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Abstract

This paper presents a dynamic sensor-planning system that is capa-
ble of planning the locations and settings of vision sensors for use in
an environment containing objects moving in known ways. The key
component of this research is the computation of the camera position,
orientation, and optical settings to be used over a time interval. A
new algorithm is presented for viewpoint computation which ensures
that the feature-detectability constraints of focus, resolution, field of
view, and visibility are satisfied. A five-degree-of-freedom Carte-
sian robot carrying a CCD camera in a hand/eye configuration and
surrounding the work cell of a Puma 560 robot was constructed for
performing sensor-planning experiments. The results of these ex-
periments, demonstrating the use of this system in a robot work cell,
are presented.

1. Dynamic Sensor Planning

This paper presents a system capable of planning the locations
and settings of vision sensors for use in a dynamic environ-
ment. The system can plan the positions, optical settings,
and movements of a camera needed to meet a set of task con-
straints in a modeled, dynamic environment. We call this type
of sensor planningdynamic sensor planning,as compared
with static sensor planning, in which neither the objects nor
the sensors are moving.
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It is interesting to note that while research in planning the
motionof robots and using sensory feedback to monitor and
control these motions abounds, what research there has been
in planning sensing strategies has focused on environments in
which there is no motion (Tarabanis, Allen, and Tsai (1995)
offer a survey of sensor-planning research). It is our belief that
an intelligent robot system capable of planning its own actions
should be capable of planning its own sensing strategies.

The most general statement of the dynamic sensor-
planning problem is:

Given a model of an environment that includes
models of the motion taking place, a set of fea-
tures to be monitored, models of the sensors be-
ing employed, and a description of the vision-
task constraints, produce a plan to use the sensors
in such a way as to satisfy the task constraints.

However, there are a number of possible variations of this
problem:

Surveillance planning. There areN different immobile sen-
sors, each of which can be used for a different time
interval. In this case, the goal of the system is to de-
termine the best locations for these stationary sensors
so as to provide valid viewpoints for all of the specified
time intervals.

Snapshot planning. The constraints must be met for a spec-
ified set of features at any (unspecified) point in time.
That is to say, the entire task need not be monitored,
and it makes no difference when the image is taken,
so long as the constraints for the image are met. The
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system must determine not only where to position the
camera, but when to take an image.

Viewpoint path planning. There is only one movable sensor.
The system needs to compute a continuous trajectory
through the sensor’s parameter space that ensures valid
viewpoints through all of the desired time intervals.

Multicamera path planning. There is more than one mobile
sensor, each of which can be used for a different time
interval. This permits the sensor-planning system to
compute paths through the sensor’s parameter space
that are only piecewise continuous: one sensor can be
in use during time intervalTi , while another is being
moved into place for time intervalTi+1.

The focus of this paper issurveillance planning: planning
the positions of more than one sensor, each of which will be
active for a different time interval, to guarantee that certain
features can be robustly monitored during a robot task that is
known a priori. There are two basic cases that must be dealt
with separately in the surveillance planning problem. First
is the case where the target objects, i.e., those features that
must be viewed remain stationary, and other objects, such as
the robot that is performing some operation on the stationary
part, moves. This case arises in a variety of fixtured manufac-
turing tasks such as spray painting and spot welding. Second
is the case where the targets to be viewed are moving as well.
This case arises in teleoperation and in other types of manu-
facturing tasks such as pick-and-place, part insertion, etc.

The main difference between these two cases is that in the
first case, if a viewpoint is found to be valid at some point
during the task, it is guaranteed to be valid with respect to
all optical constraints at all times during the task. This is
because the functions defining the constraints only depend
on the target-feature locations and the sensor parameters, and
not on the positions or orientations of obstacles in the envi-
ronment. This fairly obvious but important property allows
us to ignore changes in the optical constraints over time and
focus only on changes in the geometric parameters; i.e., the
visibility constraint.

The second case is more difficult, because it requires an
examination of how changes in the position and orientation of
the target features affect the optical parameters, particularly
focus and resolution. However, if the viewpoint is considered
in terms of a coordinate frame attached to the feature set, the
target can always be considered stationary, with the entire
environment considered as moving. The only limitation is
that the entire feature set must be moving as a single rigid
body; i.e., features cannot move independently.

The subsequent sections of this paper discuss the work
that we have done to date on solving the former case, and
discuss some extensions that may be required to address the
latter case. Figure 1 shows the basic experimental setup for
our sensor-planning system: a robot arm, able to operate in
a work cell, and a gantry robot, used for moving the camera
through a computed trajectory.

Fig. 1. Robot work cell for dynamic sensor planning.

2. Background Material and Prior Work

The bulk of the research in sensor planning for feature de-
tectability has been concerned with the computation of sets
of positions, orientations, and optical settings for a camera
(and, in some cases, for light sources) that will give satis-
factory views of a static scene. In the vision-sensor-planning
literature, the constraints that have been considered important
for judging the quality of a viewpoint are:

• visibility—the features must not be occluded by other
objects in the scene;

• field of view—the features must be within the sensor’s
field of view;

• resolution—features of a specified minimum size must
be resolvable by the sensor;

• focus—the target features must be properly focused;
and

• illumination—there must be sufficient and appropriate
lighting so that the features will be discernible in the
image.

Sensor-planning systems have fallen into two basic cate-
gories. First, there are those methods that discretize the sen-
sor’s parameter space, generating candidate points that are
tested against the constraints to see if they are acceptable.
Those systems categorized as “generate-and-test” systems by
Tarabanis and colleagues (Tarabanis, Allen, and Tsai 1995),
such as the HEAVEN (Sakane, Ishii, and Kakikura 1987) and
VIO (Niepold, Sakane, and Shirai 1987) systems, as well as
the IVIS system (Tarbox and Gottschlich 1995), are examples
that fall into this category.

Second are the techniques that take an analytical approach,
directly computing valid viewpoints or sets of viewpoints
from the constraints, referred to as “synthesis” methods in
Tarabanis’s survey. The machine vision planning (MVP)
system (Tarabanis 1991; Tarabanis, Tsai, and Abrams 1991;
Tarabanis, Tsai, and Allen 1994b, 1995; Tarabanis, Tsai, and
Kaul 1996) and the sensor-planning research done at SRI
(Cowan 1988; Cowan and Bergman 1989), for example, fall
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into this category. Two of the major contributions of the MVP
system are directly used in the present research, specifically:

1. precise models of vision sensors and the equations that
govern the optical constraints; and

2. methods of computing the visibility regions for con-
vex and concave polygonal targets in static polyhedral
scenes.

2.1. Feature-Detectability Constraints

It is now instructive to review the optical feature-detectability
constraints, as they were formulated in the MVP system. (A
more-detailed discussion with derivations can be found in the
work of Tarabanis, Tsai, and Allen (1994a).) In the equations
that follow, rv is the position of the front nodal point of the
lens,v is the unit vector along the optical axis,a is the diameter
of the aperture of the lens,d is the distance from the back
nodal point of the lens to the image plane, andf is the focal
length of the lens. Figure 5 graphically illustrates the optical
constraints of resolution, field of view, focus, and visibility.

2.1.1. Resolution

Considering only thepixel resolution, to ensure that every pair
of points a distancel from one another is resolvable, one must
ensure that each of these points images to a distinct pixel on
the image plane.1 Tarabanis found that the following equation
defines the size of a linear feature in the image plane:

d l| [(ra − rv) × u] × v|
((ra − rv) · v) ((rb − rv) · v)

= w, (1)

wherera andrb are the endpoints of the linear feature to be
viewed,u is the unit vector along the linear feature (fromra
to rb), andl is the length of that feature;w is then the size
of that feature in the image plane. Ifw is at least as large
as the largest distance between pixels (i.e., the diagonal, for
rectangular pixels), then every feature of lengthl is resolvable.

2.1.2. Focus Constraint

A thick-lens imaging system with a finite aperture is perfectly
focused at a specific distanceD (measured along the optical
axis) given by the equation

D = af d

a(d − f )
. (2)

In practice, however, if a point images to a blur circle of a
given sizec, it is considered to be sufficiently in focus for
a given application. For most computer-vision applications

1. Although other constraints may come into play to determine the true res-
olution of the system, such as the quality of the optics, the lighting, and so
forth, it is the pixel resolution with which we are concerned in the present
research.

using CCD-based sensors and frame grabbers,c is chosen
to be the size of 1 pixel, measured along its smallest side.
This ensures that the blur circle of any feature point will be
smaller than 1 pixel. The system is then sufficiently focused
for a range of depths fromD1, the far limit of the depth of
field, toD2, the near limit. These limits are given by Krotkov
(1989):

D1 = af d

a(d − f ) − c f
, (3)

D2 = af d

a(d − f ) + c f
. (4)

2.1.3. Field of View

Any feature that projects completely or partially outside of the
sensor area is not within the sensor’s field of view. So, for a
camera with a rectangular sensor, the field-of-view boundary
is a rectangular pyramid with its apex at the front nodal point
of the lens.

For a rectangular image plane, the field-of-view angle de-
pends on the direction in which it is measured (i.e., horizon-
tally, vertically, or diagonally). However, sensor-planning
systems generally consider the image plane to be symmetri-
cal about the optical axis for the purposes of field of view,
obviating the need to compute a third orientational parameter
for the camera (the roll angle about the optical axis). The
field-of-view angle of the camera,α, is then computed based
on the length of the smaller side of the sensor area,Imin.
Therefore

α = 2 tan−1(Imin/2d). (5)

For simplicity, when considering the field-of-view con-
straint, most sensor-planning systems aggregate the set of fea-
tures to be imaged into the minimum sphere circumscribing
the features (centered atrs , of radiusRf ), and then ensure
that this sphere is entirely within the sensor’s field of view.
Looking at Figure 2, it can be seen that for a fixed camera
orientation ofv, the lens is constrained to lie in a cone. The
apex of this cone is given by

rk = rs − Rf

sin(α
2 )

v. (6)

Moreover, the camera can never be positioned closer than
Rf

sin(α/2)
to rs , yielding the field-of-view limiting sphere shown

in Figure 2.

3. Outline of the Approach

To recap, the exact problem we are discussing is one in which
one or more cameras are being used to monitor a task. In this
task, the actual target we are monitoring does not move, but
other objects in the environment, such as a robot arm, or other



4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

Fig. 2. The field-of-view constraint forces the camera to be
positioned outside of the larger sphere, regardless of its ori-
entation. However, for any specific orientationv, the camera
is constrained to be positioned within a cone as shown.

mechanical parts, move in a way that is known a priori. The
problem is to find where to place the camera(s), and when to
use each camera, so that at all times during the task, we have
a “good” viewpoint for monitoring the target features. This
is typical of a robotic work cell, where objects that are to be
assembled and inspected may be occluded by the motion of
robotic hands and arms during the assembly process.

In this research, we are planning the positions and settings
of the sensor, not the illuminator. Therefore, a viewpoint is
considered “good” if the features are resolvable to the given
specification, properly focused, completely contained within
the camera’s field of-view, and completely unoccluded.

Specifically, the system presented computes:

• position—the position inR3 of the sensor (actually the
front nodal point of the lens);

• orientation—the pan and tilt components of the direc-
tion of the optical axis (the roll about the optical axis is
not considered);

• back nodal point to image-plane distance—not the fo-
cal length of the lens, but rather the distance from the
back nodal point of the lens to the image plane (for a
given focal-length lens, this parameter primarily deter-
mines the focused distance of the lens, but also impacts
the field of view and resolution);

• aperture—the size of the lens opening, which impacts
the focus constraint and dictates the requisite illumina-
tion; and

• temporal intervals—owing to motion in the environ-
ment, the position, orientation, focus, and aperture set-
tings computed may only be valid for a specific time
interval. The system computes a number of points and
their associated time intervals so that the entire feature
set can be monitored during the entire task.

To accomplish sensor planning, the following data must be
available to the system:

• object models—regular polyhedral models of the ob-
jects in the environment that indicate the target features
to be monitored are needed to satisfy the visibility con-
straint;

• motion models—models of the motion taking place in
the environment are needed to ensure that the visibility
constraint is satisfied at all times;

• sensor resolution—the maximum distance between ad-
jacent pixels on the image plane is needed to ascertain
that the resolution constraint is met; and

• sensor element size—the minimum dimension of each
pixel on the image plane is needed to meet the focus
constraint; i.e., so that none of the feature points are
blurry enough to cover more than 1 pixel.

Our basic idea is to find temporal intervals for which view-
points can be computed, compute swept volumes representing
the motion of the objects during those intervals, and then use a
viewpoint- computation algorithm to compute the sensor posi-
tions, orientations, and optical settings that are valid for each
interval. This approach, therefore, has three main compo-
nents: swept-volume computation, viewpoint computation,
and temporal decomposition.

3.1. Swept-Volume Computation

Given that we have an objectO whose trajectoryQT is known
over a time intervalT , we define7(O, QT ) to be the volume
swept out byO duringT . For example, in Figure 3, if object
O is rotating about pointp at a rate of 90◦ per second, and
T is 1 sec, then7(O, QT ) is the swept region shown on the
right.

Let V represent visibility volume for7(O, QT ). SetV is
the set of all points (inR3) that give views of the target which
have no obstructions (due toO) for the entire time interval. A

Fig. 3. Two-dimensional swept region example, generating
7(O, Q).
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2-D example is shown in Figure 4. Any point in the visibility
region V may be used to monitor the target for the entire
time intervalT without fear of occlusion. Any point in the
occluded region, at some moment during time intervalT , will
have an occlusion due to the moving objectO. Therefore, we
decided to use swept volumes as part of the process of finding
viewpoints that will be valid for a given time interval.

A number of researchers have looked into the very inter-
esting problem of computing the volumes swept by moving
objects, including Hui (1994), Kaul (1993) Korein (1985),
Martin and Stephenson (1990), Schroeder, Lorensen, and
Linthicum (1994), Sourin and Pasko (1995), Wang and Wang
(1986), and Weld and Leu (1990). However, for the purposes

Fig. 4. Visibility region for7(O, Q).

Fig. 5. Feature-detectability constraints. The linear features
shown meet all of the optical constraints. They are within
the field-of-view cone, between the depth-of-field limits, and
project to appropriate sizes on the image plane.

of this research, we found that the existing solutions all had
a number of drawbacks, including unacceptable limitations
on the classes of motion or moving objects, and impracti-
cality of implementation. Therefore, we developed a new
algorithm for computing polyhedral approximations of the
volumes swept by arbitrarily moving polyhedra. The models
are geometrically and topologically valid (i.e., regular solids
in R3).

The algorithm is based on sampling and interpolation. To
summarize, the moving object is stepped through its trajec-
tory. At each step, a set of faces is created stretching from
the edges at one position to the corresponding edges at the
next position. These faces, along with copies of the faces of
the moving object itself at certain points during its trajectory
(where needed) are all collected into a set. This set is then
processed so that the outer boundary of the swept volume can
be computed. This algorithm is the subject of separate papers,
and the interested reader should consult these earlier works
(Abrams 1997; Abrams and Allen 1997) for details.

3.2. Temporal Decomposition

The primary question is, “What makes a good temporal inter-
val?” The intuitive answer is that, for dynamic sensor plan-
ning, a temporal interval is “good” if it is as large as it can be
while still allowing the computation of a single robust view-
point. This, of course, begs the question, “How can a good
temporal interval be found?”

One rather obvious method is to leave it tohumansto
find good temporal intervals. Humans have higher task-level
knowledge of the problem being solved, and can often do
a very good job of dividing it into intervals, each of which
should be monitored by a single viewpoint. However, our
goal is to obtain an automated process for computing these
viewpoints.

The method employed for the present research is a binary
temporal interval search. Assume we have a polygonal target
τ that we wish to monitor during the time intervalT = [t0, tn].
During T , there is a set of known obstaclesO1 throughOm,
which move in known paths. The goal is to plan a single
viewpoint that is valid for the entire interval, if such a point
exists, or to determine a sequence of viewpoints which, when
executed at the appropriate times, allow the features to be
monitored for the entire interval.

Temporal Interval-Search Algorithm

1. Compute the swept volume7(Oi, QT ) for each of the
m obstacles.

2. Attempt to compute a viewpoint using7(O0, QT )

through7(Om, QT ) as well as all stationary objects
in the environment as the set of potentially occluding
bodies.

3. If a viewpoint can be found successfully, use this view-
point for the entire time intervalT .
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4. If no such viewpoint is obtainable, divide the time inter-
val in half, yieldingT1 = [t0, tn/2]. If T1 is shorter than
the smallest allowable time interval, report a failure.
Otherwise, go back to step 1 using intervalT1.

5. If the entire time intervalT has been planned, we are
finished. If not, go to step 1 using the remaining portion
of the original intervalT .

The algorithm essentially tries to quickly find the endpoint
of an interval for which a single viewpoint can be found. In
step 4, notice that we allow the user of the system to spec-
ify a minimum time interval. This prevents the system from
examining infinitesimal intervals when no viewpoint can be
found. It can also be used by the user to limit the temporal
resolution of the system in preventing, for example, motions
of the camera every second while monitoring a 2-hour task.

While there are refinements that could be made to this
interval-search algorithm, the most dramatic improvement
probably can come from human intervention. If there are
clearly distinct intervals of the task to be monitored, the sys-
tem will be more efficient if the user breaks them up in advance
and feeds them, as separate tasks, into the sensor-planning
system. As we discuss in Section 6, the temporal interval de-
composition problem is an area open for investigation in the
future.

4. Viewpoint Computation

In conducting dynamic sensor-planning experiments, we have
found that the optimization approach used in MVP, while no-
table for its generality, has some drawbacks. Since some of
the constraints are nonlinear and, at points, nondifferentiable,
general-purpose optimization algorithms can have difficulty
computing viewpoints. Convergence cannot be guaranteed,
and the system is sensitive to the initial guess and the weights
given to the constraints. These shortcomings triggered our
search for new algorithms, starting with a review of the field.

The discretization approaches taken by some (such as
Sakane et al. (1992) and Sakane, Sato, and Kakikura (1987))
are more straightforward than optimization (involving the
search of a tessellated sphere), and can easily be shown to
converge. However, they tend to ignore or assume certain
imaging parameters (i.e., the distance from the viewpoint to
the features is set to meet an overall magnification require-
ment, or the viewing orientation is assumed to be toward the
center of the feature points), and the computational cost of
finer tessellations can lead to very costly searches. The syn-
thesis approach taken by Cowan and colleagues (Cowan and
Kovesi 1988; Cowan and Modayur 1993) does not suffer from
the computational expense of the generate-and-test methods.
Their method of computing admissible domains inR3 for
each constraint is also straightforward, but they too consider
only a subset of the parameters and a subset of the solution

space, thereby eliminating a number of potential solutions a
priori.

Our goal was to develop a viewpoint-computation algo-
rithm that has the benefits of MVP (i.e., uses analytical for-
mulations for the constraints, avoids implicit assumptions
about the viewing parameters, does not require the expense
of generate-and-test, and solves for all viewing parameters),
and of the other methods (i.e., straightforward search with
demonstrable convergence).

4.1. A New Approach to Viewpoint Computation

Viewpoint Computation Algorithm

1. Compute a candidate set inR3. This set, calledVc, will
be a superset of the projection of the solution set into
R3.

2. Search the candidate set for points as far from the
boundary ofVc as possible, finding a number of local
maxima. These are potential solutions for the camera
position.

3. Compute the camera orientation for the solutions found.

4. Compute the optical settings for the solutions found.

5. Verify the correctness of these solutions.

Overall, we are taking a decomposition-based approach to-
ward solving this problem; that is, we are implicitly weighing
certain constraints more than others. Focus is given the least
consideration, since it can be handled at the latest stages by
controlling the focus setting on the lens, the aperture, and if
needed, the lighting. In contrast, visibility must be consid-
ered foremost, as the only way to give a previously occluded
viewpoint an unobstructed view of the scene is to remove the
obstacle or move the camera! As it turns out, the field of view
and resolution constraints can be combined in an interesting
manner and considered together. We shall see that these two
constraints often directly oppose one another, and therefore
in a decomposition-based approach such as this, should be
considered simultaneously.

One constraint we have imposed upon ourselves in obtain-
ing this candidate volume is to approximate no more than is
necessary, and to assume nothing additional about the camera
parameters. We are not interested in assuming, for example,
a specific camera orientation. In our opinion, while there are
clear benefits to working in three dimensions rather than in
the higher dimensions of the camera parameter space,2 dis-
carding possible solutions to the problem in order to simplify
the computations should be avoided.

Note that in this approach, the selection of optics (i.e., the
focal length of the lens) is not made automatically. There are
a number of reasons for this. To begin with, there is a trade-off
between the distance to the feature points and the focal length.

2. The primary such benefit is the availability of 3-D computational tools.
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That is, a very similar image is obtained using a short focal-
length lens at a short distance as would be obtained using a
longer lens from a greater distance. The difference is in the
exaggerated perspective obtained with the shorter lens. Be-
cause the amount of perspective desired in the resulting image
is highly dependent upon the application and has an impact
on the resolution constraint, the selection of focal length is a
choice best left to the user of the system. There is generally a
discrete set of focal lengths available to a user, not a continu-
ous range. The user knows which focal lengths are available,
and can select one. Finally, there are a number of situations
where selection of an inappropriate focal length prevents the
computation of a viewpoint. As we shall see, these situations
are readily noticeable and can be automatically determined.

4.2. Computing a Candidate Set: Merging Field of View and
Resolution

Before discussing whatVc should look like, we will examine
the merging of the field-of-view and resolution constraints.
The field-of-view constraint, in essence, only prevents the
camera from being placed too close to the features (i.e., a dis-
tance

Rf

sin(α/2)
from the center of the sphere circumscribing the

features). Beyond this distance, any position can satisfy the
field-of-view constraint simply by adjusting the orientation.
What we shall see in this section, however, is that the resolu-
tion constraint alone does not place a bound on the position
of the camera. The sensor’s position and orientationtogether
determine the resolution constraint. We will show how reso-
lution can be considered in conjunction with the field-of-view
constraint to yield bounds on our candidate set inR3.

For the moment, let us examine the constraint imposed on
the camera’s position, assuming that the optical settings and
orientation are kept constant. For any given viewingdirection
v and for each featurei, there is a field-of-view cone that
constrains the position of the camera. The axis of this is the
cone in the direction ofv, and its apex is at pointrk. This was
shown in Figure 2 and in eqs. (5) and (6). Technically, the
half-angle of this cone is dependent upond, the distance from
the back nodal point of the lens to the image plane. However,
under normal viewing conditions,d can be approximated by
f , the focal length, without having a significant effect on the
field of view.3

Further, for any given viewing direction and for each fea-
ture i (a linear feature of lengthl),4 there is a surfaceSiv

that constrains the position of the camera due to the resolu-
tion requirement. By plotting eq. (1), keeping all parameters
constant (other than camera position), we can see this surface.
Figure 6, for example, shows the surface constraining the posi-
tion of the viewpoint for a vertical feature (i.e.,ra = (0, 0, 0),

3. When focused at infinity,d = f , and under normal viewing conditions,d

does not differ fromf by enough to affect this surface significantly. In any
case, we will eliminate this approximation later.
4. Recall thatl is the minimum feature size that must be resolvable.

rb = (0, 0, 1)), viewed from a downward-vertical direction
(v0 = (0, 0, −1),) such thatl = 1 mm, andw = 1 pixel.
Figure 7, showing the same plot for a different viewing ori-
entation (v1), has a very different shape. Again, althoughd

appears in these equations, it can be approximated usingf .
For any viewing orientation, the set of valid camera po-

sitions includes only those that are bothinsidethe cone and
underthe resolution surface. Figure 8 shows the field-of-view
cone superimposed on the resolution surface for viewing di-
rectionsv0 andv1: each viewing orientation implies a single
volume that constrains the camera’s position.

Turning the camera’s orientationaway from a feature
(while holding the camera’s position constant) increases the
resolution, albeit at the expense of field of view. If the camera
is too far away to image the features with proper resolution,
the camera can be rotatedawayfrom the feature, and the res-
olution will increase. However, one can only turn the camera
away as much as the field-of-view constraint will permit.

So, in broad terms, the field-of-view constraint alone im-
poses a limit on how close the camera can be to any one
feature (as a function of the orientation); and the resolution
constraint alone imposes a constraint on how far the camera

Fig. 6. When viewing a vertical linear feature of unit length
at the origin, this surface illustrates the constraint on the cam-
era’s position if its orientation is fixed to be looking down-
ward, i.e.,v0 = (0, 0, −1).

Fig. 7. When viewing a vertical linear feature of unit
length at the origin, this surface illustrates the constraint
on the camera’s position if its orientation is fixed to be
v1 = (− sin(π

8 ), 0, − cos(π
8 )).
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can be from any one feature (also as a function of the ori-
entation). Therefore, it should be possible to combine these
constraints to yield a set of positions, all of which have the
property that at least one orientation can be found such that
both constraints are met. In fact, it is possible.

We have a method for computing a region inR3 called
VFRi

. Each point inVFRi
has associated with it at least one

orientation that satisfies both the field-of-view and resolution
constraints for the linear featurei. Further, this volume con-
tains all such points.5

By way of illustration, we computed the intersection of
the regions bounded by resolution surfaces and the field-of-
view cones to yield a single volume of feasibility for field-
of-view and resolution constraints together,Riv . The shape
of this volume is that of a cone “capped” by the resolution
surface. These volumes are shown in Figure 9 forv = v0 and
v = v1. A corresponding volume exists for every possible
viewing orientation. Clearly,VFRi

volume for this featurei
must include the union of these volumesRiv for all viewing
orientations.

5. This volume is a superset of the complete candidate volumeVc. Consid-
eration of other constraints and features will further reduce the set.

Fig. 8. Superimposition of the resolution and field-of-view
constraints whenv = v0 (left) andv = v1 (right).

Fig. 9. Intersection of the resolution and field-of-view con-
straints for two viewing directions,v0, v1.

4.2.1. Resolution and Field of View in Two Dimensions

We first compute the regionVFRi
in two-dimensional viewing.

We then extend these results to three dimensions; that is, the
viewing orientationv is constrained to lie in the plane defined
by the feature endpoints and the camera’s entrance pupil. As
before, the feature being viewed is a vertical linear feature at
the origin. This figure can be produced by intersecting the 3-D
constraints of Figure 9 with the plane containing the lens and
the feature endpoints (in this case, thexz-plane). The figure
shows the superposition of the field-of-view and resolution
constraints for viewing the feature with an orientation ofv =
v1. The intersection points between the constraints have been
highlighted. The regionRiv , in this situation, is the region
inside the “V” and below the curve.

As we rotate the viewing angle in the plane, it turns out
that these intersection points are constrained to lie on a circle.
This can be seen in Figure 11, which shows eight pairs of
field-of-view and resolution constraints, with the highlighted
intersection points clearly lying on a circle. From a practical
point of view, this means that if we were to select an orienta-
tion of the camera (in the plane), position the camera (in the
plane) such that the feature is just at the edge of the camera’s
field of view, and back up until the feature just barely met the
resolution criteria, the camera would always end up on a point
on this circle, regardless of the chosen orientation.

To prove this, recall that the resolution constraint specifies
the minimum image-space lengthw of a feature of a given
object-space lengthl. The angle subtended by a feature of
lengthw on the image plane (as seen from the back nodal point
of the lens) depends on its position on the image plane (see
Fig. 12). (If the image plane were a circular arc centered at the
back nodal point, then the feature would subtend a constant
angle, regardless of its position.) If the feature is imaged just
at the edge of the field of view, we know its position. If the
feature is imaged at the smallest tolerable size, we know that
its size isw. Therefore, the intersection of the field-of-view
and resolution constraints occurs when the feature is imaged
at the minimum tolerable size at the limit of the field of view.
At these points, the image of the feature always subtends a
constant angle, sayλ.

The feature itself, as seen from the front nodal point of
the lens, must subtend the same angle as its image as seen
from the back nodal point. Therefore, the points for which
this condition holds true are exactly those points for which the
feature subtends an angle ofλ; these points lie on one of two
circles. The two circles are reflections of one another across
the line of the feature.

Specifically, what is the equation of this circle? The set of
points for which a segment of lengthl subtends an angle ofλ

is given by a circle of radiusR with a center on the perpen-
dicular bisector of the segment at distance ofH . RadiusR
and distanceH are given by the following:
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R = l

2 sin(λ)
, (7)

H = R cos(λ). (8)

These equations can be solved to yield (Abrams 1997):

R = c l

2w sin(π−α
2 )

, (9)

H = R
−w2 + b2 + c2

2b c
, (10)

wherew is the length of the feature in the image,I is the
width of the sensor, andd is the distance from the back nodal
point to the image plane.

If we were to compute the union of all of these regions
Riv for all viewing orientations (still constrained to the 2-D
configuration), these circles would form part of the boundary
of this union (and therefore theVFRi

region). The other por-
tion of the boundary would be shown in the lower-left corner
of Figure 11. A similar graph, showing several field-of-view
cones in 2-D, has been enlarged in Figure 10 to show this
corner. In 2-D, the apexes of the field-of-view cones are con-
strained to lie on a circle, and this can be seen in the enlarged
figure. The camera cannot be positioned closer than this cir-
cle, or the feature cannot be imaged within the camera’s field
of view at any orientation. Since we are, for the moment,
considering only a single linear feature of lengthl, eqs. (5)
and (6) give us that the radius of this circle is l

2 sin( α
2 )

, and it

is centered at the midpoint of the edge.
So the regionVFRi

is bound by these circles: one small one,
centered at the feature itself; and two larger ones, reflections
of each other, given by eqs. (8)–(10). For any point inside
this region, there exists at least one orientation that meets
both the field-of-view and resolution constraints. Outside of
this region, the field-of-view and resolution constraints cannot

Fig. 10. The field-of-view cone and the resolution curve in
2-D, shown with the intersection points, for a given viewing
direction.

Fig. 11. (a) Field-of-view cones and resolution curves for
several viewing orientations, in 2-D, shown with intersec-
tion points. (b) The enlargement of the lower-left corner of
(a), showing the apexes of the cones sitting on a circle. The
inner circle in (b) is the circle circumscribing the feature to
be viewed.

Fig. 12. The segment with lengthw in the image plane is
imaged at the field-of-view limit, and subtends an angle ofλ,
as seen from the back nodal point of the lens.

simultaneously be met, since rotating the lens such that the
segment is large enough results in the segment being imaged
outside of the camera’s field of view.

Referring again to Figure 11, there is another circle that
can be seen, apparently formed by the envelope of the res-
olution curves (as described by Tarabanis, Tsai, and Allen
(1994a). This envelope bounds the region in which the res-
olution constraint is met forany camera orientation, while
the larger circle (formed by the intersection points) described
here bounds the region in whichsomecamera orientation will
simultaneously satisfy both the field of view and the resolu-
tion. The inner circle is the region used by Cowan and Kovesi
(1988) for their resolution constraint. It can be seen that by
dropping Cowan’s assumptions about the camera’s orienta-
tion, additional regions are admitted to the candidate set.

4.2.2. Resolution and Field of View in Three Dimensions

To better understand what is happening in three dimensions,
imagine a coordinate system set up by the feature’s endpoints



10 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

and the camera’s front nodal point, as illustrated in Figure 13.
That is, letA be the origin,AB be thez-axis, andr0 (the
nodal point) be on thexz-plane, to the positivex- side.6 The
camera’s orientation can then be expressed as(θ, φ), whereθ
is the angle the optical axis makes with they-axis (after being
projected into thexy-plane) andφ is the angle that the optical
axis makes with thez-axis. The two-dimensional example we
have been using corresponds to settingθ to π

2 , keeping the
optical axis in thexz-plane.

Rotations away from the feature (in eitherφ or θ ) improve
resolution at the expense of field of view. However, the reso-
lution changes by an amount that depends on the direction of
rotation. The resolution improves more quickly by rotating
φ (staying in the plane defined by the feature and the cam-
era position). This can be seen in that eq. (1), where asφ

approachesπ2 , the minimum resolvable feature (l) is propor-
tional to sin2(φ), while asθ approachesπ2 , l is proportional
to sin(θ).7

However, the field-of-view constraint is only concerned
with the magnitude of the angle that the optical axis makes
with the feature set, not the direction. That is, as far as the
field-of-view constraint is concerned, the combination ofφ

andθ must be such that the field-of-view constraint is still
met.

Recall that in two dimensions, the goal was to find a con-
straint on the position of the camera that bounds the set of
points for which the field-of-view and resolution constraints
can simultaneously be met. In order to do this in three di-
mensions, we now see that it is sufficient to consider rotations

6. This assumes, of course, thatA, B, andr0 are not collinear. If they are,
the entire feature images to a dot, and the resolution constraint is not met.
7. For situations where the camera is not positioned on thex-axis of the spe-
cially constructed coordinate system, this analysis still holds, but a different
φ is used. In these cases,φ is π

2 minus the angle between the viewing direc-
tion vectorv and the segment connecting the front nodal point to the feature’s
distal endpoint.

Fig. 13. The coordinate system setup.r0 is in thexz-plane.
Settingθ to π

2 corresponds to the “two-dimensional” viewing
configuration.

in φ, leavingθ = π
2 . For if the camera is rotated such that

the feature is at the field-of-view limit using a rotation where
θ 6= π

2 , with the camera positioned such that the resolution
constraint is precisely met, the camera can be further rotated
in φ by settingθ = π

2 and increasing the size of the feature;
that is, as far as resolution is concerned, rotations inφ buy
you more than rotations inθ . Field of view, on the other hand,
imposes a maximum rotation regardless of direction. There-
fore, there are positions for which the only way to satisfy both
field-of-view and resolution constraints is to rotate the lens in
φ, not θ . There are no points for which the converse is true.
To find aVFRi

, which includes exactly the set of candidate
points for which there exists an orientation that satisfies both
field-of-view and orientation constraints, we therefore leave
θ = π

2 and consider only rotations ofφ.
The boundary of the positional constraint, then, is equiva-

lent to taking the 2-D regionVFRi
and sweeping it about the

line defined by the edge feature (which passes through the
larger circle). This volume has the shape of a torus that has
lost its hole (because its major radius is smaller than its minor
radius), which has had a sphere subtracted from its center.
The toroidal shape results from rotating the two larger, sym-
metric circles of the 2-D case about the axis of the feature;
the sphere subtracted from the center results from rotating the
smaller circle, which limits the position of the camera due to
field of view alone. The major radius of this torus isH , and
its minor radius isR, as defined in eqs. (8)–(10). The radius
of the subtracted sphere is l

2 sin(α/2)
, from the field-of-view

constraint eqs. (5) and (6) above.
Therefore, to complete the volumeVFRi

, we subtract a
sphere from the center of the “pinched torus.” For any point
inside this volume, an orientation can be found that satisfies
both the field-of-view and resolution constraints (but not nec-
essarily the same one). For any point outside this volume, no
such orientation exists. Figure 14 shows a cutaway view of
this volume for a vertical linear feature.

The discussion thus far has been restricted to handling lin-
ear features of lengthl. To handle segments longer thanl, we
consider a segment of lengthl at each of the endpoints of the
actual feature and intersect their corresponding candidate vol-
umes (similar to the technique used by Cowan and Bergman
(1989)). If and only if each of these segments is imaged to

Fig. 14. Candidate volume for one linear feature, considering
only field-of-view and resolution constraints. The figure has
been cut away twice to show the inside, but the actual volume
is symmetric about the two cutaway planes.
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the appropriate resolution, then the resolution constraint for
the entire feature is satisfied. Therefore, we position aVFRi

at each end of the feature and compute their intersections. In
addition to this, however, we must compute a field-of-view
limiting sphere for the entire feature set; that is, in comput-
ing a constraint on the position of the camera, it is important
to ensure that both ends of the feature can be imaged with
proper resolution while in the camera’s field of view. This is
handled, as is the case in other sensor-planning research, by
computing a single sphere of radius

Rf

sin( α
2 )

and subtracting it

from the candidate set.8

4.2.3. Visibility

For a feature to be detectable by a vision sensor, it may not
be occluded by other objects. Using algorithms explained
in detail by Tarabanis, Tsai, and Kaul (1996), we construct a
polyhedral volume containing all points from which the target
features are unoccluded. This volume, and therefore the visi-
bility constraint, is independent of the optical parameters and
the camera orientation. Tarabanis and colleagues describe two
methods; we use the “decomposition-based” approach, where
every face on the target and the occluding bodies are decom-
posed into convex pieces. Then, the visibility algorithm is
run on every convex target/occluding-object pair. This gener-
ates volumes of occlusion, which correspond to the “shadow
volumes” that would be caused by the occluding object if the
target were an area light source.

4.3. Computing a Candidate Set: Merging All Constraints

To find the total feasible volumeVc, the volumesVFRi
are

computed for every featurei and intersected with each other,
yielding one feasibility volumeVFR. Fortunately, many ge-
ometric modeling systems are capable of representing and
manipulating tori and spheres, allowing these intersections to
be performed analytically. ThenVFR is intersected with the
visibility volume for the feature set.9 From this result, the
single field-of-view limiting sphere is subtracted, yielding a
single set of feasible points inR3; namely,Vc. The boundary
of Vc, therefore, consists of spherical, toroidal, and polygonal
components.

At this point, there are several ways to determine that the
lens selection may have been inappropriate. If the field-of-
view limiting sphere is so large that nothing remains when
it is subtracted fromVFR, this indicates that the focal length
of the lens is too short for the features selected. Essentially,

8. Note that ifH +R ≥ Rf

sin( α
2 )

, then there are no valid viewpoints: resolution

and field of view have, essentially, fought each other to the death.
9. Alternatively, each of the occlusion volumes can individually be subtracted
from VFR . This often yields greater performance and robustness over first
unioning the occlusion volumes, then complementing this to form a visibility
volume, and then intersecting the visibility volume withVFR . The results
are, however, equivalent.

the constraints are saying that for the resolution constraint on
any individual feature to be met, the camera must be placed
so close to the feature set that the field-of-view constraint for
all other features cannot be met. A longer focal-length lens
should therefore be selected.

On the other hand, if subtracting the field-of-view limiting
sphere from the visibility volume yields an empty volume,
this indicates that the focal length is too long. In this case,
the field-of-view constraint forced the camera to be so far
away from the feature set that the features were occluded. If
neither of these conditions holds, then we have a reasonable
assurance that the lens selection is appropriate to the task at
hand.

It is still, however, possible thatVc is empty or very small.
In particular, the intersection of the visibility volume with
VFR may yield a very small or empty set. If this is a static
sensor-planning problem, this is an indication that the feature
set is too large to be monitored entirely from one viewpoint.
There may be no single point from which the entire set is
visible, while meeting the other constraints. If, however, this
is a dynamic sensor-planning problem, the other possibility
is that the task interval is too large to be monitored entirely
by one viewpoint. The goal then is to position the camera
at an appropriate point inVc and compute an orientation for
which all features will be unoccluded within the sensor’s field
of view, and properly resolvable.

4.4. Searching within the Candidate Set

Once a candidate set,Vc, has been computed, we need to find
a viewpoint within this set. The optimality criteria used in
MVP for computing a single viewpoint was distance. That is,
it attempted to find a viewpoint (in the full eight-dimensional
sensor-parameter space) as far away from the constraining
surfaces as possible. In this new formulation, when we are
searching a region inR3, this same criteria can be used while
avoiding the global optimization difficulties encountered in
MVP. We use a gradient-based search algorithm to maximize
the distance between the viewpoint and the boundary.

There are a number of easily computable starting points
for this search. For example, a point on the surface of each
spherical patch may be used, or a point on the surface of each
“capping” toroidal surface may be used. In fact, a point on any
of the boundary surfaces can be used as a starting point, and
the search will converge to a local minima inside the volume.
If desired, the quality of the result may be improved by per-
forming several optimizations, each starting from a different
boundary surface, and the best overall result can be used.

Computing the orientation can be a bit more difficult, how-
ever. Recall that in the computation of the candidate set, we
have ensured that for each feature there exists an orientation
satisfying all constraints. However, we have not ensured that
there exists a single orientation that satisfies all constraints
for all features simultaneously. Therefore, a gradient-based
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search can be used to find a viewing orientation that satisfies
all constraints for all features.

This search has a starting point easily available to it;
namely, a point oriented toward the center of the sphere en-
compassing the points. Under the simplified field-of-view
constraint used, this is the optimal orientation for field of
view. However, once we have reached the stage of computing
the final orientation, we discard this simplified field-of-view
constraint. To do this, aminimal circumscribing coneis com-
puted about the feature points. This cone has its apex at the
computed camera position, and it has the smallest cone angle
(γ ) that still encompasses the feature points. The axis of this
cone is the true optimal orientation for the field of view. Fur-
ther, α

2 − γ
2 is exactly the amount of room we have to “adjust”

the orientation before the field-of-view constraint is violated.
From here, the search algorithm computes the resolution

of each feature. For each feature for which the resolution con-
straint is not met, it computes an adjustment that will improve
the resolution of these features while still maintaining field of
view. This adjustment can take the form of a constrained op-
timization, such as was used in MVP, but only optimizing the
orientation subject to the field-of-view and resolution con-
straints. This process iterates until either it is “stuck” (i.e.,
reusing already-discarded viewing orientations, or oscillating
between subsets of features), until no adjustment direction
can be found, or until it converges on a successful orientation.
Clearly, this optimization may not converge, as there may not
be any orientation that satisfies all constraints for all features
at the computed position. In such a case, one of the other
locally minimal positions should be used.

In cases where none of the locally optimal positions yield
successfully computed orientations, there are a number of pos-
sibilities. First of all, it has not been proven that this implies
that no solution exists. It is, however, a strong indication that
nogoodsolution exists. It may well be an indication that the
sensor is not up to the task. A bit of common-sense fault anal-
ysis will certainly help. If the visibility volume is extremely
small, perhaps the feature set should be partitioned. If the
VFRi

volumes barely overlap, this indicates that a denser sen-
sor array should be used, improving the resolution. It would
then be wise to select a different lens or camera and recom-
pute.

4.5. Computing the Optical Parameters

Once a single viewpoint and orientation have been success-
fully computed, we are left with the task of computingd and
a to ensure that the features are in focus.

It seems to make little sense to compute the focus-related
lens parameters in a system in which lighting is not planned.
That is because the depth of field of the optical system can
be changed simply by adjusting the aperture. The smaller
the aperture, the larger the depth of field will be. Therefore,
given sufficient lighting (or a sufficiently sensitive sensor),

one can reduce the aperture as needed (in the limit, reducing
the lens to a pinhole), thereby increasing the system’s depth
of field (in the limit, to an infinite depth of field), bringing the
features into focus. Rather than computing absolute focus
and aperture settings in the absence of lighting information,
we take a different approach.

Any given position and orientation of the lens imposes a
depth-of-field requirement: the aperture and focus must be
set such that the near DOF limit is no farther away than the
nearest feature point, and the far DOF limit is no closer than
the farthest feature point. Of interest, then, are the values ford

anda that will just barely satisfy the depth-of-field constraint.
We can therefore compute an optimal value ford, called

doptimaland the upper bound fora, calledamax. Valuesamax
anddoptimal combine in such a way thatamax is the largest
possible aperture for which there exists a value ford such
that the entire feature set is within the camera’s depth of field.
That value ford is doptimal. Thenamax can be used in an
illumination-planning system (one of the planned extensions
of the current system) to ensure that the correct amount of
light is present to obtain an appropriate response from the
sensor, given an aperture of no more thanamax:

D1 − D2 = (rf − rc) · v,

D1 = rf ,

we find thatd andamax are given by

doptimal = 2Dmaxf (Dmax − Df )

2Dmax(Dmax − f − Df ) + f Df

, (11)

and

amax = 2c Dmax(Dmax − f − Df ) + f c Df

f Df

, (12)

where

Dmax = (rf − rv) · v,

Df = (rf − rc) · v.

For a CCD imaging system, we usec = 1 pixel (measured
across its minimum dimension) to ensure that no feature point
is blurred more than 1 pixel.

Once the imaging parameters are computed, the resolution
and field-of-view constraints are recomputed using the actual
d to ensure that the viewpoint has not been invalidated with
respect to these constraints. Since the viewpoint was chosen
to be as far away from these boundaries as possible, and since
these boundaries do not change significantly as the lens is
focused, the validity of the viewpoint should not, in general,
change. First, notice that this onlyimprovesthe resolution,
so there is no cause for concern; the field-of-view constraint
must, however, be rechecked.
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What can be done if this underestimate causes the field-
of-view constraint to be violated? There are a number of
options. First, one can conclude that the lens is inappropriate
for the vision task; a longer focal-length lens can be selected.
Second, the entire process can be iterated, using the new,
known value ofd instead of the approximation off . While
this will result in a different viewing position, the camera will
be forced back to bring the features into the field of view.
Third, an attempt can be made to back the camera up alongv

until the field-of-view constraint is met. The ability to do this,
however, may be hampered by the resolution and/or visibility
constraints, so these constraints need to be checked.

Alternatively, we can compute the smallest value ofd for
which the features are completely within the camera’s field
of view, and solve eqs. (3) and (4) fora. This is the maximal
aperture that will bring the features into focus. Essentially,
this equates to intentionally defocusing the features to suf-
ficiently “zoom out” the image, and then closing down the
aperture as needed to bring the features back into focus.

However, the purpose of the optimization is to ensure that
we are as far from the bounds as possible, thereby avoid-
ing this situation arising in the first place. In fact, in the
sensor-planning experiments described below, the computed
orientation and optical parameters were always found to be
sufficient, and none of these additional corrective measures
were needed.

5. Experimental Results

With the preceding discussion as a foundation, we can now
go on to describe the complete viewpoint-computation algo-
rithm.

Viewpoint Planning Algorithm

1. Compute the occlusion volumesVoccfor all features to
be inspected.

2. Compute the volumesVFRi
(the positional constraints

for the combined field of view and resolution) for every
featurei.

3. Compute the overall volumeVFR as the intersection of
all VFRi

.
4. Subtract the field-of-view limiting sphere for the entire

feature set from this volume.
5. Clip this region to the half-space corresponding to the

“front” of each target face.
6. Subtract volumeVocc from this region, yielding the

overall candidate volumeVc.
7. Optimize to find a position (or positions) at least locally

optimal withinVc.
8. For each solution pointp, compute a circumscribing

cone with its apex atp containing the entire feature set.
Use the axis of this cone for the camera orientationv.
Verify that this satisfies the resolution constraint. If it
does not, optimize to find an orientation that does.

9. Compute the optimal focus and maximum aperture for
the position(s) and orientation(s) using eqs. (11) and
(12).

10. Verify that the position, orientation, and optical settings
are all valid using the actual value ofd computed, rather
than the approximation ofd = f .

A number of real and simulated experiments using this al-
gorithm were run to verify the algorithm’s ability to correctly
plan viewpoints in dynamic scenes. Two real experiments
are presented here. (Simulations and additional experiments
are available in an earlier work (Abrams 1997).) In each of
these experiments, the object being viewed was placed in the
work cell of a Puma 560 robot, and a motion of the Puma was
programmed. Above and around this robot, a 5-DOF Carte-
sian robot having a work space of approximately 1, 000ft3 was
built. This gantry robot was equipped with a Sony XC77 CCD
camera in a calibrated hand/eye configuration. An overview
of this work cell is shown in Figure 1.

This hand/eye setup was calibrated simply by measuring
the camera and lens mount, yielding a calibration only accu-
rate to within approximately a few millimeters. Further, the
calibration of the two robots relative to one another was also
done via several measurements rather than through a rigor-
ous calibration procedure, yielding only a rough calibration.
While a rough calibration is useful for demonstrating the ro-
bustness of a computed viewpoint, if the sensor-planning tech-
niques described here are to be used in applications requiring
more precise or demanding camera positioning, calibration
methods such as those described by Tsai (1989) or Willson
and Shafer (1993) should be used.

In each of the experiments, the objects to be used were first
modeled using the ACIS geometric modeling system (Spa-
tial Technologies 1995). The objects were positioned in the
Puma’s work space, and an operation on or around the ob-
jects was programmed using the teach pendant. Points during
each motion were recorded, and the joint angles at these po-
sitions, along with a kinematic model of the Puma, were used
to compute the swept volumes of the Puma’s motion. These
swept volumes, along with the models of the object, sensors,
and task constraints, were used as input to the viewpoint-
computation algorithm. When necessary, temporal interval
decomposition was performed to yield shorter time intervals,
and the process was repeated to compute viewpoints for each
time interval. The sensor parameters and time intervals pro-
duced were finally used to program the gantry and create a
coordinated motion plan.

5.1. Experiment 1

Figure 15 shows the scene as it is set for our first example.
Here, we see a model of the Puma poised over a fixtured
mechanical part. The end effector on the Puma is a long,
slender tool tip. The Puma makes a pass over the object so
that the tool follows the contour of the groves in the front
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of the part, simulating a gluing or welding application. The
two white strips, corresponding to the two straight segments
of the front-most grooves on the part, are the features to be
viewed during this task, yielding eight linear features (the
edges bounding these two rectangular strips). The minimum
resolvable feature length is set at 1 mm, and an 8.5-mm lens
is used for this task. The goal is to compute a viewpoint from
which the target features can be monitored while the Puma is
moving through its task.

We begin by computing the volume swept by the Puma as it
performs this task. This volume can be seen in Figure 16. (No-
tice, for example, that the end effector is no longer a pointed
tool, but the volume swept by that tool.) Then, we compute
the visibility volume for the rectangular features.

The volumesViFR
are computed for each feature. These

regions are intersected for all features, forming the candidate
setVFR. Then,VFR is intersected with the visibility volume,
forming the feasibility volumeVC , shown in Figure 16.

In this example, a search algorithm employing a sin-
gle start point was used. This search yielded the view-
point (−310.71, 805.19, −235.87). For this experiment,
the orientation is computed so as to maximize just the
field-of-view computation, yielding an orientation ofv =
(0.1264, −0.1584, −0.9792). The optical parameters are

Fig. 15. The robot and the object to be imaged.

Fig. 16. The merged candidate volumeVc, embodying all task
constraints, along with the swept robot model and the fixtured
object.

then computed using eqs. (11) and (12), yieldingd = 8.94
mm andamax = f/1.16. The field-of-view and resolution
constraints are recomputed, and found to be satisfied with
these parameters.

To verify this viewpoint, the camera is moved into the
computed position, and an image is taken. The camera is
manually set to the computed focus value, and its aperture
is set to be smaller than the maximum prescribed aperture
(significantly smaller, actually, to approximatelyf/5.6). The
resulting image is shown in Figure 17.

5.2. Experiment 2

In this task, the Puma is working in and around an electronics
assembly. A circuit board is fixtured in front of the Puma,
and the Puma moves through the fixture. The sensor-planning
system is asked to maintain a robust view of the top surfaces
of several chip sockets during this motion. Figure 18 shows
the circuit board held in a fixture. Specifically, a rectangular
box encompassing the two rows of three sockets along the
back of the circuit board is used as the target feature.

Figure 19 shows the Puma positioned within the fixture.
The Puma, with a parallel-jaw gripper for an end effector
instead of the stylus used in the previous experiment, moves
through an L-shaped trajectory, forward along one side of the
fixture and across the front of the circuit board. The volume
swept by the Puma moving through this motion is shown in
Figure 20. The sensor-planning system is asked to compute
a viewpoint that monitors the sockets using a 12.5-mm lens,
with a minimum resolvable feature length of 1 mm, while the
robot undergoes this motion.

This motion is quite restrictive in that it does not permit
the computation of any useful viewpoints to cover the entire
task interval. In fact, other than a couple of small inaccessible

Fig. 17. Image taken from the computed viewpoint while the
probe is in motion.
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Fig. 18. The fixtured circuit board, along with its model, used for Experiment 2.

Fig. 19. The Puma is poised in position for the motion.

“slivers” of regions right up against the fixture, theVc set is
empty. Therefore, we were forced to use a temporal decom-
position. Recall that in cases where the entire time interval
cannot be monitored by one viewpoint, we divide the task into
two equal halves and attempt to compute a viewpoint for each
half. This task gets divided into the “forward” motion and the
“across” motion; the corresponding swept volumes are shown
in Figures 21 and 24.

TheVc volume computed for the first time interval is shown
in Figure 22. VolumeVc has one connected component, and
two starting points were computed for the positional opti-
mization: one central to the inner spherical surface, and one
central to the torroidal surface. Of these, one converges in a
local minima in a very tight area of the volume, close to one
of the posts on the object—so close, in fact, that positioning
the camera there would cause a collision between the gantry
camera body and the post. A goal of future research is to

Fig. 20. The computed volume swept by the Puma as it moves
through the entire trajectory. It moves forward along the side
of the circuit board, and then across the front of the circuit
board, behind the pillars.



16 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

Fig. 21. The computed volume swept by the Puma as it moves
through the first half of the trajectory.

Fig. 22. The merged candidate volumeVc, embodying all task
constraints during the first task interval.

include these positioning constraints into the system as well.
The other answer is shown graphically in Figure 23.

Having successfully handled the first time interval, we pro-
ceed to the second. The volume swept by the Puma during
this interval is shown in Figure 24; the candidate setVc for this
experiment is shown in Figure 25. This set actually has four
connected components. There is the large one clearly visible,
and three much smaller ones—precisely, those “sliver” com-
ponents present during the whole task interval. Again, these
are in extremely close proximity to the fixture, and nearly in-
significant in volume. The viewpoint-computation algorithm

then produces six viewpoints— two of the searches could not
converge, due to the tiny size of the connected components—
of which four are too close to the fixture for collision-free
positioning, and one is under the Puma (inaccessible to our
gantry). Therefore, we have one result, shown graphically in
Figure 26.

Having now completed the planning for the entire task,
the Puma is moved through its task, pausing at each temporal
break for the gantry to reposition itself to the next computed
viewpoint. The images from these viewpoints while the robot
task is in motion are shown in Figures 23 and 26.

Several features of this experiment are worth noting. First,
notice the importance of using multiple starting points for the
search. Due to the number of local minima in the volumes and
additional unaccounted-for constraints (such as the accessi-
bility of a point by the gantry), it is desirable to have a number
of solutions from which to choose. Also, notice that during
the first interval, the camera is oriented nearly perpendicu-
lar to the plane of the target features (the normal is (0,0,1),
and the viewing direction is(0.0697, −0.0265, −0.9972)).
Therefore, the features all project to nearly the same distance
along the optical axis, and so the depth of field required is
almost zero. This explains the absurdly high value for the
maximal aperture of 150.669 mm, or approximately f/0.083.
Also, the relative orientation of the optical axis and each of
the feature edges is nearly identical, yielding nearly identical
minimum-resolvable feature lengths.

Compare this with time-interval 2, where the camera has a
more off-axis view of the plane: there is a real constraint on
the aperture of around f/1.17 (still not very restrictive), and
the minimum resolvable feature lengths are quite different for
each of the edges, although still satisfying the constraints.

6. Conclusions

This paper has discussed the problem of dynamic sensor plan-
ning for vision sensors in an active robot work cell. It has
described the problem, detailed the constraints, and outlined
the various forms of the problem. Further, it has presented an
approach for solving a specific variant of this problem, called
the surveillance planning problem, and presented experimen-
tal results that demonstrate the usefulness of the approach.
With only one exception (Niepold, Sakane, and Shirai 1987),
none of the sensor-planning systems we have found in the
literature discuss sensor planning when objects are moving.

The viewpoint-planning algorithm presented in this pa-
per has some benefits over previous methods. Some of the
earlier work relies on simplifications of the constraints or as-
sumptions about certain imaging parameters. This eliminates
possible solutions from consideration. Other systems use ex-
pensive nonlinear constrained optimizations, which are very
sensitive to both the initial guess used and the weights as-
signed to the individual constraints. Still others rely on dis-
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Fig. 23. The small cone illustrates the computed camera position and orientation (left). The image taken from that position is
shown (right).

Fig. 24. The computed volume swept by the Puma as it moves
through the second half of the trajectory.

cretized approaches and tessellated search spaces, which can
be very costly when finer discretizations are used.

By carefully examining the relationships between the con-
straints, a new way of integrating the field-of-view and resolu-
tion constraints was found. It is this integration that permits
the computation of feasibility regions in three dimensions.
These feasibility regions differ from those used, for example,
by Cowan and Kovesi (1988), in that all feasible points are
included in the regions, without an implicit assumption of the
camera’s orientation.

This three-dimensional region can be searched indepen-
dently of the other camera parameters; subsequently, we can
solve for these other parameters. Therefore, our method in-
creases the size of the searchable region over previous meth-
ods, without resorting to a full-scale optimization of all pa-
rameters. Once a position and orientation have been found,
the computation ofdoptimal and the upper bound fora, amax
allow for a synergy between the sensor and illumination plan-
ners.

The primary limitation in the viewpoint-computation algo-
rithm is that it may be unable to find a viewpoint that satisfies
the resolution constraint for all features; that is, the optimiza-
tion of the orientation is not guaranteed to converge, even
if there is a solution. Since none of the examples that were
run required an optimization of the orientation at all, it is
difficult to know exactly under what circumstances the opti-
mization will fail, or to know what steps should be taken by
the viewpoint-computation algorithm in this eventuality.

The temporal interval decomposition is, clearly, the coars-
est aspect of the method, and, therefore, the area most open to
future work. Before attacking this problem in more depth, one
must answer the question, “What makes an interval good?”
This is a difficult question, which we leave for future re-
searchers to answer.
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Fig. 25. The merged candidate volumeVc for the second task interval, with and without the Puma.

Fig. 26. View showing one of the computed viewpoints and orientations as a cone (left); and the image taken from this
viewpoint (right).
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As the examples showed, there are constraints that come
into play in the real-world placement of the sensor which are
currently not modeled. Constraints such as collision, acces-
sibility, and range of operation of the sensor (i.e., limitations
in the pan and/or tilt angles available) need to be handled for
the system to become truly automated.
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