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Abstract— We deal with the problem of blind grasping where
we use tactile feedback to predict the stability of a robotic grasp
given no visual or geometric information about the object being
grasped. We first simulated tactile feedback using a soft finger
contact model in GraspIt! [1] and computed tactile contacts of
thousands of grasps with a robotic hand using the Columbia
Grasp Database [2]. We used the K-means clustering method
to learn a contact dictionary from the tactile contacts, which is
a codebook that models the contact space. The feature vector
for a grasp is a histogram computed based on the distribution
of its contacts over the contact space defined by the dictionary.
An SVM is then trained to predict the stability of a robotic
grasp given this feature vector. Experiments indicate that this
model which requires low-dimension feature input is useful in
predicting the stability of a grasp.

I. INTRODUCTION

Many of the current grasp planning algorithms utilize

visual information [3], [4], [5] or geometric data [6], [7] of

the object to be grasped. To obtain such information, devices

like cameras or range finders are necessary. This, to a large

extent, limits the application of these methods across a wide

range of different working situations, considering different

lighting conditions and object occlusion.

Pushing this problem to an extreme, one would ask can

a robotic hand still apply a stable grasp to an object when

it is blind? An example that describes the situation could

be a robotic hand reaching into a gym bag and getting a

bottle of water out of it. As human beings, it is intuitive

and straightforward for us to grasp objects even when we

cannot see them. Lederman and Klatzky have shown [8]

that humans have the ability to “blindly” recognize objects

with a high degree of accuracy. Humans can also apply

stable grasps on unknown objects in the total absence of

any visual feedback. But this ability is sorely lacking with

current robots that are performing grasping tasks. Using

tactile exploration for grasping, Bierbaum et al. proposed a

method to generate grasp affordances based on reconstructed

faces of an object through tactile exploration [9]. Platt

proposed a method to learn grasping strategies based on

contact relative motions [10]. Hsiao used tactile sensing to

reduce the localization uncertainty during grasping [11]. We

are focusing on predicting the stability of a grasp assuming

an exploration algorithm has already applied a grasp to an

object which is unknown to the robot.

In our previous work [12], we used raw tactile readings

and hand kinematic data together to predict the stability of
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a grasp. This method achieved a low false positive rate on

unstable grasps which is a very necessary feature in working

environments where unstable grasping is risky and costly.

Although the raw tactile and kinematic data carry a good

amount of useful information to indicate the grasp stability,

some properties of a grasp may not be easily extracted

from the raw sensor data. One important property is the 3-

dimensional spatial distribution of the contacts between the

hand and the object, which to a very large extent influences

the stability of a grasp. The feature we used in our previous

work is based on the raw tactile and kinematic data. Thus,

the dimension of a feature vector could be very large given a

hand with a large number of tactile sensors or joints, which

increases the learning complexity. This poses a potential limit

to the learning method in practice. In this paper, we utilize

a bag-of-words model to describe the 3-dimensional spatial

distribution of the contacts of a given grasp and predict

the stability of the grasp with this model, which reduces

the dimension of the feature space and achieves a better

accuracy. In addition, instead of using the epsilon quality of

a grasp as the ground truth as in our previous work, we take

into consideration the volume quality of a grasp and combine

these two criteria together as the ground truth. Together, they

can give a more comprehensive stability evaluation than the

epsilon quality alone.

Another important work related to ours is by Bekiroglu

et al. [13] and Laaksonen et al. [14]. They have a close

look into assessing the grasp stability using static one-shot

classification and dynamic time series assessment during the

grasping procedure. Compared to their work, we propose a

different feature based on tactile contacts that inherently en-

codes the information of the contact configuration extracted

from the tactile data and finger joint values together. We

trained our classifier on a larger data set of objects with more

shape varieties compared to the work in [13] and achieved

a better accuracy in a model-free classification scenario. In

addition, we looked into how the grasping performance could

be influenced by varying the surface friction coefficient and

the object mass.

In Section II, we discuss the extraction of contacts from

the tactile feedback and hand kinematics. In Section III,

we propose a bag-of-words model for constructing feature

vectors of grasps. We show the experiments in Section IV,

followed by conclusions in Section V.

II. CONTACTS FROM TACTILE FEEDBACK

When visual information is not available, tactile feedback

from the hand is crucial in object grasping and manipulation

tasks. It usually gives information about the object’s local
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geometry which is difficult to obtain through vision alone.

Tactile sensors play an important role in representing the

contacts between the surface of the hand and the object that

are touching each other. The output of the tactile sensors

around each contact is characterized by the forces applied

at each sensor cell. So, a reasonable contact model that

approximates the contact region and the pressure distribution

is necessary for simulating a reasonable tactile feedback.

Pezzementi et al. [15] used a point spread function model to

simulate the response of a tactile sensor system. In our work,

we build our tactile simulation system based on a soft finger

contact model proposed by Ciocarlie et al. [16]. Interested

readers please refer to the original papers for more details

[16], [12].

Tactile feedback indicates which sensor cells have contacts

with the object and which do not. With the angle values for

the joints of the hand, we can also use forward kinematics to

determine both the location and the orientation of each sensor

cell. So, we can utilize the tactile feedback to approximate

the contact locations and orientations.

To represent the location and the orientation of a sensor

cell, we want to use a coordinate system that is local

to the hand and is consistent across different grasps. We

chose the coordinate system attached to the palm as the

reference coordinate system. Given a set of n joint angles

of a grasp, J = [j1, j2, ...jn], we write out the location and

the orientation of the kth sensor cell on the ith link in a

homogeneous transformation matrix as follows:

T sensorik
palm (J ) = T linki

palm (J ) · T sensork
linki

(1)

where T linki

palm denotes the transformation between the link

i and the palm; it is determined by the joint values J
and the hand kinematics for each grasp; T sensork

linki
is the

transformation between the ith link and the kth sensor cell

on this link; it is determined by the sensor cell configuration

and is a constant for every grasp.

Using the location and the orientation of each sensor cell

that is activated due to a contact, we can determine the

configuration of the contacts involved in a grasp. It is worth

noting that there is error in representing the actual contact

locations and orientations using this method because each

sensor cell has finite dimensions and any contacts residing

within the same sensor cell will be indistinguishable.

III. A BAG-OF-WORDS MODEL

Bag-of-words models are widely used in natural language

processing (NLP). They are also known as bag-of-features

models in computer vision. In NLP, Bag-of-words models

use a dictionary to represent a document without considering

the order of the appearance of the words in the document. In

computer vision, an image is treated similarly as a document,

where the visual features of an image take the role of the

words in a document.

By the same analogy, we can transfer this idea to the

context of robotic grasping. A grasp contains a set of contacts

just as a document consists of a number of words. If we

treat a grasp as a document and a contact as a word, it is

(a) (b)

Fig. 1. Cluster centers of contacts overlayed on a Barrett hand. Spheres are
located at the centers of each cluster. The clusters contain 199,835 contacts
collected from a training set of 24,640 grasps.

reasonable to use a bag-of-words model to describe a grasp

in a similar way as a bag-of-words model does a document.

A. Building a Contact Dictionary

In order to use the Bag-of-words approach, we need to

build a dictionary which represents the space of the potential

contacts. It is impractical, if not impossible, to collect all

the possible contacts that can appear in a grasp. Thus, we

need a reasonable discretization of the space within the

hand’s coordinate system. Considering the hand kinematics

of a robotic hand, we see there are some regions within the

hand’s local coordinate system that have larger potential than

other regions for a contact to appear. Thus, using a set of

representative contacts from these regions as a dictionary,

we can enjoy both the statistically sound capability of

representation of the contact space and a low dimensionality

of the dictionary which determines the dimensionality of the

feature of a grasp.

In order to learn a set of representative contacts, we

first collected a training set of grasps and extracted the

contacts out of them. Considering the fact that the reaching

space for each finger of a Barrett hand intersects with each

other very rarely, it is safe to think each contact location is

associated with a contact orientation and vice versa. Based

on this consideration, we only used the location part of a

contact and applied a K-means clustering algorithm to all the

contact locations to learn this set of representative contacts.

Thus, the space we are clustering is a regular 3-dimensional

Cartesian space. The distance function we chose in the K-

means clustering algorithm measures the euclidean distance

between two contact locations.

Figure 1 shows the cluster centers overlayed on a Barrett

hand. The spread angle of the Barrett hand is set manually

solely for giving a better idea of the hand’s work space. The

centers of the clusters outline the reaching space of each

finger. In Figure 1(a), the contact spaces of finger 1 and 2

of the Barrett hand display very nice symmetry. This agrees

with the symmetric mechanical design of the two fingers.

B. Grasp Feature Vectors

The set of cluster centers models the space of the contacts

on the fingers and the palm in a highly discretized dimension.

With this set of cluster centers, we use the distribution of the

contacts among the contact cluster centers as feature vectors

for grasps.

Formally, given a contact dictionary with of p cluster

centers Ĉ = [ĉ1, ĉ2, ...ĉp] and a grasp G which consists of

2393



q contacts CG = [c1, c2, ...cq], we calculate the distribution

vector of the contacts of grasp G with respect to Ĉ as follows:

D(CG ,Ĉ) =
q∑

i=1

H(ci, Ĉ) · fci
Sci

(2)

where fci is the force value sensed at the tactile sensor cell

corresponding to contact ci, Sci is the total amount of forces

sensed from all the sensors cells on the sensor pad which

contact ci is on, H(ci, Ĉ) = [h1, h2, ...hp] is a p-dimensional

vector that stores the similarity values between contact ci
and each cluster center in Ĉ. It is computed as:

hi = exp(−||ci − ĉi||2
σ2

) (3)

where ci and ĉi are both 3-dimensional vectors storing the

contact locations and σ is a parameter set manually. hi

measures the similarity between two contact locations. For

a contact that is far from a cluster center, the corresponding

euclidean distance is large resulting in a small similarity

value. The parameter σ controls the speed the similarity

values decrease as the distances go up. We want to use a

reasonable σ that would maximize the range of hi values

in [0, 1] and maximally distinguish the contacts by this

similarity value. In our experiment, we analyzed the range

of the contacts from all the grasps of a Barrett hand and set

σ as 36.45.

Distribution vectors D(G, CG) are built from the summa-

tion of the distributions of different numbers of contacts.

Thus, we scale the distribution vector down by the number

of sensor pads which have tactile contacts. Mathematically,

for a grasp G, the scaled distribution vector is calculated as:

D̂i =
Di

|PG | (4)

where Di denotes the ith element of the vector D(G, C) and

|PG | ∈ {1, 2, 3, 4} is the number of sensor pads with tactile

contacts. This scaled distribution vector is the final feature

vector we use to describe a grasp in our work.

IV. EXPERIMENT

Following the explanation of the model we use to generate

features of grasps, we now discuss the way we generate a

set of grasp samples and the experiments.

A. Grasp Dataset

Our grasp data is from the Columbia Grasp Database

(CGDB) [2]. This database contains hundreds of thousands

of grasps constructed from several robotic hands and thou-

sands of object models. To build this database, we used

GraspIt! [1], a robotic grasping simulator to plan grasps and

evaluate their qualities. Although the CGDB provides grasps

for all these object models in the PSB, instead of using the

full set of grasps in the CGDB, we choose to select grasps

computed on a smaller set of objects that are more frequently

grasped and manipulated by us in our everyday life. In total,

we collected about 36,960 robotic grasps from 704 objects

across 19 different classes. We used 2
3 of them for training

and the remaining 1
3 for testing.

B. Grasp Quality Measurements
Different measurements could be used to evaluate the qual-

ity of a grasp, such as its stability, feasibility, and dexterity

[17]. In our work, we focus on two quality measurements

related to the stability of a grasp: the epsilon quality and the

volume quality [18], which are based on the grasp wrench

space (GWS) generated by the grasp. In our experiment, we

modeled the material of the surface of the hand as rubber

and the material of the object as wood and set the friction

coefficient between the finger and the object as 1.0.
The epsilon quality, ε, refers to the minimum relative

magnitude of the outside disturbances that could destroy

the grasp. So, when we take into account the limit of the

maximum forces a robotic hand can apply, a grasp would

be less stable if it has a smaller epsilon quality. This is

because the smaller epsilon quality indicates that a relatively

smaller outside disturbance can break this grasp even when

the robotic hand has already applied the maximum forces

it supports. Another consideration is from the perspective

of the environment uncertainty. Due to the uncertainty of

the environment, objects may move away slightly from their

original position during a grasp execution. A fragile grasp

may fail to fully grasp the object in this situation while a

stable one may display its robustness and still succeed in

grasping the object in the perturbation. We have experimen-

tally found a strong correlation between this robustness and

the epsilon quality. We have found that grasps with epsilon

quality ε > 0.07 tend to be more robust in uncertain object

perturbations.
The volume quality, v, measures the volume of the poten-

tial wrench space generated by the grasp given unit contact

normal forces. A grasp with a larger potential wrench space

would require less forces at each contact than grasps with

smaller potential wrench spaces. This indicates that the larger

the volume quality is, the stronger the grasp could be.

C. Labeling Grasps in the Dataset
Given all the grasps in the grasp dataset, we observed

that their epsilon qualities and volume qualities are not well

correlated. In addition, Li and Sastry pointed out the epsilon

quality measure is not invariant to the choice of torque origin

[19], so we use the volume quality as an invariant average

case quality measure for the grasp. Each of these measures

has its own benefits. It makes sense that we combine them

together and form up a new evaluation criterion. Based on

our experimental results, we use thresholds tε = 0.07 and

tv = 0.1 as the boundaries for epsilon and volume qualities

to label a grasp graspi as a good (1) if and only if their

corresponding epsilon and volume qualities are above the

threshold.

D. Simulation Experiment
In our experiment, the dictionary was learned based on

the training set mentioned in Section IV-A. Experimentally,
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Fig. 2. Accuracy analysis: X-axis is the group names for each object class.
Y-axis is the percentage (%) of the overall false predictions (green bars) or
the false positive predictions (yellow bars) per object class. As shown in the
graph above, the percentages for false positive predictions per object class
(yellow bars) are relatively low, which is necessary for blind grasping.

TABLE I

LEARNING PERFORMANCE IN SIMULATION

Data set grasps stable grasps unstable grasps accuracy

Training 24,640 11,849 (48.09%) 12,791 -

Test 12,320 5,914 (48.00%) 6,406 81.0%

we chose k = 64 to create 64 different clusters. So, the

dictionary contains 64 contacts and a feature vector of a

grasp is 64-dimensional. Figure 1 shows these 64 cluster

centers within a Barrett hand’s coordinate system. We then

used libsvm [20] to train an SVM based on the training

data which contains about 24,640 grasps and tested the

SVM on the remaining 12,320 grasps. Table I summarizes

the number of stable grasps and unstable grasps in both

training and test datasets. Figure 2 shows the classification

result in more detail. The overall accuracy across all the

classes of objects is 81.0%. Considering the context of blind

grasping, the percentage of the false positive predictions

is a crucial evaluation criterion. This is because a false

positive prediction will guide the robot to apply an unstable

grasp and use it as if it is a stable one. In most working

conditions, this action is very risky and even unacceptable. In

Figure 2, we show the percentages of error and false positive

predictions for each object class. The percentages of false

positive predictions illustrate the probabilities of the situation

when an unstable grasp is incorrectly classified as a stable

one during a grasping task. As can be seen, for most of the

object classes, the probabilities of false positive predictions

are relatively low. The overall false positive prediction is

8.6%.

E. Physical Experiment

To evaluate the performance of the classifier trained with

simulated data in physical grasping scenarios, we did some

experiments with a Barrett hand on six everyday objects: a

pencil cup, a mug, a candle box, a paper wipe box, a canteen,

and a decorative rock as shown in Figure 3(a). Only the mug

belongs to a object class that is included in the simulated

training data. The pencil cup, the candle box, and the paper

wipe box are objects to some extent similar to the bottle

class in the training set. The canteen and the decorative rock

are two objects that are very different from other objects in

the training set.

The Barrett hand is equipped with four tactile pads, one for

the distal link of each finger and one for the palm, resulting

in a 96-sensor system. We place an object at a pre-defined

location on a table that is in front of the robot. During a

grasping experiment, the robot approaches the pre-defined

location with different spread angles. When the robot hits the

object, it stops approaching and closes the fingers. Tactile

data and joint angles are then collected for grasp stability

estimation using the classifier trained from Section IV-D.

The arm lifts up the object once a stable grasp is perceived.

A trial is considered to be a failure when the robot is not

able to grasp the object stably, i.e., an object falls out of the

hand when the robot tries to lift the object up.

110 trials were performed on six different objects, includ-

ing a canteen of different weight and surface material, and a

mug filled with different weights. In Table II, we summarize

the experiment results. Overall, the success rate is 84.6%

across all the objects in our experiments. The canteen without

its fabric cover and the decorative rock are two objects that

are very slippery and difficult to grasp. Compared to other

objects, there are much fewer stable grasps on the canteen

without its fabric cover and the decorative rock. In addition,

the decorative rock is convex and a very large proportion of

the surface is facing upwards to some extent, thus frictional

force becomes the main source of forces to overcome the

gravity during grasping, making the decorative rock an even

more difficult target. In Section IV-F, we will discuss in detail

the potential limitation of our method and the lessons we

learned from failure cases.

The classifier was trained based on some general assump-

tions. In the physical experiment, the general success rate

is reasonably good. Yet we also looked into two object

properties that, we believe, have potential impact on the

grasping performance: surface friction coefficient and mass.

1) Different surface friction coefficient: Since the quality

of the grasps in our training data is calculated considering the

closure properties of the GWS, surface friction coefficient is

an important factor in the learning process. In generating the

training data, we used a unit friction coefficient. Considering

different surface materials of objects in everyday life, this is

not ideal in practice. Although we see the grasping performed

reasonably well using this assumption, we are still interested

in seeing the influence brought by the difference in surface

materials. Thus, we performed a quantitative experiment on

grasping objects with different surface materials, mimicking

different frictional coefficients. In our experiment, we chose a

canteen with and without its fabric cover to mimic different

surfaces. The canteen is made of plastic surface and it is

slippery without a fabric cover. But with its fabric cover, the

surface friction coefficient can be considered much larger

than before. From Table II, we can see the grasping success

rate on the canteen with its fabric cover is higher than on

the canteen without its fabric cover. This also indicates that

designing tactile sensors with materials of higher friction

coefficient would benefit the grasping procedure.

2) Different weight: In the general experiment, the mass

of the objects vary from 0.1 to 0.5 kg. Since the torque each

motor in the Barrett hand can exert is limited, the mass of
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TABLE II

EXPERIMENT RESULTS ON SIX OBJECTS

Object Mass (kg) # of exp Success Success rate

Mug 0.43 - 0.93 30 28 93%

Paper wipe box 0.17 10 9 90%

Pencil cup 0.09 10 9 90%

Candle box 0.11 10 9 90%

Decorative Rock 0.28 10 6 60%

Canteen 0.5 - 0.75 40 32 80%

Total 0.09 - 0.93 110 93 84.6%

TABLE III

GRASP A CANTEEN WITH DIFFERENT SURFACE AND WEIGHT

Object half full (0.50 kg) full (0.75 kg)

canteen w/o cover 90% 60%

canteen w/ cover 100% 70%

an object will influence the grasping performance. To see

how much the influence could be, we did some experiments

with two selected objects: a canteen filled with different

amount of water and a mug filled with different weights.

The performance on grasping the canteen is summarized

in Table III and the performance on grasping the mug is

summarized in Table IV. From Table III, we can see the

grasping performance on the canteen decreases as the weight

increases. This indicates that when the weight of the object

increases the grasping performance decreases. But we did not

see this tendency on grasping the mug. We think one major

reason is that the surface friction between the mug and the

tactile sensor is very big and the frictional force is sufficient

to overcome the influence brought by the increase in the

weight. This result also indicates that the influence brought

by the weight and the surface friction can be coupled.

F. Discussion

Based on our experiments, we discuss our method and its

potential limitation further as follows:

1) Surface Normal: We made an assumption that the

contact normals can be approximated by the surface normals

of the fingertip and the palm. For many cases, this is

reasonable considering the local contact surface is almost

flat. However, when a contact is right on an edge or a

curved area, the contact normals cannot be determined easily

from the surface normals. For a contact on an edge, the

normal could range between the normals of the two sides

of the edge. for a contact on a curved surface, the normals

can vary among all the surface normals. In these situations,

TABLE IV

GRASP A MUG WITH DIFFERENT WEIGHT

Object 0.43 kg 0.68 kg 0.93 kg

mug 100% 80% 100%

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Physical experiments. Figure 3(a) shows the six objects in the
experiments: (left to right: pencil cup, mug, candle box, paper wipe box,
canteen, decorative rock). Figure 3(b) and 3(c) show two grasps that have
very similar set of contacts in hand’s coordinate system while they have
different true stability measurements. Figure 3(d) shows a grasp that is
falsely classified as an unstable grasp due to incomplete coverage of the
tactile sensors. Figure 3(e) is a false positive case resulted from mis-
perceived tactile contacts while two fingers touch each other. Figure 3(f)
shows a grasp that is falsely predicted as an unstable grasp due to the lack
of knowledge of the object surface friction coefficient. Figure 3(g) to 3(i)
show three stable grasps on three different objects in the experiment.

our assumption does not hold and this could contribute to

false positive predictions. One example is in Figure 3(b).

Compared with the grasp in Figure 3(c), the grasp in Figure

3(b) contains almost the same set of contacts in the hand’s

coordinate system. So, for the SVM, it would classify them

as the same in stability. However, the contacts of the grasp

in Figure 3(b) exist between the curved edge of the finger

tip and the curved surface of the canteen while the grasp

in Figure 3(c) has its contacts more on the paralleled sides

of the canteen, making the former grasp unstable and the

latter stable. We think it is beneficial to have tactile sensors

with smaller sizes cover the edges so that we can distinguish

contacts on the edge or to approximate the force normal at

a contact directly from the sensor values around the contact.

2) Sensor Coverage: In our experiment, we see that the

tactile pads do not cover all the places that could have

contacts. Due to an incomplete coverage, some contacts of
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a grasp that actually contribute to the grasp stability may

not be captured. When this situation happens, our method

could only take into consideration the contacts captured for

the stability analysis. Thus, incomplete input information

would increase the possibility of a false prediction. In our

physical experiment, we found this contributed heavily to

false negative predictions. Figure 3(d) shows a grasp on a

pencil cup which is relatively small compared to the Barrett

hand. This grasp is a stable grasp, but the classifier did

not predict it as a stable one. The reason is that only the

contacts on the finger tips are perceived and those contacts

on the proximal links of the fingers are not captured. In fact,

incomplete tactile coverage on the hand surface is also one of

the primary differences between a human hand and a robot

hand. We think a design of a tactile system with a more

comprehensive coverage would alleviate this issue.

3) Finger Collision: When fingers touch each other, tac-

tile contacts may mislead the classifier in stability estimation.

Figure 3(e) shows one such grasp. In this grasp, only finger

II and finger III were touching the canteen. Finger I touches

finger III and the tactile pads perceived this contact. Thus,

the classifier was confused and mistakenly considered this

grasp as a stable one. To alleviate this issue, we believe a

self-collision checking is helpful and necessary.

4) Surface Friction: We assumed a surface friction co-

efficient as 1.0 in Section IV-B. This turned out to be

a limit of our method across different kinds of surfaces.

In our physical experiment, we saw some false negative

predictions resulted from this factor. In Figure 3(f), we show

one example grasp that is classified as unstable. In reality,

it is a stable grasp. One reason for the false prediction

is the actual surface friction coefficient is more than what

is assumed in our simulation. To alleviate this issue, we

think one approach could be to use classifiers trained with

different datasets generated by different friction coefficients

and probabilistically unify them.

5) Sensor Sensitivity: In our experiment, we found that

the sensitivity of the tactile sensors is also a critical factor in

the final grasping performance. We observed that due to the

lower sensitivity of the tactile sensors, signal values at some

valid contacts cannot exceed the sensor noise range. Thus

these contacts cannot be detected and captured, resulting

in a false negative prediction. We believe that the grasping

performance will benefit a lot from more sensitive sensors.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a model for predicting the

stability of a robotic grasp using only tactile and kine-

matic information. This model describes the contact spatial

distribution within the hand’s local coordinate system. As

our ground truth criterion, we considered both the epsilon

quality and the volume quality at the same time. This

combined rule gives a more comprehensive evaluation of

the stability of a grasp. Physical experiments were done

and analyzed to evaluate the generalization capability of the

classifier trained based on simulation data. Currently, we are

working on designing a control algorithm to adjust the hand

pose during the autonomous exploration procedure for stable

grasps instead of randomly re-orienting the palm to approach

the object and shaping the spread joint.
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