a manner similar to the fleshy portions

of the human hand to evaluate how compliant surfaces aid

stable grasping. Another version of the hand will have real-

istic human joints to determine the benefits of a compliant

kinematic structure, and a fourth version will incorporate

the network of tendons to determine what are the advan-

tages, if any, of indirect actuation of the joints. Our simu-

lation system will provide an arena for these comparisons,

because of its ability to simulate dynamic grasping tasks

and evaluate the completed grasps with a variety of quality

metrics.

As a first step, we have created a human hand model

that uses accurate kinematic parameters for the joint axes

of the thumb. A high quality polygonal model of the skin’s

surface was obtained from the program Poser, which is

used for animating 3D characters. For each of the fingers

we use three parallel flexion-extension (FE) joint axes and

one abduction-adduction (AA) joint axis that intersects the

first FE axis at a right angle. Initially, we used similar in-

tersecting axes for the joints of the thumb (three FE axes

and two orthogonal AA axes). However, while this simple

orthogonal model has been considered in the past, such a

model does not accurately predict maximal static thumbtip

Figure 7: Left: The five joint axes of the thumb are arranged

in a way commonly seen in mechanical designs with orthogonal

and intersecting pairs of axes. Right: When using ideal revolute

joints to model the kinematics of the hand, this set of skewed

axes more accurately predicted experimental thumbtip forces and

muscle coordination patterns.

forces [30].

Through the use of Markov Chain Monte Carlo simu-

lations [8] and the virtual five-link thumb model [9], we

have arrived at a set of kinematic parameters that can best

fit, in a least squares sense, experimental thumbtip forces

and electromyography data [27]. The difference in these

two sets of joint axes can be seen in figure 7.

Since these models rely on ideal revolute joints, they

will not be able to truly mimic all of the possible motions

of the digits. This limitation can be seen in figure 8, where

the hand grasps a mug. Initially the side of the thumb is in

contact with the mug, but in a real grasp, the thumb would

twist passively as pressure is increased at the contact. The

current kinematic model prevents this from happening in

simulation. What is needed is a model to predict the kine-

matics of a joint as a function of the shape of the bone ar-

ticular surfaces in contact, the geometry and material prop-

erties of the ligaments and the applied load.

In addition, as the pressure increases at a contact, the

finger surface deforms and begins to approach the local

shape of the grasped object at the contact point. This re-

sults in an expanded contact area that reduces shear stresses

for a given fingertip force and or torque magnitude, im-

proves tactile information about the contact, and increases

the safety margin to microslips, thus improving the stabil-

ity of the grasp. Currently in GraspIt! all of the links are



Figure 8: The thumb contacts the mug on its ulnar side, but be-

cause of the constraints of using idealized joints, it will not twist

and make contact with the thumbtip pad as pressure is increased

at the contact.

Figure 9: A computer-controlled system to deliver known ten-

sions and displacements to cadaveric hands [22, 31].

considered individual rigid bodies; however, we are be-

ginning to develop a physically-based deformable finger

model to predict the geometric change in the contact re-

gions and accurately compute contact forces between non-

rigid bodies during grasping. We are investigating the use

of adaptive refinement finite element methods [10] to com-

pute the skin deformations in both contact and joint move-

ment situations, and we plan to use an accurate model of

the skeletal structure to constrain the positions of the in-

nermost elements, which contact the bone. CT and MRI

scans currently being collected will provide the necessary

geometric detail to model the bones and soft tissue of the

hand. We will also use published experimentally derived

models of viscoelastic properties of the finger pads to ac-

curately simulate these deformations [21, 28].

Finally, we are interested in modeling the indirect actu-

ation of the tendon networks within each finger. Using an

existing computer-controlled system for actuating multiple

muscles in cadaveric hands (see figure 9), we can mea-

sure finger forces and torques or movement for given in-

put tendon forces or excursions. Then with this data we

will use model-based estimation techniques [2] to deter-

mine the statistically best suited representation of the fin-

ger extensor mechanism (see figure 10). This will involve

estimating the number and location of the connections (i.e.

points of bifurcation or confluence) among the tendons.

We have used an idealized extensor mechanism descrip-

Figure 10: Stylized anatomy of the middle finger show-

ing the tendinous network that makes up the finger extensor

mechanism[20].

Figure 11: Dr. Valero-Cuevas’ model of the extensor mechanism

of the index finger [32].

tion dating from the 17th century (see figure 11a) and have

simulated its behavior as a 3D floating net. The distribution

of tension among the different branches depends on their

geometric configuration [32] which is known to change

with finger posture [7](see figure 11b). In contrast, pre-

vious descriptions of the extensor mechanism assumed a

fixed distribution of tension among its elements. More re-

cently, other studies have used this floating net approach

to study finger movement [26] and thumb force produc-

tion [30]. However, these models of the extensor mech-

anisms are not entirely validated for all finger postures

(as would be desirable for a general-purpose model of the

hand), nor is there a mechanics-based description of the

extensor mechanism that can be efficiently encoded to be

part of a computer simulator of the human hand.

4 Conclusion

We have presented a versatile simulation system that

can aid grasping research by facilitating the testing of grasp

planning and grasping control algorithms without the need

for costly robotic hands. Of course, if one has a manip-

ulation system, this software can be used effectively as a

planning environment to devise a grasping strategy for that

hand [12]. Synthesizing appropriate grasps for a given task

is not a trivial problem, however, given the large number of

possibilities, and we have demonstrated two different grasp

planning systems that are inspired by the way humans ap-

proach the problem. The first attempts to limit this search

space by using taxonomies of prehensile grasping postures

and rules on how to choose appropriate postures for given

primitive shapes within the object model, and the second



attempts to learn the relationship between grasp quality and

the combination of object shape and grasping parameters.

GraspIt! can also be used to evaluate new robotic hand

designs. Simulation is often used in the design of many

other mechanical devices because it allows a designer to

investigate how changes to various parameters affect the

performance of the device without the need to build time-

consuming and costly prototypes. Many current robotic

hand designs attempt to emulate the human hand because

of its proven manipulation capabilities [33]. Still however,

we do not fully understand all the intricacies of this com-

plex biological mechanism, nor do we have a clear sense of

which elements are most instrumental in making the hand

such an effective manipulator. Thus we have embarked on

a project to create a simulated biomechanical model of the

human hand that we hope will give us insight into how to

build a better robotic hand.

Acknowledgment: This material is based upon work

supported by the National Science Foundation under Grant

No. 0312271 (ITR project) from NSF’s Robotics and Com-

puter Vision Program, NSF Grant No. 0237258 (CAREER

award) from NSF’s Biomedical Engineering/Research to

Aid Persons with Disabilities Program (to F. J. Valero-

Cuevas), a Biomedical Engineering Research Grant from

the Whitaker Foundation (to F. J. Valero-Cuevas), and an

NSF Graduate Research Fellowship (to V. J. Santos).

References
[1] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body

contact problems with friction as solvable linear complementarity

problems. Nonlinear Dynamics, 14:231–247, 1997.

[2] Y. Bar-Shalom, X. Li, and T. Kirubarajan. Estimation with applica-

tions to tracking and navigation. John Wiley and Sons, Inc., New

York, 2001.

[3] C. Borst, M. Fischer, and G. Hirzinger. A fast and robust grasp

planner for arbitrary 3D objects. In Proc. of the 1999 IEEE Intl.

Conf. on Robotics and Automation, pages 1890–1896, 1999.

[4] P. Corke. A robotics toolbox for MATLAB. IEEE Robotics and

Automation Magazine, 3(1):24–32, Mar. 1996.

[5] R. W. Cottle, J. S. Pang, and R. E. Stone. The Linear Complemen-

tarity Problem. Academic Press, 1992.

[6] D. Ding, Y.-H. Liu, and S. Wang. Computing 3-D optimal form-

closure grasps. In Proc. of the 2000 IEEE Intl. Conf. on Robotics

and Automation, pages 3573–3578, 2000.

[7] M. Garcia-Elias, K. N. An, L. Berglund, R. L. Linscheid, W. P.

Cooney, and E. Y. Chao. Extensor mechanism of the fingers: I. a

quantitative geometric study. J Hand Surgery (American), 16:1130–

1140, 1991a.

[8] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markove Chain

Monte Carlo in Practice. Chapman & Hall/CRC, Boca Raton, FL,

1996.

[9] D. J. Giurintano, A. M. Hollister, W. L. Buford, D. E. Thompson,

and L. M. Myers. A virtual five-link model of the thumb. Medical

Engineering and Physics, 17(4):297–303, June 1995.

[10] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: a simple frame-

work for adaptive simulation. In Proc. of the 29th annual conference

on Computer graphics and interactive techniques, pages 281–290.

ACM Press, 2002.

[11] R. D. Hester, M. Cetin, C. Kapoor, and D. Tesar. A criteria-based

approach to grasp synthesis. In Proc. of the 1999 IEEE Intl. Conf.

on Robotics and Automation, pages 1255–1260, 1999.

[12] D. Kragić, A. Miller, and P. Allen. Real-time tracking meets online

grasp planning. In Proc. of the 2001 IEEE Intl. Conf. on Robotics

and Automation, pages 2460–2465, 2001.

[13] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity

queries with swept sphere volumes. Technical Report TR99-018,

Dept. of Computer Science, University of North Carolina, Chapel

Hill, 1999.

[14] A. Miller and P. Allen. Examples of 3D grasp quality computations.

In Proc. of the 1999 IEEE Intl. Conf. on Robotics and Automation,

pages 1240–1246, 1999.

[15] A. Miller and P. Allen. GraspIt!: A versatile simulator for grasp-

ing analysis. In Proc. of the ASME Dynamic Systems and Control

Division, volume 2, pages 1251–1258, 2000.

[16] A. Miller and H. Christensen. Implementation of multi-rigid-body

dynamics within a robotic grasping simulator. In Proc. of the 2003

IEEE Intl. Conf. on Robotics and Automation, pages 2262–2268,

2003.

[17] A. Miller, S. Knoop, H. Christensen, and P. Allen. Automatic grasp

planning using shape primitives. In Proc. of the 2003 IEEE Intl.

Conf. on Robotics and Automation, pages 1824–1829, 2003.

[18] B. Mirtich and J. Canny. Easily computable optimum grasps in 2-

D and 3-D. In Proc. of the 1994 IEEE Intl. Conf. on Robotics and

Automation, pages 739–747, 1994.

[19] J. Napier. The prehensile movements of the human hand. J Bone

and Joint Surgery, 38B(4):902–913, Nov 1956.

[20] F. H. Netter. Atlas of human anatomy. Icon Learning Systems, 2

edition, 1997.

[21] D. Pawluk and R. Howe. Dynamic lumped element response of the

human fingerpad. J Biomech Engineering, 121(2):178–183, Apr

1999.

[22] J. L. Pearlman, S. S. Roach, and F. J. Valero-Cuevas. The fundamen-

tal thumb-tip force vectors produced by the muscles of the thumb. J

Orthopaedic Research, 22(2):306–312, 2004.

[23] R. Pelossof, A. Miller, P. Allen, and T. Jebara. An SVM learning

approach to robotic grasping. In Proc. of the 2004 IEEE Intl. Conf

on Robotics and Automation, pages 3215–3218, 2004.

[24] J. Ponce, S. Sullivan, J.-D. Boissonnat, and J.-P. Merlet. On charac-

terizing and computing three- and four-finger force-closure grasps

of polyhedral objects. In Proc. of the 1993 IEEE Intl. Conf. on

Robotics and Automation, pages 821–827, 1993.

[25] D. Ruspini and O. Khatib. Collision/contact models for the dynamic

simulation and haptic interaction. In Proc. of the Ninth Intl. Sympo-

sium of Robotics Research, ISRR’99, pages 185–194, 1999.

[26] J. L. Sancho-Bru, A. Perez-Gonzalez, M. Vergara-Monedero, and

D. Giurintano. A 3-d dynamic model of human finger for studying

free movements. J Biomech, 34:1491–1500, 2001.

[27] V. Santos and F. Valero-Cuevas. Investigating the interaction be-

tween variability in both musculoskeletal structure and muscle co-

ordination for maximal voluntary static thumb forces. In Proc. of the

Neural Control of Movement Annual Meeting, pages 27–28, 2004.

[28] E. R. Serina, E. Mockensturm, C. D. Mote, and D. Rempel. A

structural model of the forced compression of the fingertip pulp. J

Biomech, Jul;31(7):639–46, 1998.

[29] A. Speck and H. Klaeren. RoboSiM: Java 3D robot visualization.

In IECON ’99 Proceedings, pages 821–826, 1999.

[30] F. Valero-Cuevas, M. E. Johanson, and J. D. Towles. Towards a

realistic biomechanical model of the thumb: The choice of kine-

matic description is more critical than the solution method or the

variability/uncertainty of musculoskeletal parameters. J Biomech,

36(7):1019–1030, 2003.

[31] F. J. Valero-Cuevas, J. D. Towles, and V. R. Hentz. Quantification

of fingertip force reduction in the forefinger following simulated

paralysis of extensor and intrinsic muscles. J Biomech, 33:1601–

1609, 2000.

[32] F. J. Valero-Cuevas, F. E. Zajac, and C. G. Burgar. Large index-

fingertip forces are produced by subject-independent patterns of

muscle excitation. J Biomech, 31:693–703, 1998.

[33] D. D. Wilkinson, M. V. Weghe, and Y. Matsuoka. An extensor

mechanism for an anatomical robotic hand. In Proc. of the 2003

IEEE Intl. Conf. on Robotics and Automation, pages 238–243, 2003.


