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Constructing highly detailed three-dimensional (3-D) models of large complex sites using
range scanners can be a time-consuming manual process. One of the main drawbacks is
determining where to place the scanner to obtain complete coverage of a site. We have
developed a system for automatic view planning called VuePlan. When combined with
our mobile robot, AVENUE, we have a system that is capable of modeling large-scale en-
vironments with minimal human intervention throughout both the planning and acqui-
sition phases. The system proceeds in two distinct stages. In the initial phase, the system
is given a two-dimensional site footprint with which it plans a minimal set of sufficient
and properly constrained covering views. We then use a 3-D laser scanner to take scans
at each of these views. When this planning system is combined with our mobile robot it
automatically computes and executes a tour of these viewing locations and acquires them
with the robot’s onboard laser scanner. These initial scans serve as an approximate 3-D
model of the site. The planning software then enters a second phase in which it updates
this model by using a voxel-based occupancy procedure to plan the next best view (NBV).
This NBV is acquired, and further NBVs are sequentially computed and acquired until
an accurate and complete 3-D model is obtained. A simulator tool that we developed has
allowed us to test our entire view planning algorithm on simulated sites. We have also
successfully used our two-phase system to construct precise 3-D models of real-world
sites located in New York City: Uris Hall on the campus of Columbia University and Fort
Jay on Governors Island. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

Accurate three-dimensional (3-D) models of large
complex sites such as buildings and their surround-
ings have many uses, including reverse engineering
of legacy structures that lack computer-aided design
(CAD) models or detailed engineering drawings, vi-
sualization and walk-through capability for remote
structures, detailed documentation of historic build-

ings, and temporal change detail of sites over time
such as archaeological ruins.

Methods for acquiring such models have pro-
gressively increased in accuracy and have evolved
from manual methods to more automated methods.
At the simpler end of the spectrum, one can use a
theodolite to take measurements of the structure and
then have a designer manually put together a model
from those measurements. Such a model might look

Journal of Field Robotics 26(11–12), 865–891 (2009) C© 2009 Wiley Periodicals, Inc.
Published online in Wiley InterScience (www.interscience.wiley.com). • DOI: 10.1002/rob.20318



866 • Journal of Field Robotics—2009

relatively accurate and, in the case of its larger fea-
tures, be geometrically accurate. However, it does
not tell the whole story. It would be extremely inef-
ficient to hand-survey all of the small features and
details on the surface of the structure. These fea-
tures would likely not have been surveyed, and the
model would be based mostly on the designer’s best
approximation.

More sophisticated tools do exist. There are a
number of laser range scanners that will sweep a
beam across a large portion of the structure and re-
turn a dense point cloud of measurements. Armed
with these more advanced instruments, one can take
multiple scans around the structure and register them
into a single point cloud that accurately represents
the structure. Software tools allow the point cloud
to be triangulated into a mesh to give an accurate
model. With a sufficient density of the point cloud
that the scanner returns, one can generate models that
are accurate to a centimeter or better.

Although the models are now far more accu-
rate and the acquisition process is faster and more
automated, there are still manual choices and inter-
ventions involved in modeling large, complex sites.
View planning is one such component, in which a
plan must be laid out to determine where to take
each individual scan that comprises the complete
model. This requires choosing efficient views that
will cover the entire surface area of the structure
without occlusions from other objects and without
self-occlusions from the target structure itself. The
views must also satisfy the constraints of resolution
and field of view of the scanning system. This is the
essence of the so-called view planning problem. His-
torically, it has been solved either by manually choos-
ing a set of views, which usually results in missing
surfaces of the site, or by oversampling the site and
hoping the samples are sufficient. Each scan can be
very time-consuming, as the scanning sensor must be
physically moved from location to location, and each
scanning operation itself can take an hour or more de-
pending on the type of sensor and the density of the
scan.

We have developed a software system called Vue-
Plan that can help automate the view planning pro-
cess. VuePlan is a two-stage view planning algorithm
that can automatically decide where to acquire scan
data to obtain complete coverage of a site in an effi-
cient way. We have also integrated the view planning
process with our mobile robot scanning platform,
AVENUE (Allen, Stamos, Gueorguiev, Gold, & Blaer,

Figure 1. The ATRV-2 AVENUE-based mobile robot.

2001) (see Figure 1). AVENUE is a laser scanner–
equipped robot capable of localizing and navigating
itself through various environments. The view plan-
ning system is added to our previously developed
localization (Georgiev & Allen, 2004) and low-level
navigation software, allowing the robot to implement
its plan and acquire a model of the location with min-
imal human assistance. The system works by taking
some basic approximate information about the site,
planning a path to a desired viewpoint, navigating
the mobile robot to that viewpoint, acquiring images
and 3-D range scans of the site, and then planning
for the next viewpoint until the model is complete.
In addition, we have developed a convenient simu-
lation tool that has allowed us to test the entire view
planning algorithm on simulated structures and en-
vironments. We have also successfully used our two-
phase system to construct accurate 3-D models of
real-world sites located in New York City: Uris Hall
on the campus of Columbia University and Fort Jay
on Governors Island.
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2. RELATED WORK

Currently a number of research projects are attempt-
ing to construct 3-D models of urban scenes and
outdoor structures. These projects include the 3-D
city model construction project at Berkeley (Frueh
& Zakhor, 2003), the outdoor map building project
at the University of Tsukuba (Ohno, Tsubouchi, &
Yuta, 2004), the MIT City Scanning Project (Teller,
1997), the volumetric robotic mapping project by
Thrun et al. (2003), the 4D Cities project at Geor-
gia Tech (Dellaert, 2005), and the UrbanScape project
(Akbarzadeh et al., 2006). However, for the most part,
these methods focus on data fusion issues and leave
the actual planning component to a human opera-
tor. Jensen, Weingarten, Kolski, and Siegwart (2005),
Lamon, Kolski, and Siegwart (2006), and Pfaff et al.
(2007) also address the large-scale mapping prob-
lem by mounting a series of SICK laser scanners on
a small car that is then driven through the envi-
ronment. The works focus on registration and local-
ization issues but also include an automated path
planning component. The planning component fo-
cuses on navigating through traversable areas but
still requires the user to specify the final destination;
the view planning problem is not addressed.

Ikeuchi, Nakazawa, Hasegawa, and Ohishi
(2003) concentrate on methods for digitizing, reg-
istering, merging, and texture mapping large-scale
models of cultural heritage sites. Data are acquired
primarily through manually placed scanning and
imaging equipment, and the focus is on automatic
techniques to merge and correct the acquired data.
This group has done work constructing models of a
number of heritage sites such as the Great Buddha of
Kamakura (Ikeuchi, et al., 2003) and, more recently,
the Angkor Tom in Cambodia (Ikeuchi & Miyazaki,
2007).

The view planning problem can be described as
the task of finding a set of sensor configurations that
efficiently and accurately fulfill a modeling or inspec-
tion task. Two major surveys on the topic exist, in-
cluding an earlier survey on computer vision sensor
planning by Tarabanis, Allen, and Tsai (1995) and a
more recent survey of view planning specifically for
3-D vision by Scott, Roth, and Rivest (2003).

Model-based methods are inspection methods in
which the system is given some initial model of the
scene. Early research focused on planning for two-
dimensional (2-D) camera-based systems. Included
in this are works by Cowan and Kovesi (1998) and by

Tarabanis, Tsai, and Allen (1995). Later, these meth-
ods were extended to the 3-D domain in works by
Tarbox and Gottschlich (1995) and by Scott, Roth, and
Rivest (2001). We can also include art gallery prob-
lems in this category. In two dimensions, these prob-
lems can be approached with traditional geometric
solutions such as in Xie, Calvert, and Bhatacharya
(1986) or with randomized methods such as in
González-Banos and Latombe (2001). The art gallery
approach has also been applied to 3-D problems by
Danner and Kavraki (2000). In this case a complete
3-D model of the scene is known beforehand.

Non-model-based methods seek to generate
models with no prior information. These include
volumetric methods such as in Banta et al. (1995),
Connolly (1985), Low and Lastra (2006), Massios and
Fisher (1988), and Soucy, Callari, and Ferrie (1998).
There are also surface-based methods, which include
those of Maver and Bajcsy (1993), Pito (1999), Reed
and Allen (2000), and Sequeira and Gonçalves (2002).
A different appoach is taken by Whaite and Ferrie
(1997), who use the error in a parametric fit to im-
prove the fit of the model and thereby drive the
view planning process. View planning for 2-D map
construction with a mobile robot is addressed by
González-Baños, Mao, Latombe, Murali, and Efrat,
(1999) and Grabowski, Khosla, and Choset (2003).

In the work that most closely resembles ours,
Nüchter, Surmann, and Hertzberg (2003) address
view planning for 3-D scenes with a mobile robot.
Next best views (NBVs) are chosen by maximiz-
ing the amount of 2-D information (on the ground
plane only) that can be obtained at a chosen loca-
tion; however, 3-D data are actually acquired. These
authors also propose a method for planning in three
dimensions by taking planar slices of the 3-D data
at multiple elevations and then running their 2-D
algorithm on each slice. This has some similarity
to our first-stage algorithm, but unlike our second-
stage algorithm, 3-D data are never used in the NBV
computation.

3. VUEPLAN: A VIEW PLANNING SYSTEM FOR
3-D MODELING

There are many possible paradigms for mobile robot
exploration and mapping of complex sites. One
method involves making use of a fast scanner that
allows real-time scanning as the robot or scanning
vehicle moves quickly throughout the environment.
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This presents a trade-off. To gain the ability to scan
quickly, one has to sacrifice resolution. Our particular
interest is in the construction of dense and detailed
models of these environments, which is not possible
with lower resolution scanners. Our scanning equip-
ment is designed to maximize detail, and this causes
scan times to be long and forces us to remain station-
ary during a scan. Under these conditions, view plan-
ning first, before taking a scan, is the most practical
approach.

The overall goal of our system is to construct an
accurate 3-D model of a complex site. We have cre-
ated a system called VuePlan that automates the con-
struction of the model. The 3-D model construction
process proceeds in two stages. The first stage of the
modeling process utilizes a 2-D map to construct an
initial model of the scene and an initial set of views.
The second stage uses this initial model and view
data to plan more-refined views that resolve occlu-
sions that occurred in the first stage.

By using this two-stage method, we are able
to minimize the number of high-resolution scans
needed to construct the model. Our initial run
through the environment uses views planned only
from the 2-D map (Blaer & Allen, 2006a). As a result,
building overhangs, unmapped foliage, and other ob-
structions might occlude our views of important por-
tions of the scene. After the initial run, we have some
3-D data about the environment’s structures and how
they occlude the scene. We then make use of the data
to plan unoccluded views for further modeling. With
each data set acquired, we have more information to
help plan more-efficient subsequent views.

It could be argued that requiring a 2-D ground
map for environment exploration is too restrictive.
For our work, however, the scenes in which we
have the most interest, historical and urban sites, 2-D
ground maps already exist and are quite ubiquitous.
Nevertheless, we have explored alternative methods
that utilize only the second stage of the algorithm
(Blaer & Allen, 2006b) even though this stage is slow
relative to the 2-D planner. By using the 2-D planner
first, we reveal most of the scene in advance, greatly
decreasing the amount of unknown volume that the
3-D algorithm must examine.

3.1. Phase I: Initial Model Construction

In the first stage of our modeling process, we wish to
compute and acquire an initial model of the target re-
gion. This model will be based on limited information

about the site and will most likely have gaps in the
data that must be filled in during the second stage of
the process. The data acquired in the initial stage will
serve as a seed for the boostrapping method used to
complete the model.

The procedure for planning the initial views
makes use of a 2-D ground map of the region to plan a
series of environment views for our scanning system
to acquire. All scanning locations in this initial phase
are planned in advance, before any data acquisition
occurs.

We wish to find a set of positions for our scan-
ner such that it can image all of the known walls in
our 2-D map of the environment. This view planning
strategy makes the simplifying assumption that if we
can see the 2-D footprint of a wall, then we can see
the entire 3-D wall. In practice, this is never the case,
because a 3-D part of a building facade or other wall
that is not visible in the 2-D map might obstruct a dif-
ferent part of the scene. However, for an initial model
of the scene to be used later for view refinement, this
assumption should give us enough coverage to be
sufficient.

Planning these locations resembles the classical
art gallery problem, which asks where to optimally
place guards such that all walls of the art gallery can
be seen by the set of guards. This assumes that the
guards can see all the way around their location, that
is, they have a 360-deg field of view. It also assumes
that the guards have an unlimited distance of vision
and that they can view a wall at any grazing angle.
None of these assumptions is true for most laser scan-
ning systems, so the traditional methods do not apply
exactly to our problem.

3.1.1. View Planning with Constraints

In our view planning algorithm we have extended
the work of González-Banos and Latombe (2001) to
include the constraints of minimum and maximum
range, grazing angle, field of view, and scan overlap.
We start with a set of initial scanning locations that
are randomly distributed throughout the free space
of the region to be imaged. The visibility polygon of
each of these points is computed based on the con-
straints outlined above. Finally, an approximation for
the optimal number of viewpoints needed to cover
the boundaries of the free space is computed from
this set of initial locations.

We begin with a 2-D floor plan or map of the en-
vironment to be modeled. We first digitize this map
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and then choose an initial set of N random scanning
locations. Next, the visibility of each of the N view-
points is computed. We use the ray-sweep algorithm
(Goodman & O’Rourke, 1997) to compute the visi-
bility polygon. This polygon has two types of edges.
The first contains the obstacle edges that are on the
boundary of the region’s free space. The second con-
tains intermediate edges that lie in the interior of the
free space. We then discard the intermediate edges
so that the only remaining edges of this polygon are
on the boundary of the free space. These edges are
then clipped based on the constraints of our scan-
ner. This gives a set of obstacle edges on the bound-
ary that a viewpoint at a given location can actually
image.

For the range constraints, we set a maximum and
minimum range for the scanner. To apply the con-
straint, we first use the maximum range of the scan-
ner to create a circle around our device location. We
then clip all of the currently visible obstacle edges
with this circle. There are three cases to consider. (1)
If both end points of the edge are inside the circle,
then the edge is completely visible and we keep it en-
tirely. (2) If only one end point is inside the circle, then
we replace this line segment with a clipped segment
that goes from the point already inside the circle to
the point at which the line intersects the circle. (3) If
both end points are outside of the circle, we must de-
termine whether the line intersects the circle at all. If
the line does intersect the circle, we replace the orig-
inal end points with the two intersection points; oth-
erwise, we simply discard the line. For the minimum
scanner range, we use a similar procedure. A circle
whose radius is the minimum range is used and the
parts of line segments that fall inside it are dropped.

We also constrain the grazing angle. Most range
sensors lose accuracy at grazing angles larger than
about 70 deg when the laser light is not reflected back
to the sensor. In Figure 2 our camera is located at
point C and the edge that we are attempting to clip

C

E

R

D

θ

Figure 2. The grazing angle constraint.

is E. The known distance between the camera and
the edge is D, and the grazing angle for an arbitrary
point on the edge is θ at distance R from point C. We
simply find the subsegment of E for which θ is no
greater than some fixed value (in our case 70 deg) for
all points on the subsegment.

We also have the ability to constrain the field of
view of the scanner. To make use of this constraint, we
must modify the initial step of our algorithm in which
we distribute the random potential viewpoints. Be-
cause in this case the scanner can see only a fixed field
of view, we must also specify a heading for each of
our potential positions. To accomplish this, we ran-
domly assign a heading to each potential viewpoint
in addition to its location (forcing us to choose more
potential viewpoints to consider). This constraint al-
lows our algorithm to be flexible and work with scan-
ning systems that have an arbitrary field of view.

Once these constraints have been computed, we
use a greedy cover algorithm to select an approxima-
tion for the minimum number of viewpoints needed
to cover the scene. We select viewpoints based on the
total length of the polygonal edges that can be viewed
with constraints from that viewpoint. We then elim-
inate from consideration those edges that have al-
ready been seen and then repeat the process for the
next viewpoint until all edges have been seen or we
have reached a threshold percentage of coverage of
the scene.

We can also enforce an overlap constraint using
this algorithm. Localization of the robot will never
be error free, and therefore relying on the robot’s
position estimate as the sole method for register-
ing one scan to the next in this initial modeling
phase may result in poorly registered scans. To im-
prove the accuracy of the model we need to utilize
more-precise registration techniques. There are sev-
eral potential methods to be used. One possibility
is to distribute fiducial marks throughout the scene
that can easily be detected by the scanning equip-
ment. By matching corresponding fiducial marks in
one scan to the next, we can very tightly register the
two scans. Another possibility is to utilize an auto-
matic registration method that does not need known
landmarks in the scene. Commonly used registration
methods include iterative closest point (ICP) methods
such as those contained in Besl and McKay (1992),
Chen, Hung, and Cheung (1999), and Turk and Levoy
(1994). ICP algorithms begin by associating points in
one scan with points in another scan, typically using
a nearest neighbor scheme, and then estimating the
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transformation that would bring those associated
points to the same positions. Using this new regis-
tration between the two point clouds, the algorithm
repeats until the error in the estimated transforma-
tion drops below a certain threshold. To perform the
initial association of points between two scans, an
initial estimate of the proper registration must be
provided. The localization component of our robot
system (Georgiev & Allen, 2004) is typically sufficient
for such an initial estimate, and other work in our lab
(Stamos & Allen, 2002) has addressed this problem.

Both the fiducial mark methods and the ICP
methods for registration require a certain amount of
overlap between one scan and the next. When using
fiducial marks, there need to be at least three marks
common to each scan. So, these marks must be placed
in regions of overlap between scans. When using ICP,
there needs to be a set of corresponding points within
the two scans for the algorithm to proceed at all. As a
result, we would like to choose viewpoints that have
significant overlap in the areas that they cover, re-
gardless of what method we ultimately choose for
registration. To implement this overlap, we modify
our greedy set cover. When we choose the next best
viewing location (the location that sees the most new
obstacle boundaries), we enforce a constraint that at
least a fixed percentage of the edges that it sees over-
lap with the already seen portions of the boundary. If
this constraint is not satisfied, we skip this potential
viewing location and go to the NBV.

Our Phase I View Planning Algorithm starts with
a 2-D map of the region of interest and incorporates
sensor constraints and overlap constraints to obtain a
set of final viewpoints from which to begin the mod-
eling process. Phase I of our method is summarized
in Algorithm 1.

Algorithm 1 The Phase I View Planning Algorithm. It must
be given an initial 2-D map M to plan the initial views.

1: procedure 2DPLAN(M)
2: Randomly distribute candidate views V in the map
3: for all views v in V do
4: Compute the visibility polygon p of v

5: Clip p to sensor range
6: Clip p to maximum grazing angle
7: Clip p to field of view
8: end for
9: Find a greedy cover, G, from the potential views V ,

that enforces the overlap constraint.
10: return G � the planned views
11: end procedure

3.1.2. Phase I Example

As part of a larger 3-D modeling effort, we have been
involved in building a database of 3-D models of the
Romanesque churches of the Bourbonnais region of
France, which can be viewed online (Romanesque
Churches of the Bourbonnais, 2007). For our initial
test of this algorithm, we used the Phase I planner on
the interior of the church of Saint Menoux. We were
given an existing floor plan of the church and then
chose an initial set of 500 random scanning locations
from this plan (see the left-most panel of Figure 3).

Next, we computed the visibility edges of each
potential viewpoint and applied the constraints. In
this example, we used a 360-deg field of view, which
is consistent with our current scanning equipment
(Leica HDS 3000). The visibility edges for one of the
potential viewpoints, clipped for the range and graz-
ing angle constraints, can be seen in Figure 3.

Finally, we applied the greedy cover to select
the final viewpoints. For our test, we set a thresh-
old such that the algorithm terminated if additional
scans added less than 2% of the total boundaries
of the target region. Our algorithm returned eight
scanning locations for the test area (see the right of
Figure 3), giving us a coverage of 95% of the region’s
obstacle boundary.

In Figure 4, we show floor-level slices of the re-
sulting interior models of the church. Figure 5 shows
two 3-D views of part of the interior model of the
church. This model was generated entirely from the
Phase I view planning scans. Even though holes ex-
ist in the model, the coverage is reasonably good. In
the next section, we discuss Phase II, in which any re-
maining holes in the model can be resolved through
further view planning.

3.2. Phase II: 3-D View Planning

After the initial modeling phase has been completed,
we have a preliminary model of the environment. The
model will have holes in it, many caused by origi-
nally undetectable occlusions. We now implement a
3-D view planning system that makes use of this ini-
tial 3-D model to plan efficiently for further views.
This subsequent modeling phase does not plan all of
its views at once. Instead, it takes the initial model
and plans a single NBV that will gather what we es-
timate to be the largest amount of new information
possible, given the known state of the world. This
scan is acquired and the new data are integrated into
the model of the world and the NBV is planned.

Journal of Field Robotics DOI 10.1002/rob



Blaer & Allen: View Planning and Automated Data Acquisition for 3D Modeling • 871

Figure 3. On the far left is the original floor plan of Saint Menoux’s interior (Genermont & Pradel, 1938). Next is the
digitized 2-D map of the interior (shown in red) with an initial set of 500 viewpoints randomly distributed throughout the
free space of the region. Next is the set of clipped visibility edges for a potential scanning location (shown in blue). On the
far right are eight scan locations determined by the Phase I view planner using a grazing angle constraint of 70 deg.

Figure 4. Slices taken at floor level of the actual acquired models of the church, using the Phase I planner. We show the
model after the first, second, and fourth scans are acquired, respectively. The final image shows the complete model after
eight scans.

Journal of Field Robotics DOI 10.1002/rob



872 • Journal of Field Robotics—2009

Figure 5. Two views of a portion of the 3-D model of the interior of the Church of Saint Menoux. This model was con-
structed with scans taken from the locations computed by our Phase I planning alogrithm.

3.2.1. Voxel Space

Our method for the 3-D modeling stage requires a
data representation different from just the simple
point cloud that we used in the initial stage. We need
a way to tell what parts of the scene have been im-
aged and what parts have not. To do this, we main-
tain a second representation of the world that keeps
track of seen-empty, seen-occupied, and unseen portions
of the region to be imaged. This can most easily be
represented by a voxel map (Curless & Levoy, 1996).
Because this is a large-scale imaging problem, the
voxels can be made rather large and still satisfy their
purpose. Typically, a voxel size of 1 m3 is sufficient
to allow for computing occlusions in our views. Al-
though the planner uses a reduced-resolution model
of the data, the full data are still used in constructing
the final model.

The voxel representation is generated from the
point cloud. Before the Phase I model is inserted, all
voxels in the grid are labeled as unseen. For each scan
from the initial model, voxels that contain at least one
data point from that scan are marked as seen-occupied
(even if a previous scan had labeled a voxel as seen-
empty). For any data point to have been acquired,
there must have been an unoccluded line of sight be-
tween the scanner position and that data point. A
ray is then traced from each data point back to the
scanner position. Each unseen voxel that it crosses
is marked as seen-empty. If the ray passes through a
voxel that had already been labeled as seen-occupied,
it means that the voxel itself may already have been
filled by a previous scan or another part of the cur-
rent scan. This means that the voxel itself is only par-

tially occupied, and we allow the ray to pass through
it without modifying its status as seen-occupied. Using
this method, our Phase I model is inserted into the
voxel space and we subsequently update this space.

3.2.2. NBV: Occlusion Constraint
and Range Constraint

In Phase II we must now plan and acquire NBVs se-
quentially. In our case, we are restricted to operating
on the ground plane with our mobile robot. We can
exploit the fact that we have a reasonable 2-D map
of the region. This 2-D map gives us the footprints of
the buildings as well as a good estimate of the free
space on the ground plane in which we can operate.
We mark the voxels that intersect this ground plane
within the free space defined by our 2-D map as be-
ing candidate viewpoints.

We wish to choose a location on this ground
plane grid that maximizes the number of unseen vox-
els that can be viewed from a single scan. Consider-
ing every unseen voxel in this procedure is unneces-
sarily expensive and should be avoided. At the end
of the first stage of our method, much of the envi-
ronment has already been imaged and many of the
unseen voxels will actually be regions in the interior
of buildings. Instead, we need to focus on those un-
seen voxels that are most likely to provide us with
useful information about the facades of the build-
ings. These useful voxels are the ones that fall on the
boundaries between seen-empty regions and unseen re-
gions. These boundary regions are most likely to con-
tain previously occluded structures and, in addition,
are likely to be viewable by the scanner. If an unseen
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voxel is completely surrounded by seen-occupied vox-
els or even by other unseen voxels, then there is a good
chance that it may never be visible by any scan. We
therefore choose to consider only unseen voxels that
are adjacent to at least one seen-empty voxel. Such un-
seen voxels will be labeled as boundary unseen voxels.

Now that we have a set of appropriate unseen
voxels to consider, we proceed with the optimiza-
tion. As possible positions for the NBV, we use the
centers of the voxels that intersect the ground plane
within the region’s free space. At each such position,
we keep a tally of the number of boundary unseen vox-
els that can be seen from that position.

To determine whether a boundary unseen voxel
can be viewed, we trace rays from its center to the
center of each voxel on the ground plane. If the ray
intersects any voxel that is seen-occupied, we discard
the ray because it may be occluded by the contents
of that occupied voxel. If the ray intersects any voxel
that is unseen, we discard the ray because we are un-
certain of the contents of that voxel and it is still pos-
sible that it will be occluded. We must also consider
the minimum and maximum range of the scanner. If
the length of the ray is outside the scanner’s range,
then we discard the ray.

3.2.3. NBV: Grazing Angle Constraint

If the grazing angle between a ray and the surface
that we expect at an unseen voxel is larger than the
maximum angle allowed by our sensor, we should
discard the ray. Because, by definition, these unseen
voxels are unknown, we do not have a good idea of
what the surface normal at that location would be. We
can use the normal of the face of the boundary unseen
voxel that borders on the seen-empty voxel as an es-
timate of the normal of the surface that is contained
behind it. We can then use this normal to compute an
estimated grazing angle.

3.2.4. Selecting the Next Best Viewpoint

If a ray has not been discarded by the occlusion,
range, or grazing angle constraint, we can safely in-
crement the ground plane position that the ray inter-
sects. At the end of this calculation, the ground plane
position with the highest tally is chosen as the next
scan location. When using the mobile robot, it navi-
gates to the chosen position and triggers a new scan
once it has arrived. That scan is integrated into both
the point cloud model and the voxel representation.

The process is then repeated until we reach a suffi-
cient level of coverage of the site. To decide when to
terminate the algorithm, we look at the number of
boundary unseen voxels that would be resolved by the
next iteration. If that number falls below some small
threshold value, then the algorithm terminates; oth-
erwise, it continues. The Phase II planner is summa-
rized in Algorithm 2.

If the size of one dimension of the voxel space
is n, then there could be O(n2) potential viewing lo-
cations. If there are m boundary unseen voxels, the
cost of the algorithm could be as high as O(n2 ∗ m).
Note that m is typically rather small in comparison to
the total number of voxels in the world. In addition,
the n2 term is an overestimate because many of the
ground plane voxels are not potential viewpoints be-
cause they fall within known footprints of the obsta-
cles. Furthermore, most boundary unseen voxels have
only one face that is actually exposed to the known
world. This face can be used to split the space in
half. All potential scanning locations that are in the
half-space behind the exposed face can be quickly ex-
cluded from consideration.

Algorithm 2 The Phase II 3-D View Planning Algorithm.
It must be given an initial model of the world C, a set
of possible scanning locations P , and a threshold value
for the number of acceptable unseen voxels as a stopping
condition.

1: procedure 3DPLAN (C,P , threshold)
2: Initialize voxel space from C

3: for all unseen voxels, u, in the voxel space do
4: if u has a seen empty neighbor then
5: add u to U � the set of boundary

unseen voxels
6: end if
7: end for
8: loop
9: for all potential views p in P do
10: Count members of U that are visible
11: end for
12: if count(p) < threshold then
13: break
14: end if
15: Acquire scan at p with largest count
16: Register and merge new scan into C

17: Update voxel space with C

18: Recompute U from the new voxel space
19: end loop
20: return C � the updated model
21: end procedure
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4. SIMULATING THE MODELING PROCESS

A typical scan can take anywhere from 45 min to an
hour. Depending on the size and complexity of the
site, a real-world experiment could take many hours
or days. To fully test our algorithms, a faster system
is needed. We therefore developed the fast scan sim-
ulator described in this section.

4.1. Simulator Implementation

We must first obtain a 3-D model of the desired en-
vironment in which to simulate scanning. The avail-
ability of 3-D models has become much greater in
recent years. There are a number of rather large
repositories of such models, the most extensive of
which is the Google 3D Warehouse (2008). These
repositories contain numerous, and sometimes crude,
models of many different buildings and historical
sites of interest. Alternatively, we may want to con-
struct models of our own to put into our scan simula-
tor. There exist a number of professional-grade tools
for constructing 3-D models, including packages such
as Solidworks, Maya, AutoCad, and 3DMax. There
also exist simpler and less expensive 3-D model-
creation packages such as Google Sketchup (2008).
For our simulator, we made use of the Sketchup pack-
age to construct our simulated environments; how-
ever, any of the above packages could have been
used.

Once we have that model, we need to mimic the
behavior and the limitations of our scanning system
as closely as possible. We first choose a point within
the synthetic model that will act as our scanning lo-
cation. We must then cast rays from that point into
the scene and compute the point of intersection. Each
ray that we project into the scene represents a laser
reading taken by a real scanner. As we cast out rays
in the same pattern that our scanning system shoots
the laser, we should obtain a point cloud generated
from the synthetic object that is very similar to what
the real scanner would have returned had the simu-
lated environment been real. Casting this many rays
into the scene is an expensive task and requires great
care when dealing with boundary conditions. How-
ever, it is essentially the same task that rendering soft-
ware performs routinely. We render the model with a
viewpoint, centered at the desired scan location, and
read off the depths from the Z-buffer. If we then trans-
form these data from window coordinates back into
object coordinates, we get the same information and

can generate the same kind of point cloud. By imple-
menting this process with OpenGL, we can automat-
ically have GL-enabled graphics cards compute the
point cloud for us with fast specialized hardware.

Ultimately, we wish to render the entire 360-deg-
around and 180-deg-up-and-down field of view sur-
rounding this viewpoint. However, we cannot easily
instruct GL to render the full field of view. Instead, we
must chop up the view into manageable windows. To
do this, we start with not just a viewpoint but also
an initial orientation. The initial orientation does not
matter if we are planning to render the full spherical
view; however, it does matter if we are simulating a
scanner with a limited field of view. Starting at this
initial orientation, we render a 60 × 60 deg window
of the scene. We then extract the 3-D data for the sim-
ulated scan and then rotate the orientation to the next
window over. We repeat this until our windows have
covered the entire spherical field of view of the simu-
lated scanner.

From each rendered window, we need to extract
3-D point-cloud data. We use the Z-buffer of the ren-
dering to extract the depth values at each pixel in the
rendered image. The depths that we read from the
Z-buffer are the distances to the closest object along
that particular ray. As a result, we extract only the
range to those objects that are actually visible from
that viewpoint. This satisfies the visibility constraint
of a range scanner, and occlusions are properly com-
puted. Each pixel will represent a laser beam emanat-
ing from the range scanner. The x and y coordinates,
combined with the depth reading from the Z-buffer,
can then be transformed back into world coordinates.
These world coordinates give us a simulated 3-D data
point. This procedure is repeated for each window
rendered from a particular viewpoint. Ultimately, all
of the values are transformed back into the world co-
ordinate system and therefore give a complete sim-
ulated scan from the given viewpoint. Minimum and
maximum range constraints can be enforced by prop-
erly setting the near and far clipping planes.

4.2. Guggenheim Museum Bilbao

In this section, we give an example of the simula-
tor in use on a model of a real-world structure. The
Guggenheim Museum Bilbao (see the top of Figure 6)
by Frank Gehry in Bilbao, Spain, is a complex struc-
ture with many interesting 3-D occlusions. We re-
trieved a model of this structure from Google 3D
Warehouse (2008) and ran it through our simulated
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Figure 6. Top: The Guggenheim Museum Bilbao by Frank
Gehry in Bilbao, Spain (picture was taken by Michael
Reeve). Bottom: A model of the Guggenheim Museum Bil-
bao retrieved from Google 3D Warehouse.

view planning system. The model we retrieved can
be seen at the bottom of Figure 6.

We first took a floor plan of the building and used
it for the Phase I 2-D planning system. This resulted
in eight initial viewing locations (see Figure 7) chosen
by the planner. The point cloud obtained after acquir-

ing these eight simulated scans can be seen at the top
of Figure 8. At this stage, the model looks relatively
sparse because much of the upper structure has not
been fully acquired due to the large number of occlu-
sions in the upper areas of the building.

We then voxelized this model and ran our
Phase II 3-D planning algorithm to compute NBVs
sequentially. We ultimately computed 23 NBVs be-
fore the algorithm reached its terminating threshold.
A view of the final model can be seen at the bottom of
Figure 8. The final model is significantly more dense
in some areas than was the model produced at the
end of Phase I. Even though the initial modeling
phase scanned those areas, they needed to be scanned
again several times from slightly different angles
in order to fully acquire additional portions of the
curved roof surface. Even after the algorithm termi-
nated, there were still missing portions of the sides of
the roof that could not be acquired from the ground
plane.

4.3. East Campus

In our final test of the simulator, we hand-modeled
a building on the Columbia University campus, the
East Campus Building. This is an interesting building
from an occlusion standpoint because it is composed
of two sections: a low tower in front and a high tower
in the back. Between the two towers is a courtyard
with a number of enclosed stairwells that jut into the
courtyard. The exterior of the building can be seen at
the left of Figure 9. Our Google Sketchup model of
the building can be seen at the right of Figure 9.

We ran our 2-D planner on the floor plan of the
courtyard. This resulted in five initial scanning loca-
tions (see Figure 10) chosen by the planner. The re-
sulting model after acquiring those five scans can be

Figure 7. The floor plan of the Guggenheim Museum Bilbao with the eight scan locations chosen by the Phase I 2-D
planning algorithm.
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Figure 8. The top row of images shows the resulting model produced by the scan simulator after acquiring the eight scans
computed by the Phase I 2-D planner as applied to the Google 3D Warehouse model of the Guggenheim Museum Bilbao.
The bottom two rows of images show two different views of the final model produced by the scan simulator after acquiring
the 23 scans computed by the Phase II 3-D planner as applied to the Google 3D Warehouse model of the Guggenheim
Museum Bilbao. The original eight scans from the Phase I planner are also included. The first image in each row is the point
cloud of the model; the second is the meshed version.
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Figure 9. Left: The East Campus Building at Columbia University. Right: The synthetic model of East Campus.

Figure 10. The floor plan of the East Campus courtyard along with the five scan locations chosen by the Phase I 2-D
planning algorithm.
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Figure 11. The resulting model from the scan simulator after acquiring the five scans computed by the Phase I 2-D planner
for the synthetic model of East Campus.

seen in Figure 11. This point cloud was then passed
into our 3-D planner, and the planner went through
four additional iterations before reaching its thresh-
old stopping condition. The final simulated point
cloud after all nine scans from both Phase I and
Phase II can be seen in Figure 12.

Because we were modeling a real building on
campus, we had an opportunity to scan the actual

building using our planning algorithm. The floor
plan we used for the 2-D phase of the algorithm for
the actual building was the same as the floor plan
of our synthetic model. The Phase I planner there-
fore returned the same five preplanned viewpoints.
These five scans were then acquired from the actual
building, and the resulting model at the conclusion
of Phase I is shown in Figure 13. This model was then

Figure 12. The final model of East Campus as taken by the scan simulator. This includes the four scans chosen by
the Phase II planner along with the five scans chosen by the Phase I planner.
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Figure 13. The point cloud of East Campus obtained after the Phase I scanning of the actual building. Top: An overview
of the whole structure. Bottom: A close-up of a portion of the courtyard.
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run through the Phase II 3-D planner and resulted in
an NBV that was very similar in location to the first
NBV chosen by the planner with the simulated data.

This points to another potential use for the sim-
ulator. If a rough 3-D model of the scene of inter-
est can be found or quickly prototyped, running the
Phase I 2-D planner along with several iterations of
the Phase II 3-D planner on this synthetic 3-D model
would result in an expanded set of precomputed
preliminary views. These views, calculated before
one gets on site, should cover more of the site when
actually acquired than would be covered by using
only those scans calculated from the Phase I plan-
ner. Further NBVs could then be computed from the
real data to fill in fine details that were missed or that
could not have been captured in the simple prototype
model. The net result would be a larger set of precom-
puted scan locations, which would mean a decrease
in the amount of computation time required on site
to obtain the complete model.

5. EXPERIMENTAL RESULTS

In this section we present two complete experiments
utilizing our two-stage planning pipeline. In the
first experiment, we model the northern end of the
Columbia University campus surrounding Uris hall
(Blaer & Allen, 2006b). In the second, we construct a

model of Fort Jay on Governors Island in the City of
New York (Blaer & Allen, 2007).

5.1. Uris Hall

As our first test of the complete two-stage view plan-
ning algorithm, we chose to model the northern end
of the Columbia University campus, centered around
the building Uris Hall shown on the left of Figure 14.
For Phase I of the algorithm, we set the threshold
such that the algorithm terminated if additional scans
added less than 2% of the total boundaries of the tar-
get region. Our algorithm (see Algorithm 1) typically
returned between 8 and 10 scanning locations for our
test area (see the right of Figure 14), giving us a cov-
erage of 95% of the region’s obstacle boundary.

Once the initial set of viewpoints was chosen,
the scans needed to be acquired. In this example, we
are testing only the view planning algorithms; there-
fore, all scans were acquired manually and registra-
tion was performed by placing fiducial marks in the
scene at known locations. In this particular run of
the algorithm, Phase I planning generated nine scan-
ning locations. We took scans at each of the nine lo-
cations chosen by the planner and registered them.
Figure 15 shows the model being constructed from
the 2-D plan. The resulting model from this algorithm
consists of registered sets of point clouds.

Figure 14. Left: A photograph of Uris Hall, the building at the center of our test region, taken from the roof of a neighboring
building (picture courtesy of Alejandro Troccoli). Right: The 2-D map of the building footprints on the northern portion of
the Columbia campus. Also shown are the nine scan locations (shown as black dots) determined by the Phase I view
planner. The views from these locations cover 95% of the 2-D outline of Uris Hall. The rectangle is centered at the location
of the first NBV computed by the Phase II planner.
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Figure 15. The initial campus model being constructed se-
quentially from the 2-D plan. From top to bottom: The first
scan, registered scans 1–4, and the complete initial model
with all nine scans. The scans are texture mapped with im-
ages taken from the scanner’s built-in camera. (These im-
ages are best viewed in color.)

Table I. Uris Hall model statistics.

At the Seen- Total Boundary Visible
end of occupied unseen unseen to NBV

Phase I 76,941 114,372 21,765 1,025
NBV 1 78,212 111,216 18,540 972
NBV 2 79,005 109,571 15,327 322
NBV 3 79,243 109,011 15,156 122

A summary of the number of labeled voxels after each iteration of
the 3-D planning algorithm. The last column indicates the number
of boundary unseen voxels that are actually visible to the NBV.

The initial model was then converted to voxels
and inserted into the voxel space. Table I summarizes
the number of labeled voxels at each iteration of the
algorithm. Voxels that contained data points from the
initial model were labeled as seen-occupied. We then
carved the seen-empty voxels by ray tracing from the
positions of the scanning system. Our grid had a total
of approximately 15.5 million voxels. After the initial
model, 76,941 voxels were seen occupied and 114,372
voxels were labeled as unseen, with the rest labeled
seen-empty. Next, we computed the set of boundary un-
seen voxels. It turned out that only a small number of
the unseen voxels were in this set (21,756). This oper-
ation pruned the number of voxels whose visibility
we needed to consider by an order of magnitude. At
this point, we computed the potential viewing loca-
tion that could see the largest number of those bound-
ary unseen voxels. This location is shown as the rect-
angle on the right of Figure 14.

This view looked directly at the facade of the cen-
tral building of our target region. The 2-D planner
had computed views that saw this facade from the
corners. The building, however, has two parts to it, a
wide base and a thin tower. The 2-D planner took into
account only the footprint of the building, and as a re-
sult the scans from the corners were unable to image
much of the tower section of the building. The 3-D
planner’s first choice for the NBV was a head-on scan
of the building that filled in the large unseen region of
the tower’s facade (see Figure 16).

For this experiment, we chose a threshold of 200
boundary unknown voxels as the cutoff for our al-
gorithm. When it was estimated that the NBV would
net fewer than this threshold number of voxels, we
stopped scanning. In our test, we reached this thresh-
old after the third NBV. Although there was still a siz-
able number of boundary unseen voxels (15,156) in the
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Figure 16. Left: The facade of Uris Hall, scanned from the views generated by the Phase I planner. Phase I generated views
only at the corners of the building, causing much of the tower to be occluded by the base. Right: The facade of the same
building after acquiring the first NBV.

scene, we were restricted by where we could place
the robot. A view of the final model of Uris Hall can
be seen in Figure 17. Portions of the roof are missing
in the resulting model. This, however, is not a failing
of the view planning algorithm. The roof is not visi-
ble from the ground level at all because ground-based
scanners are not capable of imaging the roof.

5.2. Fort Jay

Fort Jay (see Figure 18, left) is a large fort located
on Governors Island in the City of New York. With
the kind permission of the National Park Service, we
used this as our outdoor test bed for the full VuePlan
system.

Figure 17. A view of the final model of Uris Hall after all
12 scans from Phases I and II were acquired.

5.2.1. Phase I: Building an Initial Model of Fort Jay

Initially we were given a floor plan of the fort’s build-
ing by the Park Service. For the purposes of model-
ing, Fort Jay can be divided into three distinct sec-
tions: the inner courtyard, the outer courtyard, and
the moat. We split the fort into these three sections
because the transitions between them were not eas-
ily traversable by the robot. For the inner courtyard
modeling, the mobile robot chose the scanning loca-
tions, planned the tour of those positions, and tra-
versed the path, allowing us to acquire the inner
model with the mobile robot.

To compute the path, the robot needs to be able
to travel from any viewpoint to any other viewpoint.
Such paths can be computed by using the underly-
ing navigation system of our mobile robot, which uti-
lizes a Voronoi diagram–based path planning module
described in our earlier work (Blaer & Allen, 2003).
The 2-D region in which the robot moves will contain
buildings and other types of barriers, each of which
can be represented by a polygonal obstacle. To find
the generalized Voronoi diagram for this collection
of polygons, we use an approximation based on the
simpler problem of computing the Voronoi diagram
for a set of discrete points. First, we approximate the
boundaries of the polygonal obstacles with the large
number of points that result from subdividing each
side of the original polygon into small segments. Sec-
ond, we compute the Voronoi diagram for this collec-
tion of approximating points using Fortune’s (1987)
sweepline algorithm. Once this Voronoi diagram is
constructed, we then eliminate those Voronoi edges
that have one or both end points lying inside any of
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Figure 18. Left: Fort Jay, located on Governors Island in the City of New York. Right: An efficient tour of the seven view-
points planned by the Phase I algorithm.

the obstacles. The remaining Voronoi edges form a
good approximation of the generalized Voronoi dia-
gram for the original obstacles in the map. Paths are
then found by first moving the robot on to a node of
the Voronoi graph and then computing the shortest
path with Dijkstra’s algorithm to the node closest to
the destination location.

The problem of computing the robot’s tour of
viewpoints can be formulated as a variant of the trav-
eling salesperson problem (TSP). The set of view-
points calculated in the Phase I algorithm is the graph
on which we are performing our TSP computation.
The lengths of the paths generated by the path plan-
ner between two viewpoints are then used as the
edge cost for our TSP implementation. Although this
problem is nondeterministic polynomial-time (NP)
hard, good approximation algorithms exist to com-
pute a near optimal tour of the observation locations.
With our tour of the initial viewpoints computed,
we can then allow the underlying navigation system
software to bring the robot to each scanning posi-
tion and acquire the scans. Wang, Krishnamurti, and
Gupta (2007) have also addressed this problem by
merging view and travel costs into a single metric for
selecting views.

Figure 18, right, shows the tour of the seven
viewpoints in the inner courtyard as computed by
the method described above. A video of the robot fol-
lowing this path can be seen at Modeling Fort Jay at
Governors Island (2008). Because of severely sloped
terrain, the robot could not operate in the outer court-
yard or the moat. As a result, these two outer re-
gions were acquired by using our planning algorithm

to make the decisions and then placing the scanner
manually at the scanning locations.

As with the previous experiment, we set our ter-
mination threshold to 2% of the total boundaries of
the target region. Our algorithm produced 7 locations
in the inner courtyard, 10 locations in the outer court-
yard, and 9 locations in the moat, giving us a cover-
age of 98% of the region’s obstacle boundary. On the
top of Figure 19, one can see the planned locations for
the outer courtyard. We acquired and registered each
of these planned views with our scanner and built an
initial model. As we did in the previous experiment,
registration was performed by placing fiducial marks
at known locations throughout the scene. Figure 19,
bottom, shows the entire initial model acquired by
Phase I of the algorithm.

5.2.2. Phase II: Refinement of the Fort Jay Model

Next, we wished to refine our model using our 3-D
planning algorithm (see Algorithm 2). First, the ini-
tial model was inserted into the voxel space (see
Figure 20). Voxels that contained data points from the
initial model were labeled as seen-occupied. We then
computed the seen-empty voxels by ray tracing from
each of the positions from which we took a scan. On
the ground level, the site was approximately 300 ×
300 m2. No elevation measured was above 30 m. Us-
ing a resolution of 1 m3 for our voxels, we had a grid
of 2.7 million voxels. Of those voxels, most of them
(2,359,321) were marked as seen-empty. Of the remain-
ing voxels, 68,168 were marked as seen-occupied, leav-
ing 272,511 unseen voxels. Of those unseen voxels,
only 25,071 were actually boundary unseen.
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Figure 19. Top: The viewing locations chosen by the Phase I view planner for the outer courtyard of Fort Jay. Bottom: The
entire model of Fort Jay (seen from above) generated by the initial planning stage for the inner and outer courtyards and
the moat.
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Figure 20. A representation of the seen-occupied cells of Fort Jay’s voxel space. It was constructed at the end of Phase I from
the point cloud acquired in Section 5.2.1.

Once we had the initial voxel space, we com-
puted the potential viewing location that could see
the largest number of those boundary unseen voxels. It
turned out that this view was attempting to resolve
part of a very large occlusion caused by the omission
of a building on the 2-D map of Fort Jay. The footprint
map that we were given did not have this building in-
dicated, and we decided that it would be a more real-
istic experiment not to modify the 2-D map we were
given. These kinds of errors are not uncommon, and a
planning algorithm should be able to deal with them.
One can see the resulting hole in the model on the left

of Figure 21. The first NBV resolved only a portion of
the occlusion. Our algorithm says that if a voxel is un-
seen, we have to assume that it could be occupied and
that a potential viewpoint cannot see beyond such a
voxel. Therefore, we can aim only at the frontier be-
tween the seen and the unseen portions of the space
from a vantage point located in a seen-empty region.
In this case, aiming at the frontier did not resolve all
of the occlusion. The next NBV that was computed,
however, did finally resolve the occlusion, because
enough of the unseen region had been revealed as
empty so as to safely place the scanner in a position

Figure 21. Left: A segment of the model of Fort Jay created during Phase I of the algorithm. The hole in the left-hand figure
is caused by an unpredicted occlusion of one of the initial scanning locations. Right: The same section of the model after
the first two NBVs from Phase II were computed and acquired.
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Table II. Fort Jay model statistics: A summary of the num-
ber of labeled voxels after each iteration of the 3-D planning
algorithm.

At the Seen- Boundary Visible
end of occupied unseen to NBV

Phase I 68,168 25,071 1,532
NBV 1 70,512 21,321 1,071
NBV 2 71,102 18,357 953
NBV 3 72,243 17,156 948
NBV 4 73,547 15,823 812
NBV 5 74,451 14,735 761
NBV 6 75,269 13,981 421
NBV 7 75,821 13,519 255
NBV 8 76,138 13,229 98

The second to last column indicates the number of boundary unseen
voxels that are actually visible to the NBV.

that could see the entire occlusion. This portion of
Fort Jay can be seen on the right-hand side of Fig-
ure 21 after the two NBVs were acquired.

For this experiment, we chose a threshold of
100 boundary unseen voxels visible to the NBV as the
cutoff for our algorithm. Ultimately we needed to
compute four NBVs in the outer courtyard, one NBV
in the inner courtyard, and two additional NBVs in
the moat. Table II summarizes the number of labeled
voxels at each iteration of the algorithm. On average,
each iteration takes approximately 10 min to com-
plete without optimization. The algorithm is inher-
ently parallel, and we are investigating using current
multicore technology to implement speedups of the
algorithm. This is an acceptable computation time be-
cause it is very short in comparison to the combined
positioning and scan time for the mobile robot, which
can take up to an hour per scan.

A view of the final model of Fort Jay can be seen
on the bottom of Figure 22, and detailed meshes of
two sections of the model can be seen in Figure 23.
A video of the entire model can be seen at Modeling
Fort Jay at Governors Island (2008).

6. CONCLUSION

There are many different approaches to the explo-
ration and mapping of large-scale sites by a mobile
robot. Our main interest has been the construction
of dense and detailed models of such sites, and fast
low-resolution scans taken by a moving vehicle do
not satisfy our requirements. With such a moving ve-

hicle the scanning locations are restricted to streets,
occlusions are not explicitly dealt with (leaving a pos-
sibly incomplete model), and the resulting scans may
not be high enough resolution for our purposes. Our
scanning equipment maximizes detail and therefore
requires very long scan times. As a result, using an es-
sentially random location for each fixed-position scan
would require too many such scans for complete cov-
erage of a large site and would become prohibitively
time-consuming. The view planning algorithms we
have developed eliminate unnecessary scans and can
significantly reduce the total time needed for detailed
model building.

Much of the existing view planning literature is
aimed at constructing models of single small-scale
objects rather than large complex sites. View plan-
ning techniques must be extended to cover signifi-
cantly larger and more complicated environments. In
this paper we have presented a systematic method
for automated view planning in the construction of
highly detailed 3-D models of large indoor and out-
door environments. We have also integrated this al-
gorithm into our mobile robot system, allowing us
to acquire those views automatically. Models have
been acquired using this method for buildings on
the Campus of Columbia University and Governors
Island and for cathedrals in the Bourbonnais region
of France (Romanesque Churches of the Bourbonnais,
2007). In all these cases our view planning made
acquiring these complex models more efficient and
complete.

The procedure started from a 2-D ground map
of the environment, which defined the open space
available to the robot. The method then progressed
through two distinct stages. In Phase I, a prelimi-
nary 3-D model was constructed by having the robot
compute and acquire a set of initial scans using our
2-D view planning algorithm. In Phase II, this initial
model was then refined by a 3-D view planning phase
that made use of a voxel representation of the envi-
ronment and that successively planned NBVs in or-
der for the robot to acquire a complete model.

Our system for view planning and site model-
ing could benefit from improvements that would de-
crease the computation time required on site. In our
current system, the Phase II calculations of voxel visi-
bility are still computationally expensive. To mitigate
this, we try to fill in as much of the model as we can
before embarking on Phase II and we then limit the
number of unseen voxels that actually need to be con-
sidered during the second phase. One should note
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Figure 22. Top: The viewing locations chosen by the Phase II view planner for the inner and outer courtyards of Fort Jay
(two more NBVs were chosen for the moat; these are not shown). Bottom: A view of the final model of Fort Jay after all 33
scans from Phases I and II were acquired.
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Figure 23. Detailed views of portions of the final model of Fort Jay.
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that the evaluation of a voxel’s visibility by potential
viewpoints is inherently independent of the evalua-
tion for another voxel. Therefore, these calculations
could be done in parallel and would benefit from
multicore processors to speed up computation in the
field. Further calculational time saving could be ac-
complished in Phase II by forming regions of bound-
ary unseen voxels and regions of potential viewpoints
so that one would need only to use a single represen-
tative voxel and a single representative viewpoint for
each region. One would thereby dramatically reduce
the number of voxels and viewpoints that had to be
considered.

Determining ground truth for our experiments is
another difficult problem. There are no existing accu-
rate 3-D models to compare against. Even renderings
based on architectural plans are not that useful be-
cause most structures are not built exactly to specifi-
cations. One option is to add noise to the scan sim-
ulator and compare the resulting simulated scan to
the 3-D model on which we are running the simula-
tion; however, this approach could never reproduce
all of the environmental conditions that could affect
our model construction in the field.

Another avenue of exploration involves using the
scan simulator in the actual planning process. Sim-
ple 3-D models of important sites are becoming more
prevalent, and a number of simple, inexpensive tools
for prototyping 3-D models are becoming available. If
a rudimentary 3-D model of a scene can be found or
constructed prior to the scanning process, we could
utilize this model to run both the Phase I planner and
several iterations of the Phase II planner before we
are on site to perform the scanning. This would give
a larger set of precomputed scan locations, which
would in turn decrease the amount of computation
time required in the field to form a complete model.

A particular problem for our mobile robot is its
inability to view roofs and other structures from a
ground-based viewpoint. To alleviate this problem,
our future work will consider the integration of ad-
ditional sensing modalities, such as aerial LIDAR
and imagery, into our system. New kinds of data
not obtainable by a ground-based scanner not only
would allow us to fill in gaps in our models but
would also provide extra information to aid in the
planning process itself. Our algorithm could also be
generalized to accommodate viewpoints anywhere
in the voxel space. We could then use viewpoints
above the ground plane, with sensors mounted on
autonomous aerial vehicles. However, for such an ex-

panded system, we would have to address the calcu-
lational expense associated with the increased voxel
search space.

A unique problem that affects and complicates
most stages of any outdoor 3-D scanning process is
the presence of foliage. Our method is not immune to
these complications, and both Phase I and Phase II of
the planning algorithm are affected. Most 2-D maps
do not include these kinds of occlusions, so the Phase
I algorithm cannot take into account the presence of
foliage. The Phase II algorithm is also complicated
by foliage because the voxel grid is rather coarse and
the sparse data coming from the scanning of foliage
can fill too much of the space with seen-occupied vox-
els. This overfilled region of space can block legit-
imate potential viewpoints from being considered.
Our future research will have to address this impor-
tant issue.
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