
SQUIRL: Robust and Efficient Learning from Video Demonstration of
Long-Horizon Robotic Manipulation Tasks

Bohan Wu, Feng Xu, Zhanpeng He, Abhi Gupta, and Peter K. Allen

Abstract— Recent advances in deep reinforcement learning
(RL) have demonstrated its potential to learn complex robotic
manipulation tasks. However, RL still requires the robot to
collect a large amount of real-world experience. To address
this problem, recent works have proposed learning from expert
demonstrations (LfD), particularly via inverse reinforcement
learning (IRL), given its ability to achieve robust performance
with only a small number of expert demonstrations. Never-
theless, deploying IRL on real robots is still challenging due
to the large number of robot experiences it requires. This
paper aims to address this scalability challenge with a robust,
sample-efficient, and general meta-IRL algorithm, SQUIRL,
that performs a new but related long-horizon task robustly
given only a single video demonstration. First, this algorithm
bootstraps the learning of a task encoder and a task-conditioned
policy using behavioral cloning (BC). It then collects real-
robot experiences and bypasses reward learning by directly
recovering a Q-function from the combined robot and expert
trajectories. Next, this algorithm uses the learned Q-function
to re-evaluate all cumulative experiences collected by the robot
to improve the policy quickly. In the end, the policy performs
more robustly (90%+ success) than BC on new tasks while
requiring no experiences at test time. Finally, our real-robot and
simulated experiments demonstrate our algorithm’s generality
across different state spaces, action spaces, and vision-based
manipulation tasks, e.g., pick-pour-place and pick-carry-drop.

I. INTRODUCTION

We aspire robots to become generalists who acquire new
complex skills robustly and quickly. The robotic system,
whether planned or learned, needs to leverage its existing
knowledge to solve a new but related task in an efficient
yet high-performance manner. Thanks to recent advances
in machine learning and sim-to-real transfer mechanisms,
short-horizon robotic manipulation such as grasping has
improved in performance. However, many real-world robotic
manipulation tasks are long-horizon, diverse, and abundant
in volume. In the absence of a scalable and systematic way
of constructing simulation environments for a large number
of tasks, the robot needs to learn a new task directly in the
physical world from only a handful of trials, due to the high
cost of collecting real-robot trajectories.

We observe that real-world robotic skill acquisition can
become more sample-efficient in several important ways.
First, we notice that humans learn tasks quickly by watching
others perform similar tasks. Among many forms of task
representations such as rewards, goal images, and language
instructions, human demonstrations guide exploration effec-
tively and can lead to significant sample efficiency gains.
Furthermore, learning from video demonstrations sidesteps

This work is supported by NSF Grant CMMI-1734557. Authors are with
Columbia University Robotics Group, New York, NY, 10027, USA

Fig. 1: Learning from a single video demonstration of a long-
horizon manipulation task via Soft Q-functioned Meta-IRL
(SQUIRL). In the pick-pour-place example above, the robot needs
to approach, pick-up and carry the grey bottle, pour the iron pebble
inside the bottle into a specific container, and finally place the bottle
back on the table. During training, the robot is given a single video
demonstration for each of the 117 training tasks. After learning
from these 117 videos, the robot also practices 90 trajectories
in total on these tasks. From such combined expert and robot
trajectories, the robot learns the general skills of pouring robustly.
At test time, given a single video demonstration of pouring into a
new, unseen red container at a new position, the robot successfully
replicates this new task without the need for any experiences.

hand-designing a proper reward function for every new task.
In the case of a vision-based task, video demonstrations also
conveniently provide the same pixel state space for the robot.

In learning from demonstrations (LfD), the robot should
be sample-efficient across two dimensions – it should use
as few expert demonstrations (“demonstrations” hereafter)
as possible and require as few trajectories (trial-and-errors)
as possible on its own to learn a robust policy. Among
LfD methods, behavioral cloning (“BC” hereafter) is sample-
efficient but susceptible to compounding errors. Here, com-
pounding errors refer to the problem in which every time
a behavioral-cloned robot makes a small error, it makes a
larger error down the road as it drifts away from the expert
state distribution. In contrast, IRL alleviates compounding
errors by allowing the robot to try the tasks out in the
real world and measure its behavior against the expert.
However, due to the need for learning a reward function,
IRL can require many trajectories in the real world, while

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9720

Fig.2: Pick-Pour-Place
Robot Setup at Test Time.
Given an RGB image from
the top-down (black) or
45◦camera (also black), the
UR5-Seed robot is tasked
to approach and pick-up
the grey cylindrical bottle,
pour the iron pebble already
inside the bottle into a
specific container on the
table and finally place the
bottle back on the table.

BC does not require such robot experiences. We posit that
leveraging off-policy experiences is essential to making IRL
sample-efficient enough for real robots. Here, “off-policy
experiences” refer to the cumulative experiences that the
robot has collected thus far during training. In contrast, “on-
policy experiences” are the most recent experiences that the
robot has collected using its current policy. Humans leverage
lifelong, cumulative experiences to learn quickly at present.
Similarly, we envision robots to acquire new skills quickly
by learning from off-policy (i.e., cumulative) experiences.

Finally, many real-world tasks are related and share struc-
tures and knowledge that can be exploited to solve a new but
similar task later. For example, humans can quickly learn to
pick and place a new object after learning to pick and place
many known objects. Meta-learning, explicitly utilizing this
property, aims to learn a new but related task quickly if it
has already learned several similar tasks in the past.

With these motivations in mind, we introduce SQUIRL,
a meta-IRL algorithm that learns long-horizon tasks quickly
and robustly by learning from 1) video demonstrations, 2)
off-policy robot experiences, and 3) a set of related tasks.
Fig.1 explains this algorithm using the example of a set
of long-horizon pick-pour-place tasks, using the UR5-Seed
robot setup shown in Fig.2. In this task, we have the
containers (green, yellow, orange, and red), a cylindrical
bottle (grey), and an iron pebble inside the bottle. The robot
needs to first approach and pick-up the grey bottle, pour the
iron pebble inside the bottle into a specific container on the
table, and then finally place the bottle back on the table, as
shown in each row of images in Fig.1. At the beginning of
each task, the bottle is not yet in hand, but the iron pebble
is already in the bottle. At training time, the robot is given
a single video demonstration for each of the 117 pick-pour-
place tasks, as shown in the first two rows of images in Fig.1.
Every new combination of container positions represents a
different pick-pour-place task. Furthermore, the robot only
needs to pour into one of the containers in a single task.
Therefore, pouring into different containers also represents
different tasks. After learning from these 117 demonstrations,
the robot also practices 90 trajectories on these tasks in total.
From such a combination of expert and robot trajectories, the
robot learns the generic skills of pick-pour-place robustly. In
all 117 training tasks, only two of the four containers appear
on the table: the green and yellow containers, as shown in
the first two rows of images in Fig.1. The orange and red

containers are excluded during training and only appear at
test time, as shown in the last row of images in Fig.1. We
do so to evaluate our algorithm’s generalizability to unseen
containers at test time. As shown in the last row of images in
Fig.1, the robot successfully pours into a new container (red)
at test time, at a new container position never seen before
during training, without the need for any trials or practices.

To achieve such fast generalization to new tasks, our algo-
rithm learns a task encoder network and a task-conditioned
policy. The task encoder generates a low-dimensional (e.g.
32) task embedding vector that encodes task-specific infor-
mation. The policy network then learns to generalize to new
tasks by accepting this task embedding vector as input, thus
becoming “task-conditioned”. During training, our algorithm
first bootstraps learning by training both the task encoder and
the policy jointly via the BC loss. The robot then collects 10
trials across 10 tasks using the warmed-up policy and the task
encoder. Next, using the combined experiences of the expert
and the robot, our algorithm bypasses reward learning by
directly learning a task-conditioned Q-function. Using this
Q-function, our algorithm then reuses and re-evaluates all
cumulative experiences of the robot to improve the policy
quickly. This cycle repeats until the 90th trial. Finally, at test
time, the task encoder generates a new task embedding from
a single video demonstration of a new task. This embedding
is then inputted into the task-conditioned policy to solve
the new task without any experiences and yet in a high-
performance manner. In summary, our contributions are:

1) A robust meta-IRL algorithm that outperforms (90%+
success) its behavioral cloning counterpart in real-robot
and simulated vision-based long-horizon manipulation;

2) A practical Q-functioned IRL formulation that circum-
vents reward learning to improve sample efficiency;

3) An efficient method that leverages off-policy robot ex-
periences for training and requires no trials at test time;

4) A general approach that tackles various long-horizon
robotic manipulation tasks and works with both vision
and non-vision observations and different action spaces.

II. RELATED WORK

A. Inverse Reinforcement Learning (IRL) and Meta-IRL

IRL models another agent’s (typically the expert’s) re-
ward function, given its policy or observed behavior. Pre-
vious works have approached the IRL problem with max-
imum margin methods [1][2] and maximum entropy meth-
ods [3][4][5]. In particular, maximum entropy methods re-
cover a distribution of trajectories that have maximum en-
tropy among all distributions and match the demonstrated
policy’s behaviors. While these methods have shown promis-
ing results in continuous control problems, they suffer from
low sample efficiency due to the need for evaluating the
robot’s policy, which can be alleviated by meta-learning (i.e.,
meta-IRL). SMILe [6] and PEMIRL [7] are two meta-IRL
algorithms based on AIRL [8] that leverage a distribution
of tasks to learn a continuous task-embedding space to
encode task information and achieve fast adaptation to a

9721

new but similar task. Our work differs from [6][7] in four
crucial ways. First, our meta-IRL algorithm works with real
robots and image observations. Second, instead of a reward
function, we directly model a Q-function that the policy
can optimize, in order to increase IRL sample efficiency.
Although [4] hypothesizes that doing so will lead to action
with the highest short-term reward not having the highest
probability, we posit that short-term reward is less important
than the long-term consequences of an action. Third, we
train the task encoder with the behavioral cloning (BC)
gradient as opposed to the IRL gradient for stabler and
more efficient learning. Lastly, we bootstrap policy and task
encoder learning using BC before training via meta-IRL.

B. Real-robot Learning from Demonstrations (LfD)

Our work is related to real-robot LfD [9], such
as [10][11][12]. In particular, [13] developed IRL on real
robots without learning from raw pixels. Other works (e.g.,
[14][15][16][17]) used BC for real-robot LfD. Another work
[18] developed goal-conditioned BC on a simulated robot
to learn long-horizon tasks by playing with objects in the
scene. While enjoying efficient learning by casting imitation
learning into a supervised learning problem, BC suffers from
the covariate shift between the train and test data. In com-
parison, IRL achieves robust performance by modeling the
state-action joint distribution instead of the conditional action
distribution in BC [19]. Different from previous works, our
meta-IRL algorithm works on real-robot vision-based tasks,
and its Q-functioned IRL policy gradient can be directly
combined with the BC gradient signal to approach both the
sample efficiency of BC and the robustness of IRL.

C. One-shot Meta-imitation Learning on Real Robots

Our algorithm attempts to enable robots to quickly and
robustly imitate a single unseen video demonstration by
learning from a distribution of tasks with shared structure,
i.e., one-shot robot meta-imitation learning. For example,
[20] combines gradient-based meta-learning and BC on a
real robot to learn quickly from video demonstrations. [21]
then extends [20] to enable robots to learn from human-arm
demonstrations directly. [22] then improves [21] to meta-
imitation-learn multi-stage real-robot visuomotor tasks in a
hierarchical manner. However, constrained by the covariate
shift problem of BC, these works show limited task perfor-
mance (e.g., around 50% success rate for the training tasks).
In contrast, our algorithm learns a vision-based manipulation
task robustly (90%+ success rates) and efficiently (117
videos, 90 trials) by utilizing the generalization ability of task
embeddings [23] and a novel Q-functioned IRL formulation.

III. PRELIMINARIES

A. Off-policy Reinforcement Learning via Soft Actor-Critic

Standard RL models a task M as an MDP defined by a
state space S, an initial state distribution ρ0 ∈ Π(S), an
action space A, a reward function R : S × A → R, a
dynamics model T : S × A → Π(S), a discount factor
γ ∈ [0, 1), and a horizon H . Here, Π(·) defines a probability

distribution over a set. The robot acts according to stochastic
policy π : S → Π(A), which specifies action probabilities
for each s. Each policy π has a corresponding Qπ : S×A →
R function that defines the expected discounted cumulative
reward for taking an action a from s and following π onward.

Off-policy RL, particularly Soft Actor-Critic (SAC) [24],
reuses historical experiences to improve learning sample
efficiency by recovering a “soft” Q-function estimator Qθ. A
policy can then be learned by minimizing the KL divergence
between the policy distribution and the exponential-Q distri-
bution: π∗ = arg minπ∈ΠDKL

(
π(a | s) ‖ exp(Q

πold
θ (s,a))

Z(s)

)
B. Timestep-centric IRL as Adversarial Imitation Learning

The purpose of IRL is to learn the energy function fθ
implicit in the provided expert demonstrations and use fθ
to learn a policy that robustly matches the expert perfor-
mance. In particular, timestep-centric IRL aims to recover
an energy function fθ(s, a) to rationalize and match the
demonstrated expert’s action conditional distribution: pθ(a |
s) = exp(fθ(s,a))

Zθ
∝ exp(fθ(s, a)) = pθ(a | s), where

Zθ is the partition function, an integral over all possible
actions given state s. In other words, IRL minimizes the
KL divergence between the actual and predicted expert
conditional action distributions: πE(a | s) and pθ(a | s).

Adversarial IRL [8][25] provides a sampling-based ap-
proximation to MaxEntIRL [4] in an adversarial manner.
Specifically, AIRL [8] learns a generative policy πψ and a
binary discriminator Dθ derived from energy function fθ:

Dθ(s, a) = P ((s, a) is generated by expert)

=
pθ(a | s)

pθ(a | s) + πψ(a | s)
=

exp(fθ(s, a))

exp(fθ(s, a)) + πψ(a | s)
(1)

and θ is trained to distinguish state-action pairs sampled from
the expert vs. the policy, using binary cross entropy loss:

LIRL = −E(s,a)∼πψ,πE [y(s, a) log(Dθ(s, a))

+ (1− y(s, a)) log(1−Dθ(s, a))] (2)

where y(s, a) = 1{(s, a) is generated by expert πE}.
Meanwhile, the policy is trained to maximize the Max-

EntIRL Objective [4], or equivalently, to match the expert’s
state-action joint distribution via reverse KL divergence [19].

C. One-shot Meta-imitation Learning from A Single Video

In one-shot meta-imitation learning, the robot is trained to
solve a large number of tasks drawn from a task distribution
p(M). The total number of tasks in this task distribution
can be finite or infinite. Each imitation taskMi

train consists
of a single video demonstration DiπE . During training, the
robot can also generate limited practice trajectories (e.g., 90).
For example, in the Pick-Pour-Place experiment in Fig.1,
the robot receives a single video demonstration for each
of the 117 tasks. Each task is characterized by a different
combination of container positions, or pouring into the green
vs. the yellow container. At test time, the robot receives
a single video of a new task Mi

test drawn from p(M).
For example, a new Pick-Pour-Place test task can be a new

9722

combination of container positions or pouring into a new
container (e.g., the red or orange container). The robot then
needs to solve this task the first time without experiences.

D. Embedding-based Meta-learning

Embedding-based meta-learning [7][23] learns a task-
specific embedding vector z that contains task-level ab-
straction to adapt to a new but related task quickly.
This method aims to learn a task-conditioned policy
π(a|s, z) that maximizes task-conditioned expected returns:
maxπ E(st,at)∼π,ρ0 [

∑T
t=1 r(st, at|c) + αH(π(at|st, c))], by

learning an embedding space Z that maximizes the mutual
information between z and task context c. The goal is to
make this learned embedding space generalizable to new
tasks so that at test time, the policy can quickly adapt to
unseen tasks with no or few practices. A key advantage of
embedding-based meta-learning is the ability to learn from
off-policy experiences. However, current methods are mostly
if not only demonstrated in non-vision tasks in simulation.

IV. MATHEMATICAL FORMULATION FOR SQUIRL

A. SQUIRL: Timestep-centric IRL as Soft Q-Learning

Previous works in timestep-centric IRL such as [6][7][8]
have interpreted the energy function fθ in Eq.1 as a reward
function rθ and later recover a Q or advantage function
based on reward rθ for policy improvement. To improve IRL
sample efficiency, we propose to bypass this reward learning
and directly interpret fθ(s, a) as the soft Q-function [24]
Qπmixθ (s, a). This soft Q-function models the expert’s be-
havior as maximizing both the Q-value and its entropy
(i.e., randomness) simultaneously. It also encourages the
robot to explore the real world to imitate the expert more
robustly. Under this formulation, approximating the expert’s
conditional action distribution is equivalent to recovering a
soft Q-function under which the expert is soft Q-optimal:

arg min
θ

DKL

(
πE(a | s) ‖ pθ(a | s)

)
= arg max

θ
Ea∼πE(a|s)[Q

πmix
θ (s, a)]− logZθ (3)

Eq.3 rationalizes the expert behavior intuitively because the
expert should be optimal with respect to the cumulative
reward [3], not the immediate reward. Here, Qπmixθ is under a
mixture policy πmix between the robot and expert’s policies.

B. SQUIRL as Expert Imitation and Adversarial Learning

Under SQUIRL, the policy learning objective (Eq.4) is
also equivalent (derivations on website) to matching: 1) the
exponential-Q distribution of the discriminator θ (Eq.5), 2)
the generator’s objective in Generative Adversarial Networks
(GANs) [26] (Eq.6), and 3) the joint state-action distribution
of expert [19] (Eq.7): π∗ = arg minπ∈Π LRL(π), where

LRL(π) = DKL

(
πψ(a | s) ‖

expQπmixθ (s, a)

Z(s)

)
(4)

= DKL

(
πψ(a | s) ‖ pθ(a | s)

)
(5)

= E(s,a)∼πmix [log(1−Dθ(s, a))− log(Dθ(s, a))] (6)

= DKL

(
ρπψ (s, a) ‖ ρπE (s, a)

)
(7)

Meanwhile, the discriminator θ is matching its Q-function
to the log-distribution of the expert’s conditional action dis-
tribution (Section III-B). Therefore, when this Q-function is
optimal: Qπmixθ = Qπmixθ∗ , the robot’s policy objective (Eq.4)
is also matching the expert’s conditional action distribution:

ψ∗ = arg min
ψ

Eρπmix (s)[DKL

(
πψ(a | s) ‖ πE(a | s)

)
] (8)

C. Mitigating Compounding Errors in Behavioral Cloning

While BC attempts to learn a policy that also matches
the expert’s conditional action distribution [19][27], the
fundamental difference is that the KL-divergence in BC’s
case is computed under the expert’s narrow state distribution
ρπE (s): ψ∗BC = arg minψ EρπE (s)[DKL

(
πE(a | s) ‖ πψ(a |

s)
)
]. In contrast, ours (Eq.8) is computed under ρπmix(s): the

state distribution of the combined cumulative experience of
the robot and the expert, which is a much wider distribution
than the expert distribution. We hypothesize that this teaches
the robot error-correcting actions from the bad states of this
wider distribution to become less susceptible to compound-
ing errors than BC, as experimentally tested in Section VI.

V. SQUIRL: SOFT Q-FUNCTIONED META-IRL

Shown in Fig.3, our algorithm learns three neural networks
jointly – a task encoder (yellow), a task-conditioned policy
(orange), and a task-conditioned soft Q-function (green):

1) Ψφ(c): a task encoder that encodes a sampled batch of
C (e.g. 64) expert state-action pairs c = {si1:C , a

i
1:C}

from a task i into a single 32-dim embedding vector
zi ∈ R32 (by computing the mean vector across 64
embeddings) that enables generalization to new tasks.
This batch of state-action pairs is randomly sampled
and thus does not encode time information. Both the
policy and the Q-function accept vector zi as input.

2) πψ(s, zi): a task-conditioned policy the robot uses to
perform a task i given state s and the task embedding
vector zi ∈ R32 outputted by the task encoder Ψφ(c).

3) Qθ(s, a, zi): a task-conditioned soft Q-function used
to train the policy πψ(s, zi) to more robustly mimic the
expert’s behavior for the robotic manipulation task i.

To begin, the robot is given an expert trajectory of state-
action pairs DπE for each of the 117 training tasks. The
robot first uses these expert trajectories to bootstrap training
for both its policy πψ , and the task encoder Ψφ via behavioral
cloning (Eq.9). This way, the robot can distinguish the
train tasks better and learn more quickly in the real world.
Next, the robot generates 10 trials (state-action pairs) Dπψ
in the physical world (not simulation) using its warmed-
up policy and task encoder. Then, the robot uses both the
expert’s and its state-action pairs to train a discriminator θ.
This discriminator classifies which state-action pairs come
from the expert πE vs. the robot πψ . At first, the robot is
distinctively worse than the expert at performing the tasks.
This makes it easy for the discriminator to classify. By doing
so, the discriminator learns a Q-function Qπmixθ using Eq.3.

Using the learned Q-function Qπmixθ , the robot trains its
policy πψ via Eq.4. Meanwhile, the robot also has the option

9723

Fig. 3: SQUIRL: Soft Q-functioned Meta-IRL. To begin, our algorithm bootstraps learning for the policy (orange) and the task encoder
(yellow) via behavioral cloning (the left third of Fig.3). Next, our algorithm uses the warmed-up policy and task encoder to generate 10
trials in the physical world (not in simulation). Using the combined expert and robot trajectories, our algorithm learns a task-conditioned
soft Q-function (green) that rationalizes the expert’s behaviors as maximizing both cumulative reward and entropy (i.e., randomness).
Using this Q-function, our algorithm then quickly improves the policy using all cumulative robot and expert timesteps. This cycle repeats
until convergence, totaling 90 trials (the middle third of Fig.3). Finally, at test time (the right third Fig.3), our algorithm generates a new
embedding z for the new task, and inputs this embedding into the task-conditioned policy to solve the new task without any practices.

to continue updating its task-conditioned policy and task
encoder via behavioral cloning (Eq.9). Since training the
policy via Eq.4 is equivalent to indirectly imitating the expert
(Eq.7 and 8), as derived in Section IV-B, the trajectories
generated by the policy gradually become more similar to the
expert. This makes the state-action pairs more difficult for the
discriminator to classify. This difficulty, in turn, forces the
discriminator to learn a more precise Q-function, which then
encourages the policy to mimic the expert even more closely.
This cycle repeats until convergence (90 trials in total), at
which point: 1) the policy matches the expert performance, 2)
the task encoder learns to generalize to new tasks, and 3) the
discriminator continues to struggle to distinguish state-action
pairs correctly despite having learned an accurate Q-function.

A. Rationale for Bypassing Reward Learning via SQUIRL

SQUIRL learns a Q-function without rewards because
1) the policy is ultimately trained by the Q-function, not
rewards, thus bypassing reward learning improves IRL sam-
ple efficiency; and 2) circumventing reward learning avoids
off-policy Q-learning from a constantly changing reward
function (especially in meta-IRL where rewards might also
be task-conditioned) and stabilizes training empirically.

B. Architectures for Policy, Task Encoder, and Q-function

For all non-vision tasks, we parameterize πψ,Ψφ, Qθ with
five fully-connected (FC) layers. For vision tasks, we use a 5-
layer CNN followed by a spatial-softmax activation layer for
the RGB image. This activation vector is then concatenated
with the non-vision input vector and together passed through
five FC layers. Our algorithm is general and works with
many other network architectures, state, and action spaces.

C. Incorporating BC to Bootstrap and Accelerate Learning

Since our algorithm’s IRL objective (Eq.8) is compatible
with BC, as explained in Section IV-C, our algorithm can
jointly be trained with BC to stabilize and accelerate learning
without conflicting gradient issues (line 13-14 in Alg. 1):

LBC = E(s,a)∼πE [‖πψ(s,Ψφ(c))− a‖2] (9)

This, combined with the off-policy nature of our algorithm,
also allows the robot to bootstrap learning by first “pre-
training” via BC (Eq.9) using the expert demonstrations,
before improving performance further via meta-IRL training.

D. Using Expert Demonstration as Both the Input Task
Context Variables and Training Signal for the Task Encoder

Learning robust task embeddings enables robots to gener-
alize to new tasks quickly [23]. To this end, our algorithm
proposes to use 64 expert timesteps as the input task context
variable c into the task encoder, as opposed to 64 robot
timesteps. This is because context variables should explore
the task and environment sufficiently well to expose the key
information of the task, and expert demonstration timesteps
are an ideal candidate compared to the timesteps from the
robot’s suboptimal policy. As a result, the context variable
c input into the task encoder only includes the states and
actions of the expert, but not the rewards or the next states.

In addition, we choose the BC loss LBC in Eq.9 as the
training loss for learning the task encoder Ψφ. This BC loss
is stable since the expert timesteps are fixed. In contrast, the
IRL loss LIRL (Eq.2) and the policy loss LRL (Eq.4) are less
stable because the training data distribution for both losses
are non-stationary. This design choice also allows us to learn
a robust task embeddings first via BC pre-training before
performing meta-IRL training via SQUIRL. We empirically
observe that such pre-training can improve the training stabil-
ity and the sample efficiency of SQUIRL, but the final policy
performance is similar with or without BC pre-training. In
summary, our algorithm is detailed in Algorithm 1 (train)
and Algorithm 2 (test), with hyperparameters detailed here1.

VI. EXPERIMENTS AND RESULTS ANALYSIS

We evaluate the generality and robustness of our algo-
rithm across long-horizon vision and non-vision tasks with

1Major hyperparameters in Algorithm 1 and 2. SAC policy gradient batch
size B: 1024 (non-vision), 128 (vision); all learning rates: 3e−4; starting
SAC alpha: 1e−5; SAC target entropy: −300; discount rate γ: 0.99

9724

Approach Box Lower to Box Grasp Box Pick up Box Carry Box Drop Box
Fig. 4: Pick-Carry-Drop Experiment. The robot needs to approach, lower to, grasp, pick-up, carry, and drop the box to solve the task.

Algorithm 1 SQUIRL: Soft Q-functioned Meta-IRL (Train)
Input: One expert video demonstration of state-action

pairs DiπE = {si1:H , a
i
1:H} for each train task i = 1 : n,

where H is the task horizon
1: Initialize soft Q-function Qθ, policy πψ , task encoder

Ψφ, and an empty buffer of off-policy robot trajectories
Diπψ ← {} for each training task i = 1 : n

2: Warm-up policy and task encoder via LBC (Eq.9)
3: while not converged do
4: Sample a batch of m indices {i1:m} from train tasks
5: for i = i1:m

6: Infer task embedding zi = RZ ← Ψφ(c), where
7: c = {si1:C , a

i
1:C} ∼ DiπE

8: Generate a robot trajectory of state-action pairs
9: Diπψ = {si1:H , a

i
1:H} from task i using πψ, zi

10: Diπψ ← D
i
πψ
∪ Diπψ end for

11: for j = 1 : J do Re-sample {i1:m};
θ ← θ −∇θLIRL (Eq.2) using a combined batch
of B robot and expert timesteps: Diπψ ∪ D

i

πE , zi,

where Diπψ ,D
i

πE ∼ D
i
πψ
,DiπE , i = {i1:m} end for

12: for k = 1 : K
13: Re-sample {i1:m}; if necessary then {ψ, φ} ←

{ψ, φ} − ∇ψ,φLBC (Eq.9) with B expert
timesteps DiπE ∼ D

i
πE , z

i, i = {i1:m} end if
14: ψ ← ψ −∇ψLRL (Eq.4) using a combined batch

of B robot and expert timesteps: Diπψ ∪ D
i

πE , zi

where Diπψ ,D
i

πE ∼ D
i
πψ
,DiπE , i = {i1:m} end for

15: end while
16: return soft Q-function Qθ, policy πψ , task encoder Ψφ

Algorithm 2 SQUIRL: Soft Q-functioned Meta-IRL (Test)
Input: πψ , Ψφ, Qθ, and a expert video demo DiπE =

{si1:H , ai1:H} from a new task i
1: Infer task embedding vector zi = RZ ← Ψφ(c), where
c = {si1:C , a

i
1:C} ∼ DiπE

2: Rollout robot trajectory in the real world using πψ , zi

continuous state and action spaces in both simulation (Pick-
Carry-Drop, a horizon of 1024 timesteps, 30 train tasks)
and real-world (Pick-Pour-Place, a horizon of 100 timesteps,
117 train tasks). There is only a single expert demonstration
for each of the train or test tasks. We compare with the
PEARL-BC baseline, which is the behavioral cloning version
of PEARL [23]. Evaluation: We evaluate real-robot and sim-
ulation experiments on 50 and 500 trials respectively across
50 seen and unseen tasks. We report mean and standard
deviation (“stdev” hereafter). The performance difference

between different experiments is statistically significant if the
difference in mean is at least either standard deviation away.
Videos, derivations and intuitions are elaborated further at
http://crlab.cs.columbia.edu/squirl.

A. Simulation Experiment: Pick-Carry-Drop

Description. We modify the planar Stacker task [28] to
create “Pick-Carry-Drop”. Shown in Fig.4, a robot is tasked
to approach, pick, carry, and drop the black box into the stack
marked in green. The task is successful if the box is dropped
into the stack within 1024 timesteps, and failed otherwise.

State Space. We evaluate our algorithm on both the vision
and the non-vision version of the task, to demonstrate that
SQUIRL is general across different state space modalities.
The state space for the vision version includes 1) the joint
angles and velocities for its 5-DOFs, 2) a one-hot vector
indicating the current stage of the task, and 3) an RGB image
shown in Fig.4. The non-vision version’s state space replaces
the RGB image with the position of the black box.

Action Space. The robot controls its 5-DOF joint torques.
Task Definition. There are a total of 30 training tasks

in this experiment, each corresponding to a different drop
location: x ∈ {−0.15,−0.14, . . . , 0.14}. During test time,
we randomly sample a new, real-valued drop location from
the maximum valid range: x ∈ [−0.25, 0.25]. The green drop
location is invisible in both the vision and the non-vision
version of the task. Therefore, the robot needs to infer the
green drop location (i.e., task information) solely from the
provided expert video demonstration. On the other hand, the
starting pose of the robot and the location of the black box
are all initialized randomly at the beginning of each task.

Robot Trials. The robot uses 150 training trials in total.
Expert Demonstration. We reinforcement-learned an ex-

pert policy from scratch to provide expert video demonstra-
tions. The reward function used to train the expert policy
comprises of six stages, each stage with a reward of 10.
Designing this reward function has taken significant human
effort, which exhibits the value of directly learning from
video demonstrations.

TABLE I: Pick-Carry-Drop Results (% Drop Success±Stdev)

Tasks Seen Unseen Seen Unseen
Vision Non-Vision

SQUIRL (BC + IRL) 95.8±1.7 95.0±1.5 97.3±3.0 96.9±2.0
Baseline (PEARL-BC) 77.8±1.6 76.5±0.7 90.8±2.5 89.5±1.6

Ablation: No BC Joint Training or BC Pre-training
SQUIRL (IRL Only) 93.8±1.8 93.2±1.6 94.7±1.7 93.9±1.4

Simulation Results and Analysis. As shown in Table I,
our algorithm, “SQUIRL (BC + IRL)”, pre-trains via BC and
then trains the policy using both the BC loss (Eq.9) and the

9725

Approach Bottle Grasp Bottle Carry Bottle Pour Orange Cup Carry Bottle Place Bottle
Fig. 5: Pick-Pour-Place at Test Time. To solve this task, the robot needs to first approach, grasp and carry the grey bottle, pour the

iron pebble inside the bottle into a specific container, and carry and place the bottle back on the table. At the beginning of each task, the
bottle is not in hand, and but the iron pebble is already in the bottle. Top row: top-down camera images. Bottom row: 45◦camera images.

IRL policy gradient loss (Eq.4). It statistically significantly
outperforms the PEARL-BC baseline in both the vision
(95.8%±1.7 vs. 77.8%±1.6) and non-vision (97.3%±3.0 vs.
90.8%±2.5) version of the task for seen tasks. For unseen
tasks, we observed similar outperformance (95.0%±1.5 vs.
76.5%±0.7 in the vision case and 96.9%±2.0 vs. 89.5%±1.6
in the non-vision case). Qualitatively, in the PEARL-BC’s
case, the robot sometimes misses the drop location as it
attempts to drop the box or fails to pick up the box when the
box gets stuck by the walls of the stack (kindly see website).
The performance drop of the baseline from the non-vision
version (90.8%±2.5 and 89.5%±1.6 for seen and unseen
tasks) to the vision version (77.8%±1.6 and 76.5%±0.7
for seen and unseen tasks) is mainly because vision-based
manipulation tends to suffer from larger compounding er-
rors. Nevertheless, as evident in the statistical similarities
between seen and unseen tasks for SQUIRL (95.8%±1.7
vs. 95.0%±1.5 for vision) and PEARL-BC (77.8%±1.6 vs.
76.5%±0.7 for vision), both algorithms can generalize to
unseen tasks, due to the generalizability of task embeddings.

Ablation: IRL Gradient Only. To compare the perfor-
mance contribution of SQUIRL’s meta-IRL core training
procedure directly against PEARL-BC, we created “SQUIRL
(IRL only)”, which trains the policy using only the policy
gradient loss in Eq.4 (no BC joint training or pre-training).
This ablated version still outperforms the PEARL-BC base-
line (93.8%±1.8 vs. 77.8%±1.6 for seen vision tasks,
93.2%±1.6 vs. 76.5%±0.7 for unseen vision tasks). Never-
theless, by combining BC and IRL gradients, “SQUIRL (BC
+ IRL)” improves performance slightly further (95.8%±1.7
and 95.0%±1.5). Intuitively, while BC only matches the
expert’s conditional action distribution under the expert’s
state distribution, BC’s supervised learning signal is stabler
than IRL. Joint training with BC and IRL gradients can
be interpreted as combining the stability of BC and the
robustness of Q-functioned IRL, by matching not only the
conditional action distribution of the expert under the broader
expert-robot mixture state distribution (Eq.8), but also the
expert’s joint state-action distribution (Eq.7) for robustness.

B. Real-Robot Experiment: Pick-Pour-Place
Description. We evaluated our algorithm on the UR5-Seed

robot (Fig.2) to perform a set of long-horizon pick-pour-
place tasks. As shown in Fig.2, in each task, there is a grey

cylindrical bottle, an iron pebble that is already in the bottle,
and more than one container on the table. The robot is tasked
to approach and pick-up the grey bottle, pour the iron pebble
into a specific container, and place the bottle back on the
table. The task is a success only if the pebble is poured into
the correct container and the bottle is placed upright on the
table within H = 100 timesteps, and a failure otherwise.

State Space. The state space contains a top-down or
45◦camera’s RGB image (Fig.5), and 2 binary indicators for
whether the robot has poured or closed the hand, respectively.

Action Space. The action space includes the Cartesian
unit directional vector for the end-effector movement. During
each timestep, the robot can adjust the end-effector by 2cm
along any 3D direction. The action space also includes a
binary indicator to control the arm vs. the hand and a trinary
indicator to close, open, or rotate the hand for pouring.

Orthogonality to State and Action Representions.
While Pick-Pour-Place can be tackled by first localizing
the correct container via object detection (alternative state
space) and then executing motion-planning trajectories to
pour (alternative action space), our algorithm is general
across and orthogonal to alternative state and action spaces.

Task Definition. As shown in each row of images in
Fig.1, each task is defined by the positions and colors of
the containers, and by the correct container to pour into.
There are always only the green and yellow containers in
the 117 train tasks. 25 of the 50 test tasks have the green
and yellow containers at new positions. The remaining 25
test tasks add the red and the orange unseen containers, or
either. Since there is always more than one container in the
RGB image, the robot will not know which container to pour
into without the expert demonstration. Therefore, the robot
needs to depend solely on the task encoder’s ability to extract
the correct task information from the expert demonstration.

Robot Trials. The robot collects 90 training trials in total.
Expert Demonstration. We collect demonstrations via

teleoperation using a Flock of Birds 6D Pose Tracker. Using
the human wrist pose detected by the sensor in real-time,
we move, open, close, or rotate the robot hand for pouring.
We collected 117 video demonstrations across 117 tasks for
training. It takes 1-2 minutes to collect one demonstration.

Real-robot Results and Analysis. As shown in Table II,
our algorithm outperforms the PEARL-BC baseline sta-

9726

TABLE II: Pick-Pour-Place Results (% Pour Success±Stdev)
Tasks RGB Image Seen Unseen

SQUIRL (BC + IRL)
Top-Down (90◦)

92.0±4.5 90.0±7.1
Baseline (PEARL-BC) 70.0±7.1 68.0±11.0
Baseline (Standard-BC) 60.0±10.0 56.0±11.4
SQUIRL (BC + IRL) 45◦ (Ablation) 90.0±7.1 88.0±8.4

tistically significantly in both seen tasks (92.0%±4.5 vs.
70.0%±7.1) and unseen tasks (90.0%±7.1 vs. 68.0%±11.0).
This observed outperformance mainly originates from our
soft Q-functioned IRL formulation, which forces the robot
to imitate the expert under a much wider state distribution
provided by the expert-robot mixture trajectories, instead of
the narrow state distribution of the expert demonstrations.
This helps reduce compounding errors during task execution.
The low performance of the PEARL-BC baseline is mainly
due to additional compounding errors induced by real-
world sensory noises such as unstable lighting conditions
and small perturbation to camera positions. Qualitatively,
the PEARL-BC baseline sometimes pours into the wrong
container, misses the target container by a few centimeters, or
moves past the target container while failing to pour in time
(kindly see website for examples). Nevertheless, from the
statistical similarity between seen and unseen tasks for both
our algorithm (92.0%±4.5 vs. 90.0%±7.1) and PEARL-BC
(70.0%±7.1 vs. 68.0%±11.0), we see that the learned task
encoder is still effectively generalizing to a new, related task.

Comparison to the “Standard-BC” Baseline. We also
compared to “Standard-BC” (60.0%±10.0 and 56.0%±11.4
for seen and unseen tasks), which performs no meta-learning
and learns every train or test task independently from scratch
via BC. As a result, the neural network overfits to the single
demonstration and fails to generalize to real-world sensory
(camera) noises at test time. Note that Standard-BC’s unseen-
task performance is slightly lower than seen tasks since the
unseen tasks are more challenging with at most 4 containers
on the table, compared to only 2 containers in seen tasks.

Ablation: Non-top-down Camera. We also tested our al-
gorithm with a 45◦ RGB image (90.0%±7.1 and 88.0%±8.4
for seen and unseen tasks) against a top-down RGB image
(92.0%±4.5 and 90.0%±7.1 for seen and unseen tasks). The
statistical similarity between the two shows that SQUIRL is
general and can accept a non-top-down RGB input image.

VII. CONCLUSION

We introduced SQUIRL, a robust, efficient, and general
Soft Q-functioned meta-IRL algorithm, towards enabling
robots to learn from limited expert (one per task) and robot
(90 in total) trajectories. This algorithm is statistically signif-
icantly more robust than behavioral cloning and requires no
experiences at test time. Finally, this general algorithm has
been tested to work with various long-horizon manipulation
tasks, and across vision and non-vision state and action
spaces. In the future, we will extend this algorithm to learn
from direct human-arm demonstrations instead of teleop-
eration. This will lower the cost of collecting real-world
expert demonstrations further. We also aim to incorporate
hierarchical learning into SQUIRL to solve much longer
horizon manipulation tasks by reusing low-level subpolicies.

REFERENCES

[1] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” International Conference on Machine Learning, 2004.

[2] N. Ratliff, B. Andrew, and M. Zinkevich, “Maximum margin plan-
ning,” International Conference on Machine Learning (ICML), 2006.

[3] B. Ziebart, “Modeling purposeful adaptive behavior with the principle
of maximum causal entropy,” PhD Thesis, 2010.

[4] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI, 2008.

[5] A. Boularias, J. Kober, and J. Peters, “Relative entropy inverse rein-
forcement learning,” in Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, ser. Proceedings
of Machine Learning Research, vol. 15. PMLR, 11–13 Apr 2011.

[6] S. K. Seyed Ghasemipour, S. S. Gu, and R. Zemel, “Smile: Scalable
meta inverse reinforcement learning through context-conditional poli-
cies,” in Advances in Neural Information Processing Systems, 2019.

[7] L. Yu, T. Yu, C. Finn, and S. Ermon, “Meta-inverse reinforcement
learning with probabilistic context variables,” in NeurIPS, 2019.

[8] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial
inverse reinforcement learning,” in ICLR, 2018.

[9] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and Autonomous
Systems, vol. 57, no. 5, pp. 469–483, 2009.

[10] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical
tasks,” in International Conference on Robotics and Automation, 2018.

[11] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in CVPR, 2019.

[12] D.-A. Huang, Y.-W. Chao, C. Paxton, X. Deng, L. Fei-Fei, J. C.
Niebles, A. Garg, and D. Fox, “Motion reasoning for goal-based
imitation learning,” in ICRA, 2020.

[13] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in ICML, 2016.

[14] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and
P. Abbeel, “Deep imitation learning for complex manipulation tasks
from virtual reality teleoperation,” in ICRA, 2018.

[15] J. Kober and J. Peters, “Imitation and reinforcement learning - practical
algorithms for motor primitive learning in robotics,” IEEE Robotics
and Automation Magazine, vol. 17, no. 2, pp. 55–62, 2010.

[16] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
International Conference on Robotics and Automation (ICRA), 2009.

[17] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in ICRA, 2018.

[18] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in CoRL, 2019.

[19] S. K. S. Ghasemipour, R. Zemel, and S. Gu, “A divergence minimiza-
tion perspective on imitation learning methods,” in CoRL, 2019.

[20] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual
imitation learning via meta-learning,” in CoRL, 2017.

[21] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine,
“One-shot imitation from observing humans via domain-adaptive
meta-learning,” in Robotics: Science and Systems (RSS), 2018.

[22] T. Yu, P. Abbeel, S. Levine, and C. Finn, “One-shot hierarchical
imitation learning of compound visuomotor tasks,” in IROS, 2019.

[23] K. Rakelly, A. Zhou, D. Quillen, C. Finn, and S. Levine, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
International Conference on Machine Learning (ICML), 2019.

[24] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” International Conference on Machine Learning (ICML), 2018.

[25] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in neural information processing systems, 2016.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, 2014.

[27] L. Ke, M. Barnes, W. Sun, G. Lee, S. Choudhury, and S. Srinivasa,
“Imitation learning as f -divergence minimization,” Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2020.

[28] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas,
D. Budden, A. Abdolmaleki, J. Merel, A. Lefrancq, T. Lillicrap, and
M. Riedmiller, “DeepMind control suite,” Tech. Rep., Jan. 2018.

9727

