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Abstract It is interesting to note that while research in planning the
motionof robots and using sensory feedback to monitor and

This paper presents a dynamic sensor-planning system that is cag@ntrol these motions abounds, what research there has been

ble of planning the locations and settings of vision sensors for usein planning sensing strategies has focused on environments in

an environment containing objects moving in known ways. The keshich there is no motion (Tarabanis, Allen, and Tsai (1995)

component of this research is the computation of the camera positiastfer a survey of sensor-planning research). Itis our belief that

orientation, and optical settings to be used over a time interval. An intelligent robot system capable of planning its own actions

new algorithm is presented for viewpoint computation which ensurehould be capable of planning its own sensing strategies.

that the feature-detectability constraints of focus, resolution, field of The most general statement of the dynamic sensor-

view, and visibility are satisfied. A five-degree-of-freedom Cartgslanning problem is:

sian robot carrying a CCD camera in a hand/eye configuration and

surrounding the work cell of a Puma 560 robot was constructed for Given a model of an environment that includes

performing sensor-planning experiments. The results of these ex- ~ Models of the motion taking place, a set of fea-

periments, demonstrating the use of this system in a robot work cell, ~ tures to be monitored, models of the sensors be-
are presented. ing employed, and a description of the vision-

task constraints, produce a plan to use the sensors

in such a way as to satisfy the task constraints.
1. Dynamic Sensor Planning

However, there are a number of possible variations of this

This paper presents a system capable of planning the locatigrigblem:
and settings of vision sensors for use in a dynamic environ- ) . . . )
ment. The system can plan the positions, optical Settmgéurvelllance plannmg._ There abédlﬁerentlmmqblle sen-
and movements of a camera needed to meet a set of task con-  SOT'S, €ach of which can be used for a different time
straints in a modeled, dynamic environment. We call thistype ~ Interval- In this case, the goal of the system is to de-
of sensor planninglynamic sensor planningss compared termine the pest Io.catllons fqr these stationary sensors
with static sensor planningn which neither the objects nor so as to provide valid viewpoints for all of the specified
the sensors are moving. time intervals.
Snapshot planning. The constraints must be met for a spec-
*The research described in this paper was performed while this author ified set of features at any (unspecified) point in time.

was at the Cplumbla University De_partment of Computer Science. That is to say, the entire task need not be monitored,
The International Journal of Robotics Research . . . )

Vol. 18, No. 2, February 1999, pp. XXX-XXX, and it makes no difference when the image is taken,
©1999 Sage Publications, Inc. so long as the constraints for the image are met. The
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system must determine not only where to position th
camera, but when to take an image.

Viewpoint path planning. There is only one movable sensc
The system needs to compute a continuous trajecto
through the sensor’s parameter space that ensures v:
viewpoints through all of the desired time intervals.

Multicamera path planning. There is more than one mobil
sensor, each of which can be used for a different tim
interval. This permits the sensor-planning system t
compute paths through the sensor’'s parameter spe
that are only piecewise continuous: one sensor can
in use during time interval;, while another is being
moved into place for time intervd} ;. Fig. 1. Robot work cell for dynamic sensor planning.

The focus of this paper surveillance planningplanning

the positions of more than one sensor, each of which will bg Background Material and Prior Work
active for a different time interval, to guarantee that certain’

features can be robustly monitored during a robot task thatj$,e pulk of the research in sensor planning for feature de-
known a priori. There are two basic cases that must be degdbtapility has been concerned with the computation of sets
with separately in the surveillance planning problem. Firg§t nositions, orientations, and optical settings for a camera
is the case where the target objects, i.e., those features t{gﬁd, in some cases, for light sources) that will give satis-
must be viewed remain stationary, and other objects, suchf@gory views of a static scene. In the vision-sensor-planning

the robot that is performing some operation on the stationafyarature, the constraints that have been considered important
part, moves. This case arises in a variety of fixtured manufag;, judging the quality of a viewpoint are:

turing tasks such as spray painting and spot welding. Second

is the case where the targets to be viewed are moving as well. * visibility—the features must not be occluded by other

This case arises in teleoperation and in other types of manu-  objects in the scene;

facturing tasks such as pick-and-place, part insertion, etc. « field of view—the features must be within the sensor’s
The main difference between these two cases is thatinthe field of view;

first case, if a viewpoint is found to be valid at some point  « resolution—features of a specified minimum size must
during the task, it is guaranteed to be valid with respect to be resolvable by the sensor;

all optical constraints at all times during the task. Thisis .« focus—the target features must be properly focused:
because the functions defining the constraints only depend  gnqg
on the target-feature locations and the sensor parameters, and,
not on the positions or orientations of obstacles in the envi-
ronment. This fairly obvious but important property allows
us to ignore changes in the optical constraints over time and
focus only on changes in the geometric parameters; i.e., the Sensor-planning systems have fallen into two basic cate-
visibility constraint. gories. First, there are those methods that discretize the sen-
The second case is more difficult, because it requires anr’'s parameter space, generating candidate points that are
examination of how changes in the position and orientation ¢ésted against the constraints to see if they are acceptable.
the target features affect the optical parameters, particulafjnose systems categorized as “generate-and-test” systems by
focus and resolution. However, if the viewpoint is considered@iarabanis and colleagues (Tarabanis, Allen, and Tsai 1995),
in terms of a coordinate frame attached to the feature set, thech as the HEAVEN (Sakane, Ishii, and Kakikura 1987) and
target can always be considered stationary, with the entx80 (Niepold, Sakane, and Shirai 1987) systems, as well as
environment considered as moving. The only limitation ishe IVIS system (Tarbox and Gottschlich 1995), are examples
that the entire feature set must be moving as a single rigilat fall into this category.
body; i.e., features cannot move independently. Second are the techniques that take an analytical approach,
The subsequent sections of this paper discuss the watkectly computing valid viewpoints or sets of viewpoints
that we have done to date on solving the former case, afrdm the constraints, referred to as “synthesis” methods in
discuss some extensions that may be required to addressTheabanis’s survey. The machine vision planning (MVP)
latter case. Figure 1 shows the basic experimental setup &ystem (Tarabanis 1991; Tarabanis, Tsai, and Abrams 1991;
our sensor-planning system: a robot arm, able to operateTiarabanis, Tsai, and Allen 1994b, 1995; Tarabanis, Tsai, and
a work cell, and a gantry robot, used for moving the camet&aul 1996) and the sensor-planning research done at SRI
through a computed trajectory. (Cowan 1988; Cowan and Bergman 1989), for example, fall

Gantry
end-allactor
wilh camera

Puma Object under oparation

illumination—there must be sufficient and appropriate
lighting so that the features will be discernible in the
image.
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into this category. Two of the major contributions of the MVPRusing CCD-based sensors and frame grabhers,chosen
system are directly used in the present research, specifically:be the size of 1 pixel, measured along its smallest side.
) o ] This ensures that the blur circle of any feature point will be
1. precise models of vision sensors and the equations thafyjier than 1 pixel. The system is then sufficiently focused
govern the optical constraints; and for a range of depths frond, the far limit of the depth of

2. methods of computing the visibility regions for con<ie|d, to D,, the near limit. These limits are given by Krotkov
vex and concave polygonal targets in static polyhedr@iggg);

scenes.
afd
. _ D1 = A Ph—cF f , (3)
2.1. Feature-Detectability Constraints ad—f)—cf
afd
i i i [ i - ili Dy, = —————. 4
Itis now instructive to review the optical feature-detectability 2 ad—f+cf (4)

constraints, as they were formulated in the MVP system. (A

more-detailed discussion with derivations can be found in t :

work of Tarabanis, Tsai, and Allen (1994a).) In the equatiorlgl'g' Field of View

that follow, r, is the position of the front nodal point of the Any feature that projects completely or partially outside of the

lens,v isthe unit vector along the optical axisis the diameter sensor area is not within the sensor’s field of view. So, for a

of the aperture of the leng, is the distance from the back camera with a rectangular sensor, the field-of-view boundary

nodal point of the lens to the image plane, ghi$ the focal is a rectangular pyramid with its apex at the front nodal point

length of the lens. Figure 5 graphically illustrates the opticaif the lens.

constraints of resolution, field of view, focus, and visibility. ~ For a rectangular image plane, the field-of-view angle de-
pends on the direction in which it is measured (i.e., horizon-

2.1.1. Resolution tally, vertically, or diagonally). However, sensor-planning
systems generally consider the image plane to be symmetri-

Considering only thpixel resolutionto ensure that every pair cal about the optical axis for the purposes of field of view,

of points a distanckfrom one another is resolvable, one muspbviating the need to compute a third orientational parameter

ensure that each of these points images to a distinct pixel @3t the camera (the roll angle about the optical axis). The

the image plané. Tarabanis found that the following equationfield-of-view angle of the camera, is then computed based

defines the size of a linear feature in the image plane: on the length of the smaller side of the sensor afag,
dl|[(ra —ry) x u] x v " Therefore
== w’
((rg —1y) - v) ((rp — 1) - V) a = 2tam(Imin/2d). 5)

Whel’era and}"b are the endpoints of the linear feature to be For S|mp||c|ty, when Considering the field-of-view con-

viewed,u is the unit vector along the linear feature (frem  straint, most sensor-planning systems aggregate the set of fea-

to rp), andl is the length of that featurey is then the size tyres to be imaged into the minimum sphere circumscribing

of that feature in the image plane. df is at least as large the features (centered at, of radiusR ), and then ensure

as the largest distance between pixels (i.e., the diagonal, {fgt this sphere is entirely within the sensor’s field of view.

rectangular pixels), then every feature of lengéiresolvable. | ooking at Figure 2, it can be seen that for a fixed camera
orientation ofv, the lens is constrained to lie in a cone. The

2.1.2. Focus Constraint apex of this cone is given by
A thick-lens imaging system with a finite aperture is perfectly _ Ry 5
focused at a specific distanée(measured along the optical Tk = s sin(%) v 6)

axis) given by the equation
Moreover, the camera can never be positioned closer than

D= i_ 2) % tor;, yielding the field-of-view limiting sphere shown
ad—f) in Figure 2.

In practice, however, if a point images to a blur circle of a

given sizec, it is considered to be sufficiently in focus for 3. Outline of the Approach

a given application. For most computer-vision applications

To recap, the exact problem we are discussing is one in which

1. Although other constraints may come into play to determine the true '€She or more cameras are being used to monitor a task. In this
olution of the system, such as the quality of the optics, the lighting, and so ’

forth, it is the pixel resolution with which we are concerned in the preser@SK the_ aCtU_al target we are monitoring does not move, but
research. other objects in the environment, such as a robot arm, or other




4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / February 1999

To accomplish sensor planning, the following data must be
available to the system:

Rf/sin(a/2

 object models-regular polyhedral models of the ob-
jects in the environment that indicate the target features

‘> to be monitored are needed to satisfy the visibility con-
straint;

» motion models-models of the motion taking place in
the environment are needed to ensure that the visibility
constraint is satisfied at all times;

* sensor resolutior-the maximum distance between ad-
jacent pixels on the image plane is needed to ascertain
that the resolution constraint is met; and

* sensor element sizethe minimum dimension of each
pixel on the image plane is needed to meet the focus
constraint; i.e., so that none of the feature points are
blurry enough to cover more than 1 pixel.

Fig. 2. The field-of-view constraint forces the camera to be
positioned outside of the larger sphere, regardless of its ori-
entation. However, for any specific orientationthe camera
is constrained to be positioned within a cone as shown.

Our basic idea is to find temporal intervals for which view-

. ] ] o points can be computed, compute swept volumes representing
mechanical parts, move in a way that is known a priori. Thgye motion of the objects during those intervals, and then use a
problem is to find where to placg the camera(S), and when \Wéwpoint- computation algorithm to compute the sensor posi-
use each camera, so that at all times during the task, we hgis orientations, and optical settings that are valid for each
a “good” viewpoint for monitoring the target features. ThiSpierval. This approach, therefore, has three main compo-

is typical of a robotic work cell, where objects that are to bgants: swept-volume computation, viewpoint computation,
assembled and inspected may be occluded by the motion0fq temporal decomposition.

robotic hands and arms during the assembly process.
In this research, we are p_Iannlng the positions gnd se_ttlr}g'sl. Swept-Volume Computation
of the sensor, not the illuminator. Therefore, a viewpoint is
considered “good” if the features are resolvable to the giveBiven that we have an objeétwhose trajectory) 7 is known
specification, properly focused, completely contained withiover a time interval’, we defineS(0O, Q) to be the volume
the camera’s field of-view, and completely unoccluded.  swept out byO duringT. For example, in Figure 3, if object
Specifically, the system presented computes: O is rotating about poinp at a rate of 90 per second, and
T is 1 sec, ther$(0, Qr) is the swept region shown on the
» position—the position inR3 of the sensor (actually the right.
front nodal point of the lens); Let V represent visibility volume fo§(0, Q7). SetV is
« orientation—the pan and tilt components of the direc-the set of all points (iRR3) that give views of the target which
tion of the optical axis (the roll about the optical axis ihave no obstructions (due @) for the entire time interval. A

not considered);

 back nodal point to image-plane distare@ot the fo-
cal length of the lens, but rather the distance from th
back nodal point of the lens to the image plane (for
given focal-length lens, this parameter primarily deter S(T,O
mines the focused distance of the lens, but also impac
the field of view and resolution);

« aperture—the size of the lens opening, which impact: O / /
[} [}

the focus constraint and dictates the requisite illumine
tion; and

p

» temporal intervals—owing to motion in the environ-
ment, the position, orientation, focus, and aperture se
tings computed may only be valid for a specific time
interval. The system computes a number of points ar...
their associated time intervals so that the entire featufdg. 3. Two-dimensional swept region example, generating
set can be monitored during the entire task. $(0, 0).
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2-D example is shown in Figure 4. Any point in the visibility of this research, we found that the existing solutions all had
region V. _may be used to monitor the target for the entir@a number of drawbacks, including unacceptable limitations
time intervalT without fear of occlusion. Any point in the on the classes of motion or moving objects, and impracti-
occluded region, at some moment during time intefakill  cality of implementation. Therefore, we developed a new
have an occlusion due to the moving objéctTherefore, we algorithm for computing polyhedral approximations of the
decided to use swept volumes as part of the process of findimglumes swept by arbitrarily moving polyhedra. The models
viewpoints that will be valid for a given time interval. are geometrically and topologically valid (i.e., regular solids
A number of researchers have looked into the very intein RS).
esting problem of computing the volumes swept by moving The algorithm is based on sampling and interpolation. To
objects, including Hui (1994), Kaul (1993) Korein (1985),summarize, the moving object is stepped through its trajec-
Martin and Stephenson (1990), Schroeder, Lorensen, atwly. At each step, a set of faces is created stretching from
Linthicum (1994), Sourin and Pasko (1995), Wang and Warthe edges at one position to the corresponding edges at the
(1986), and Weld and Leu (1990). However, for the purposegxt position. These faces, along with copies of the faces of
the moving object itself at certain points during its trajectory
(where needed) are all collected into a set. This set is then
processed so that the outer boundary of the swept volume can
be computed. This algorithm is the subject of separate papers,
and the interested reader should consult these earlier works
(Abrams 1997; Abrams and Allen 1997) for details.

Occluded Region

RZgl?(l)tr)llh"tzf" 3.2. Temporal Decomposition
The primary question is, “What makes a good temporal inter-
val?” The intuitive answer is that, for dynamic sensor plan-
ning, a temporal interval is “good” if it is as large as it can be
while still allowing the computation of a single robust view-
point. This, of course, begs the question, “How can a good
temporal interval be found?”

One rather obvious method is to leave itltamansto

; . find good temporal intervals. Humans have higher task-level

e knowledge of the problem being solved, and can often do

Target a very good job of dividing it into intervals, each of which

should be monitored by a single viewpoint. However, our

goal is to obtain an automated process for computing these

. /
. f
“fal
LR
/

Fig. 4. Visibility region forS(0, Q).

viewpoints.
» The method employed for the present research is a binary
/ Far foous limit >< yaar foous limit temporal interval search. Assume we have a polygonal target
7 that we wish to monitor during the time inten@l= (1, 7,].

During T, there is a set of known obstaclég througho,,,
which move in known paths. The goal is to plan a single
viewpoint that is valid for the entire interval, if such a point
exists, or to determine a sequence of viewpoints which, when
executed at the appropriate times, allow the features to be
monitored for the entire interval.

Temporal Interval-Search Algorithm

1. Compute the swept volun& O;, Q1) for each of the
m obstacles.

2. Attempt to compute a viewpoint using(Og, Or)
through $(0,,, Qr) as well as all stationary objects
in the environment as the set of potentially occluding
bodies.

3. If aviewpoint can be found successfully, use this view-
point for the entire time interval .

\ length |

Fig. 5. Feature-detectability constraints. The linear features
shown meet all of the optical constraints. They are within
the field-of-view cone, between the depth-of-field limits, and
project to appropriate sizes on the image plane.
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4. If no such viewpointis obtainable, divide the time interspace, thereby eliminating a number of potential solutions a
valin half, yieldingTy = [1g, t,,/2]. If T1 is shorter than priori.
the smallest allowable time interval, report a failure. Our goal was to develop a viewpoint-computation algo-
Otherwise, go back to step 1 using inter¥al rithm that has the benefits of MVP (i.e., uses analytical for-

5. If the entire time interval’ has been planned, we aremulatlons for the constraints, avoids implicit assumptions

finished. If not, goto step 1 using the remaining portior??ou;”:etv'evr‘:gl? p?rarr]rljeterli, dc;ers r}r)\t/ir?’thil:re thre r(;x;;)ernse
of the original intervall. of generate-and-test, and solves for all viewing parameters),

and of the other methods (i.e., straightforward search with

The algorithm essentially tries to quickly find the endpoinfi€monstrable convergence).
of an interval for which a single viewpoint can be found. In
step 4, notice that we allow the user of the system to speg:1. A New Approach to Viewpoint Computation
ify a minimum time interval. This prevents the system from ] ) .
examining infinitesimal intervals when no viewpoint can b&/iewpoint Computation Algorithm
found. It can also be used by the user to limit the temporal 1
resolution of the system in prevgntmg, _for.example, motions be a superset of the projection of the solution set into
of the camera every second while monitoring a 2-hour task. R3

While there are refinements that could be made to this ' ) ]
interval-search algorithm, the most dramatic improvement 2+ S€arch the candidate set for points as far from the
probably can come from human intervention. If there are ~ boundary ofV. as possible, finding a number of local
clearly distinct intervals of the task to be monitored, the sys- ~ Maxima. These are potential solutions for the camera
tem will be more efficientifthe user breaks them upinadvance ~ Position.
and feeds them, as separate tasks, into the sensor-plannin@. Compute the camera orientation for the solutions found.
system. As we discuss in Section 6, the temporal interval de- 4, Compute the optical settings for the solutions found.
composition problem is an area open for investigation in the
future.

Compute a candidate sefd. This set, called/,, will

5. Verify the correctness of these solutions.

Overall, we are taking a decomposition-based approach to-
ward solving this problem; that is, we are implicitly weighing
certain constraints more than others. Focus is given the least

consideration, since it can be handled at the latest stages by

In conducting dynamic sensor-planning experiments, we haygnro|ling the focus setting on the lens, the aperture, and if
found that the optimization approach used in MVP, while N0zeedeq; the lighting. In contrast, visibility must be consid-

table for its generality, has some drawbacks. Since some g, 4 foremost, as the only way to give a previously occluded

the constraints are nonlinear and, at points, nondifferentiable, ynqint an unobstructed view of the scene is to remove the
general-purpose optimization algorithms can have difficulty,qtacle or move the camera! As it turns out, the field of view
computing viewpoints. Convergence cannot be guaranteegh resolution constraints can be combined in an interesting
and the system is sensitive to the initial guess and the weighs, \ner and considered together. We shall see that these two
given to the constraints. These shortcomings triggered OUfnstraints often directly oppose one another, and therefore

search for new algorithms, starting with a review of the field,, 5 decomposition-based approach such as this, should be
The discretization approaches taken by some (such &$nsigered simultaneously.

Sakane et al. (1992) and Sakane, Sato, and Kakikura (1987))gne constraint we have imposed upon ourselves in obtain-

are more straightforward than optimization (involving th§n this candidate volume is to approximate no more than is

search of a tessellated sphere), and can easily be shown[.eqsary, and to assume nothing additional about the camera

rameters. We are not interested in assuming, for example,

converge. However, they tend to ignore or assume certaga
imaging parameters (i.e., the distance from the viewpoint specific camera orientation. In our opinion, while there are

the features is set to meet an overall magnification requirgre sy penefits to working in three dimensions rather than in
ment, or the viewing orientation is assumed to be toward thg, higher dimensions of the camera parameter spais:

center of the feature points), and the computational cost gk jing possible solutions to the problem in order to simplify
finer tessellations can lead to very costly searches. The sypz computations should be avoided.

thesis_appro.ach taken by Cowan and colleagues (Cowan and\ste that in this approach, the selection of optics (i.e., the
Kovesi 1988; Cowan and Modayur 1993) does notsuffer frog, 5| |ength of the lens) is not made automatically. There are

the computational expense of the generate-and-test methagd§, mper of reasons for this. To begin with, there is a trade-off

Their method of computing admissible domainsRA for b onyeen the distance to the feature points and the focal length.
each constraint is also straightforward, but they too consider

only a subset of the parameters and a subset of the solutimhe primary such benefit is the availability of 3-D computational tools.

4. Viewpoint Computation
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That is, a very similar image is obtained using a short focal;, = (0, 0, 1)), viewed from a downward-vertical direction
length lens at a short distance as would be obtained usingwa = (0, 0, —1),) such that = 1 mm, andw = 1 pixel.
longer lens from a greater distance. The difference is in tliégure 7, showing the same plot for a different viewing ori-
exaggerated perspective obtained with the shorter lens. Bmtation 1), has a very different shape. Again, althoufjh
cause the amount of perspective desired in the resulting imaggpears in these equations, it can be approximated yfsing
is highly dependent upon the application and has an impact For any viewing orientation, the set of valid camera po-
on the resolution constraint, the selection of focal length issitions includes only those that are batisidethe cone and
choice best left to the user of the system. There is generallyaderthe resolution surface. Figure 8 shows the field-of-view
discrete set of focal lengths available to a user, not a contincene superimposed on the resolution surface for viewing di-
ous range. The user knows which focal lengths are availablectionsvg andv;: each viewing orientation implies a single
and can select one. Finally, there are a number of situatiomslume that constrains the camera’s position.
where selection of an inappropriate focal length prevents the Turning the camera’s orientatioaway from a feature
computation of a viewpoint. As we shall see, these situatiorfehile holding the camera’s position constant) increases the
are readily noticeable and can be automatically determinedesolution, albeit at the expense of field of view. If the camera
is too far away to image the features with proper resolution,
d the camera can be rotatadiayfrom the feature, and the res-
olution will increase. However, one can only turn the camera
away as much as the field-of-view constraint will permit.
Before discussing what. should look like, we will examine So, in broad terms, the field-of-view constraint alone im-
the merging of the field-of-view and resolution constraintgoses a limit on how close the camera can be to any one
The field-of-view constraint, in essence, only prevents thfeature (as a function of the orientation); and the resolution
camera from being placed too close to the features (i.e., a di®nstraint alone imposes a constraint on how far the camera

tanc% from the center of the sphere circumscribing the
features). Beyond this distance, any position can satisfy the
field-of-view constraint simply by adjusting the orientation
What we shall see in this section, however, is that the resol
tion constraint alone does not place a bound on the positi
of the camera. The sensor’s position and orientatgether
determine the resolution constraint. We will show how resc
lution can be considered in conjunction with the field-of-view
constraint to yield bounds on our candidate sé®
For the moment, let us examine the constraint imposed ) 200
the camera’s position, assuming that the optical settings a
orientation are kept constant. For any given viewdirgction  Fig. 6. When viewing a vertical linear feature of unit length
v and for each feature, there is a field-of-view cone that at the origin, this surface illustrates the constraint on the cam-
constrains the position of the camera. The axis of this is thera’s position if its orientation is fixed to be looking down-
cone in the direction of, and its apex is at poimt. Thiswas ward, i.e.,vg = (0, 0, —1).
shown in Figure 2 and in egs. (5) and (6). Technically, the
half-angle of this cone is dependent uphithe distance from
the back nodal point of the lens to the image plane. Howeve  1063% = < = e
under normal viewing conditiong, can be approximated by \
f, the focal length, without having a significant effect on the
field of view3 s00
Further, for any given viewing direction and for each fea
ture i (a linear feature of length),* there is a surface;,
that constrains the position of the camera due to the reso
tion requirement. By plotting eq. (1), keeping all parameter
constant (other than camera position), we can see this surfa 00
Figure 6, for example, shows the surface constraining the po “1000
tion of the viewpoint for a vertical feature (i.e, = (0, 0, 0),

4.2. Computing a Candidate Set: Merging Field of View an
Resolution

1000

800

400 ¢+

200§

Fig. 7. When viewing a vertical linear feature of unit
3. When focused at infinity/ = £, and under normal viewing conditions, length at the origin, this surface illustrates the constraint

does not differ froms by enough to affect this surface significantly. Inanyqgn the camera’s position if its orientation is fixed to be
case, we will eliminate this approximation later.

— (—sin(Z — s
4. Recall that is the minimum feature size that must be resolvable. v = (=sIn( 8)’ 0, —cog 8))'
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can be from any one feature (also as a function of the od.2.1. Resolution and Field of View in Two Dimensions
entation). Therefore, it should be possible to combine these
constraints to yield a set of positions, all of which have the

property that at least one orientation can be found such thak first compute the regiovi g, in two-dimensional viewing.
both constraints are met. In fact, it is possible. We then extend these results to three dimensions; that is, the

We have a method for computing a regionRd called  viewing orientatiorv is constrained to lie in the plane defined
Vrr,. Each point inVpg, has associated with it at least onepy the feature endpoints and the camera’s entrance pupil. As
orientation that satisfies both the field-of-view and resolutiopefore, the feature being viewed is a vertical linear feature at
constraints for the linear feature Further, this volume con- the origin. This figure can be produced by intersecting the 3-D
tains all such points. constraints of Figure 9 with the plane containing the lens and

By way of illustration, we computed the intersection ofhe feature endpoints (in this case, theplane). The figure
the regions bounded by resolution surfaces and the field-@hows the superposition of the field-of-view and resolution
view cones to yield a single volume of feasibility for field-constraints for viewing the feature with an orientatiorn o
of-view and resolution constraints togeth&,. The shape y,. The intersection points between the constraints have been
of this volume is that of a cone “capped” by the resolutiomighlighted. The regiorR;, , in this situation, is the region
surface. These volumes are shown in Figure 9fervoand  inside the “V” and below the curve.

v = v1. A corresponding volume exists for every possible As we rotate the viewing angle in the plane, it turns out
viewing orientation. ClearlyVrg, volume for this featuré  that these intersection points are constrained to lie on a circle.
must include the union of these volumRg for all viewing  This can be seen in Figure 11, which shows eight pairs of
orientations. field-of-view and resolution constraints, with the highlighted

intersection points clearly lying on a circle. From a practical

point of view, this means that if we were to select an orienta-
5. This volume is a superset of the complete candidate voldme&onsid- tion of the camera (in the pl?‘n?)' position the camera (in the
eration of other constraints and features will further reduce the set. plane) such that the feature is just at the edge of the camera’s
field of view, and back up until the feature just barely met the
resolution criteria, the camera would always end up on a point
on this circle, regardless of the chosen orientation.

To prove this, recall that the resolution constraint specifies
the minimum image-space length of a feature of a given
object-space length The angle subtended by a feature of
lengthw on the image plane (as seen from the back nodal point
of the lens) depends on its position on the image plane (see
Fig. 12). (Ifthe image plane were a circular arc centered at the
back nodal point, then the feature would subtend a constant
angle, regardless of its position.) If the feature is imaged just
at the edge of the field of view, we know its position. If the
) i . i _ . feature is imaged at the smallest tolerable size, we know that
Fig. 8. _Superlmposmon of the resolutloq and f|eld—of-V|eth size isw. Therefore, the intersection of the field-of-view
constraints whem = vo (left) andv = vy (right). and resolution constraints occurs when the feature is imaged
at the minimum tolerable size at the limit of the field of view.
At these points, the image of the feature always subtends a
constant angle, say.

The feature itself, as seen from the front nodal point of
the lens, must subtend the same angle as its image as seen
from the back nodal point. Therefore, the points for which
this condition holds true are exactly those points for which the
feature subtends an angle)gfthese points lie on one of two
circles. The two circles are reflections of one another across
the line of the feature.

Specifically, what is the equation of this circle? The set of
points for which a segment of lengtisubtends an angle af
is given by a circle of radiu® with a center on the perpen-
Fig. 9. Intersection of the resolution and field-of-view congicular bisector of the segment at distancetbf Radiusk
straints for two viewing directionsyp, vs. and distance? are given by the following:
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l
R = m, (7)

H R cogq)). (8)

These equations can be solved to yield (Abrams 1997):

cl
R = ————rH-o, 9 . . . .
2w sin(*5%) ©) Fig. 11. (a) Field-of-view cones and resolution curves for
w2 b2y 2 several viewing orientations, in 2-D, shown with intersec-

H = R———, (10) tion points. (b) The enlargement of the lower-left corner of
2be (a), showing the apexes of the cones sitting on a circle. The
wherew is the length of the feature in the imagkjs the inner circle in (b) is the circle circumscribing the feature to
width of the sensor, andlis the distance from the back nodalbe viewed.
point to the image plane.
If we were to compute the union of all of these region:

R;, for all viewing orientations (still constrained to the 2-D ‘
configuration), these circles would form part of the boundar :
of this union (and therefore thiérg, region). The other por-
tion of the boundary would be shown in the lower-left corne
of Figure 11. A similar graph, showing several field-of-view
cones in 2-D, has been enlarged in Figure 10 to show tt
corner. In 2-D, the apexes of the field-of-view cones are col
strained to lie on a circle, and this can be seen in the enlarg
figure. The camera cannot be positioned closer than this ¢
cle, or the feature cannot be imaged within the camera’s fie
of view at any orientation. Since we are, for the momen
considering only a single linear feature of lengtteqs. (5)
and (6) give us that the radius of this circleiigﬁ(—%, and it

is centered at the midpoint of the edge. Fig. 12. The segment with length in the image plane is
SotheregioVpg, isbound by these circles: one small oneimaged at the field-of-view limit, and subtends an anglg,of

centered at the feature itself; and two larger ones, reflectiof§ seen from the back nodal point of the lens.

of each other, given by egs. (8)—(10). For any point inside

this region, there exists at least one orientation that meets ) )

both the field-of-view and resolution constraints. Outside simultaneously be met, since rotating the lens such that the

this region, the field-of-view and resolution constraints cann§€9ment is large enough results in the segment being imaged
outside of the camera’s field of view.

Referring again to Figure 11, there is another circle that
200 can be seen, apparently formed by the envelope of the res-
175 olution curves (as described by Tarabanis, Tsai, and Allen
(1994a). This envelope bounds the region in which the res-
150 olution constraint is met foany camera orientation, while
125 the larger circle (formed by the intersection points) described
100 here bounds the region in whislbmecamera orientation will
f simultaneously satisfy both the field of view and the resolu-
75 tion. The inner circle is the region used by Cowan and Kovesi
50 (1988) for their resolution constraint. It can be seen that by
25
0

dropping Cowan’s assumptions about the camera’s orienta-
tion, additional regions are admitted to the candidate set.

50 {00 180200 250 300

. , . ) .4.2.2. Resolution and Field of View in Three Dimensions
Fig. 10. The field-of-view cone and the resolution curve in

2-D, shown with the intersection points, for a given viewingdlo better understand what is happening in three dimensions,
direction. imagine a coordinate system set up by the feature’s endpoints
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and the camera’s front nodal point, as illustrated in Figure 18 ¢, leavingd = %. For if the camera is rotated such that
That is, letA be the origin,AB be thez-axis, andrg (the the feature is at the field-of-view limit using a rotation where
nodal point) be on thez-plane, to the positive- side® The 0 # %, with the camera positioned such that the resolution
camera’s orientation can then be expressead ag), where  constraint is precisely met, the camera can be further rotated
is the angle the optical axis makes with thexis (after being in ¢ by settingd = 7 and increasing the size of the feature;
projected into the y-plane) andp is the angle that the optical that is, as far as resolution is concerned, rotationg uy
axis makes with the-axis. The two-dimensional example weyou more than rotations th Field of view, on the other hand,
have been using corresponds to setting 7, keeping the imposes a maximum rotation regardless of direction. There-
optical axis in thexz-plane. fore, there are positions for which the only way to satisfy both

Rotations away from the feature (in eitlyeor ) improve field-of-view and resolution constraints is to rotate the lens in
resolution at the expense of field of view. However, the res@, notd. There are no points for which the converse is true.
lution changes by an amount that depends on the direction™ find a Vg, which includes exactly the set of candidate
rotation. The resolution improves more quickly by rotatingoints for which there exists an orientation that satisfies both
¢ (staying in the plane defined by the feature and the carfield-of-view and orientation constraints, we therefore leave
era position). This can be seen in that eq. (1), wherg asf = 7 and consider only rotations ¢f.

approacheg;, the minimum resolvable featurg {s propor- The boundary of the positional constraint, then, is equiva-
tional to sirf(¢), while asg approache$, [ is proportional lent to taking the 2-D regioir ; and sweeping it about the
to sin).” line defined by the edge feature (which passes through the

However, the field-of-view constraint is only concernedarger circle). This volume has the shape of a torus that has
with the magnitude of the angle that the optical axis makdast its hole (because its major radius is smaller than its minor
with the feature set, not the direction. That is, as far as tH@dius), which has had a sphere subtracted from its center.
field-of-view constraint is concerned, the combinationpof The toroidal shape results from rotating the two larger, sym-
and® must be such that the field-of-view constraint is stilmetric circles of the 2-D case about the axis of the feature;
met. the sphere subtracted from the center results from rotating the

Recall that in two dimensions, the goal was to find a corsmaller circle, which limits the position of the camera due to
straint on the position of the camera that bounds the set {¢ld of view alone. The major radius of this torushs and
points for which the field-of-view and resolution constraintdS minor radius isk, as defined in egs. (8)-(10). The radius
can simultaneously be met. In order to do this in three dff the subtracted sphere W from the field-of-view

mensions, we now see that it is sufficient to consider rotatiog@nstraint egs. (5) and (6) above.

Therefore, to complete the volunié-g,, we subtract a
6. This assumes, of course, that B, andrg are not collinear. If they are, Sphere from the center of the “pinched torus.” For any point
the entire feature images to a dot, and the resolution constraint is not metinside this volume, an orientation can be found that satisfies
7. For situations where the camera is not positioned on theis of the spe- both the field-of-view and resolution constraints (but not nec-
cially constructed coordinate system, this analysis still holds, but a different . . . )
¢ is used. In these casesis % minus the angle between the viewing direc- essamy‘the same ope). F(?I’ any point outside this VOIUmea no
tion vectorv and the segment connecting the front nodal point to the featureguch orientation exists. Figure 14 shows a cutaway view of
distal endpoint. this volume for a vertical linear feature.

The discussion thus far has been restricted to handling lin-

ear features of length To handle segments longer thamve

consider a segment of lengtlat each of the endpoints of the
B o rO actual feature and intersect their corresponding candidate vol-
,/ umes (similar to the technique used by Cowan and Bergman
'V (1989)). If and only if each of these segments is imaged to

Z
1
1

-V R

A=
Fig. 14. Candidate volume for one linear feature, considering
Fig. 13. The coordinate system setup.is in thexz-plane. only field-of-view and resolution constraints. The figure has
Settingd to % corresponds to the “two-dimensional” viewingbeen cut away twice to show the inside, but the actual volume
configuration. is symmetric about the two cutaway planes.
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the appropriate resolution, then the resolution constraint ftine constraints are saying that for the resolution constraint on
the entire feature is satisfied. Therefore, we positidfra,  any individual feature to be met, the camera must be placed
at each end of the feature and compute their intersections.da close to the feature set that the field-of-view constraint for
addition to this, however, we must compute a field-of-vievall other features cannot be met. A longer focal-length lens
limiting sphere for the entire feature set; that is, in computshould therefore be selected.
ing a constraint on the position of the camera, it is important On the other hand, if subtracting the field-of-view limiting
to ensure that both ends of the feature can be imaged wiphere from the visibility volume yields an empty volume,
proper resolution while in the camera’s field of view. This ighis indicates that the focal length is too long. In this case,
handled, as is the case in other sensor-planning researchhy field-of-view constraint forced the camera to be so far
computing a single sphere of radigﬁ(faj and subtracting it away from the feature set that the features were occluded. If
2 neither of these conditions holds, then we have a reasonable
assurance that the lens selection is appropriate to the task at
hand.
4.2.3. Visibility Itis still, however, possible that. is empty or very small.

For a feature to be detectable by a vision sensor, it may n|5't particula_r, the intersection of the visibility V_OlL_Jme With
be occluded by other objects. Using algorithms explaine\éFR may y|elq a very small or emp.ty s.et.. If this is a static
in detail by Tarabanis, Tsai, and Kaul (1996), we Construct%len_sor—plannlng problem,.thls isan llnd|cat|on that the feaFure
polyhedral volume containing all points from which the targe?it IS 100 Iarge to be. mlonltored fentwel;;lfrcr)]mhone V|.ewp0|n't )
features are unoccluded. This volume, and therefore the vig—i- _ebrle miyl € not_sm?he p?t:nt romtw_lci tlfehentlre setth_ls
bility constraint, is independent of the optical parameters and® de’ while meeting | € other Cogls ramhs. 'h oweverzb_l_ls
the camera orientation. Tarabanis and colleagues describe g dYnamic sensor-pianning probiem, the Ot. er possit lity
methods; we use the “decomposition-based” approach, wh §ethat thg task.mterval is too Iargg to be m_olmtored entirely
every face on the target and the occluding bodies are decom- one wewppmt. T'he.goal tdhen IS to posmo.n the.carfnera
posed into convex pieces. Then, the visibility algorithm it an appropriate p?'”t R an compu.te an onentatlo,n or
run on every convex target/occluding-object pair. This geneWh'?h all features will be unoccluded within the sensor’s field
ates volumes of occlusion, which correspond to the “shado% view, and properly resolvable.

volumes” that would be caused by the occluding object if the

target were an area light source. 4.4. Searching within the Candidate Set

from the candidate sét.

Once a candidate séf,, has been computed, we need to find
a viewpoint within this set. The optimality criteria used in
To find the total feasible volumg,, the volumesVpg, are MVP for computing a single viewpoint was distance. That s,
computed for every featutieand intersected with each other,it attempted to find a viewpoint (in the full eight-dimensional
yielding one feasibility volumé/r. Fortunately, many ge- sensor-parameter space) as far away from the constraining
ometric modeling systems are capable of representing addrfaces as possible. In this new formulation, when we are
manipulating tori and spheres, allowing these intersections $garching a region iR3, this same criteria can be used while
be performed analytically. TheWir is intersected with the avoiding the global optimization difficulties encountered in
visibility volume for the feature sét. From this result, the MVP. We use a gradient-based search algorithm to maximize
single field-of-view limiting sphere is subtracted, yielding dhe distance between the viewpoint and the boundary.
single set of feasible points R3; namely,V,. The boundary ~ There are a number of easily computable starting points
of V., therefore, consists of spherical, toroidal, and polygon&®r this search. For example, a point on the surface of each
components. spherical patch may be used, or a point on the surface of each
At this point, there are several ways to determine that th€apping” toroidal surface may be used. Infact, a pointonany
lens selection may have been inappropriate. If the field-off the boundary surfaces can be used as a starting point, and
view limiting sphere is so large that nothing remains whethe search will converge to a local minima inside the volume.
it is subtracted fromVg, this indicates that the focal length If desired, the quality of the result may be improved by per-
of the lens is too short for the features selected. Essentialfprming several optimizations, each starting from a different
boundary surface, and the best overall result can be used.
8. Note thatifH + R > sif(f%) , then there are no valid viewpoints: resolution ~ Computing the orientation can be a bit more difficult, how-
and field of view have, essentially, fought each other to the death. ever. Recall that in the computation of the candidate set, we
9. Alternatively, each of the occlusion volumes can individually be subtractdfgye ensured that for each feature there exists an orientation
from Vrg. This often yields greater performance and robustness over firsbyistying all constraints. However, we have not ensured that
unioning the occluglon volumes, then go_r_nplementmg this to form aVISIbIlIt¥ ; . . . e .
volume, and then intersecting the visibility volume with . The results th€re exists a single orientation that satisfies all constraints
are, however, equivalent. for all features simultaneously. Therefore, a gradient-based

4.3. Computing a Candidate Set: Merging All Constraints
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search can be used to find a viewing orientation that satisfiese can reduce the aperture as needed (in the limit, reducing
all constraints for all features. the lens to a pinhole), thereby increasing the system’s depth
This search has a starting point easily available to igffield (in the limit, to an infinite depth of field), bringing the
namely, a point oriented toward the center of the sphere eieatures into focus. Rather than computing absolute focus
compassing the points. Under the simplified field-of-vievand aperture settings in the absence of lighting information,
constraint used, this is the optimal orientation for field ofve take a different approach.
view. However, once we have reached the stage of computing Any given position and orientation of the lens imposes a
the final orientation, we discard this simplified field-of-viewdepth-of-field requirement: the aperture and focus must be
constraint. To do this, minimal circumscribing conss com-  set such that the near DOF limit is no farther away than the
puted about the feature points. This cone has its apex at thearest feature point, and the far DOF limit is no closer than
computed camera position, and it has the smallest cone antiie farthest feature point. Ofinterest, then, are the values for
() that still encompasses the feature points. The axis of thasda that will just barely satisfy the depth-of-field constraint.
cone is the true optimal orientation for the field of view. Fur- We can therefore compute an optimal value dorcalled
ther,§ — % is exactly the amount of room we have to “adjust'dgptimaland the upper bound far, calledamax. Valuesamax
the orientation before the field-of-view constraint is violatedanddqpiimal cOmbine in such a way thainax is the largest
From here, the search algorithm computes the resolutipossible aperture for which there exists a valuedmuch
of each feature. For each feature for which the resolution cotirat the entire feature set is within the camera'’s depth of field.
straintis not met, it computes an adjustment that will improvéhat value ford is doptimar  Thenamax can be used in an
the resolution of these features while still maintaining field oflumination-planning system (one of the planned extensions
view. This adjustment can take the form of a constrained opf the current system) to ensure that the correct amount of
timization, such as was used in MVP, but only optimizing théight is present to obtain an appropriate response from the
orientation subject to the field-of-view and resolution consensor, given an aperture of no more thapx:
straints. This process iterates until either it is “stuck” (i.e.,
reusing already-discarded viewing orientations, or oscillating
between subsets of features), until no adjustment direction D1—Dz2 = (ry—re)-v,
can be found, or until it converges on a successful orientation. D1 = ry,
Clearly, this optimization may not converge, as there may not
be any orientation that satisfies all constraints for all featurege find thatd andamax are given by
at the computed position. In such a case, one of the other
locally minimal positions should be used. doptimal = 2 Dmax f(Dmax— D) Ay
In cases where none of the locally optimal positions yield 2Dmax(Dmax— f — Dg) + f Dy
successfully computed orientations, there are anumber of pos-
sibilities. First of all, it has not been proven that this implie&"
that no solutipn exi;ts. Itis, however, a strong indication that 2¢ Dmax(Dmax— f — Df) + f ¢ Dy
no goodsolution exists. It may well be an indication thatthe  dmax = 7Dy . (12)
sensor is not up to the task. A bit of common-sense fault anal- ‘
ysis will certainly help. If the visibility volume is extremely where
small, perhaps the feature set should be partitioned. If the

Vrr; volumes barely overlap, this indicates that a denser sen- Dmax = (ry—ry)-v,

sor array should be used, improving the resolution. It would Df = (rf—re)-v.

then be wise to select a different lens or camera and recom-

pute. For a CCD imaging system, we uge= 1 pixel (measured

across its minimum dimension) to ensure that no feature point
is blurred more than 1 pixel.

Once the imaging parameters are computed, the resolution
Once a single viewpoint and orientation have been successid field-of-view constraints are recomputed using the actual
fully computed, we are left with the task of computidignd d to ensure that the viewpoint has not been invalidated with
a to ensure that the features are in focus. respect to these constraints. Since the viewpoint was chosen

It seems to make little sense to compute the focus-relattmlbe as far away from these boundaries as possible, and since
lens parameters in a system in which lighting is not plannethese boundaries do not change significantly as the lens is
That is because the depth of field of the optical system céocused, the validity of the viewpoint should not, in general,
be changed simply by adjusting the aperture. The smallehange. First, notice that this onipprovesthe resolution,
the aperture, the larger the depth of field will be. Thereforeso there is no cause for concern; the field-of-view constraint
given sufficient lighting (or a sufficiently sensitive sensor)must, however, be rechecked.

4.5. Computing the Optical Parameters
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What can be done if this underestimate causes the field- 9. Compute the optimal focus and maximum aperture for
of-view constraint to be violated? There are a number of  the position(s) and orientation(s) using egs. (11) and
options. First, one can conclude that the lens is inappropriate  (12).
for the vision task; a longer focal-length lens can be selected10. Verify that the position, orientation, and optical settings
Second, the entire process can be iterated, using the new, areallvalid using the actual value&tomputed, rather
known value ofd instead of the approximation gf. While than the approximation of = f.
this will resultin a different viewing position, the camera will
be forced back to bring the features into the field of view,
Third, an attempt can be made to back the camera up alon
until the field-of-view constraint is met. The ability to do this
however, may be hampered by the resolution and/or visibili
constraints, so these constraints need to be checked.

Alternatively, we can compute the smallest valuel dbr
which the features are completely within the camera’s fiel
of view, and solve egs. (3) and (4) fer This is the maximal
aperture that will bring the features into focus. Essentiall
this equates to intentionally defocusing the features to s
ficiently “zoom out” the image, and then closing down th
aperture as needed to bring the features back into focus.

A number of real and simulated experiments using this al-
orithm were run to verify the algorithm’s ability to correctly
lan viewpoints in dynamic scenes. Two real experiments
‘are presented here. (Simulations and additional experiments
Yre available in an earlier work (Abrams 1997).) In each of
these experiments, the object being viewed was placed in the

ork cell of a Puma 560 robot, and a motion of the Puma was

rogrammed. Above and around this robot, a 5-DOF Carte-
sian robot having a work space of approximatel9oftt was

uilt. This gantry robotwas equipped witha Sony XC77 CCD

amera in a calibrated hand/eye configuration. An overview
%f this work cell is shown in Figure 1.

This hand/eye setup was calibrated simply by measuring

. the camera and lens mount, yielding a calibration only accu-
we are as far from the bounds as possible, thereby av01rc<ji— y 9 y

ing this situation arising in the first place. In fact, in thecaibration of the two robots relative to one another was also

sgnsor—planning experiments described below, the comput&*‘ e via several measurements rather than through a rigor-
orientation and optical parameters were always found to %%s calibration procedure, yielding only a rough calibration.

sufficient, and none of these additional corrective MmeastiGile a rough calibration is useful for demonstrating the ro-

were needed. bustness of acomputed viewpoint, if the sensor-planning tech-
niques described here are to be used in applications requiring

5. Experimental Results more precise or demanding camera positioning, calibration
methods such as those described by Tsai (1989) or Willson

With the preceding discussion as a foundation, we can nad Shafer (1993) should be used.

go on to describe the complete viewpoint-computation algo- In each of the experiments, the objects to be used were first

rithm. modeled using the ACIS geometric modeling system (Spa-
tial Technologies 1995). The objects were positioned in the
Viewpoint Planning Algorithm Puma’s work space, and an operation on or around the ob-

jects was programmed using the teach pendant. Points during
each motion were recorded, and the joint angles at these po-
sitions, along with a kinematic model of the Puma, were used

to compute the swept volumes of the Puma’s motion. These
yswept volumes, along with the models of the object, sensors,

1. Compute the occlusion volum&gccfor all features to
be inspected.

2. Compute the volumeggg, (the positional constraints
for the combined field of view and resolution) for ever

featurei. . : . )
. . n k constraints, wer in he viewpoint-
3. Compute the overall volumiér i as the intersection of and tas co Slt a .tﬁ’ ?Nehused as Input to the Ie' po tl
all Vg . computation algorithm. en necessary, temporal interval

4. Subtract the field-of-view limiting sphere for the entireg(;gihmepoféizggvazsreéfoégsg :8 z(')erlf srt\é)rt_eer tlrr;_enltr;t?or\r/zls(,:h
feature set from this volume. P W P pute Viewpol

5. Clip this region to the half-space corresponding to th ime interval. The sensor parameters and time intervals pro-
“front” of each target face uced were finally used to program the gantry and create a

6. Subtract volumeVocc from this region, yielding the C0ordinated motion plan.
overall candidate volumg.,.

7. Optimize to find a position (or positions) at least locallyp.1. Experiment 1
optimal within V...

8. For each solution poinp, compute a circumscribing Figure 15 shows the scene as it is set for our first example.

o L . Here, we see a model of the Puma poised over a fixtured
cone with its apex gt containing the entire feature set. . X
; : : .~ ““mechanical part. The end effector on the Puma is a long,
Use the axis of this cone for the camera orientation : :
slender tool tip. The Puma makes a pass over the object so

Verify that th'fs gaﬂsﬂe; the resplutlop constraint. If Itthat the tool follows the contour of the groves in the front
does not, optimize to find an orientation that does.
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of the part, simulating a gluing or welding application. Thehen computed using egs. (11) and (12), yieldihg: 8.94
two white strips, corresponding to the two straight segmentsm andamax = f/1.16. The field-of-view and resolution
of the front-most grooves on the part, are the features to benstraints are recomputed, and found to be satisfied with
viewed during this task, yielding eight linear features (th¢éhese parameters.
edges bounding these two rectangular strips). The minimum To verify this viewpoint, the camera is moved into the
resolvable feature length is set at 1 mm, and an 8.5-mm leasmputed position, and an image is taken. The camera is
is used for this task. The goal is to compute a viewpoint fromnanually set to the computed focus value, and its aperture
which the target features can be monitored while the Pumaigsset to be smaller than the maximum prescribed aperture
moving through its task. (significantly smaller, actually, to approximatety5.6). The
We begin by computing the volume swept by the Puma asri¢sulting image is shown in Figure 17.
performsthistask. Thisvolume canbe seeninFigure 16. (No-
tice, for example, that the end effector is no longer a pointegl, Experiment 2
tool, but the volume swept by that tool.) Then, we compute
the visibility volume for the rectangular features. In this task, the Puma is working in and around an electronics
The volumesV;,, are computed for each feature. Thes@ssembly. A circuit board is fixtured in front of the Puma,
regions are intersected for all features, forming the candidea@d the Puma moves through the fixture. The sensor-planning
setVrg. Then,Viy is intersected with the visibility volume, system is asked to maintain a robust view of the top surfaces
forming the feasibility volumé/¢, shown in Figure 16. of several chip sockets during this motion. Figure 18 shows
In this example, a search algorithm employing a sinthe circuit board held in a fixture. Specifically, a rectangular
gle start point was used. This search yielded the vieWwox encompassing the two rows of three sockets along the
point (—310.71, 80519, —23587). For this experiment, back of the circuit board is used as the target feature.
the orientation is computed so as to maximize just the Figure 19 shows the Puma positioned within the fixture.
field-of-view computation, yielding an orientation of = The Puma, with a parallel-jaw gripper for an end effector
(0.1264 —0.1584 —0.9792. The optical parameters areinstead of the stylus used in the previous experiment, moves
through an L-shaped trajectory, forward along one side of the
fixture and across the front of the circuit board. The volume
swept by the Puma moving through this motion is shown in
Figure 20. The sensor-planning system is asked to compute
a viewpoint that monitors the sockets using a 12.5-mm lens,
with a minimum resolvable feature length of 1 mm, while the
robot undergoes this motion.
This motion is quite restrictive in that it does not permit
__ Target the computation of any useful viewpoints to cover the entire
Fealures task interval. In fact, other than a couple of small inaccessible

Fig. 15. The robot and the object to be imaged.

Fig. 16. The merged candidate voluiie embodying all task
constraints, along with the swept robot model and the fixturdeig. 17. Image taken from the computed viewpoint while the
object. probe is in motion.
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Fig. 19. The Puma is poised in position for the motion.

“slivers” of regions right up against the fixture, tig set is

empty. Therefore, we were forced to use a temporal decol

position. Recall that in cases where the entire time interv

cannot be monitored by one viewpoint, we divide the task int

two equal halves and attempt to compute a viewpoint for eas

half. This task gets divided into the “forward” motion and the

“across” motion; the corresponding swept volumes are shovrig. 20. The computed volume swept by the Puma as it moves

in Figures 21 and 24. through the entire trajectory. It moves forward along the side
TheV,. volume computed for the first time interval is showrof the circuit board, and then across the front of the circuit

in Figure 22. VolumeéV,. has one connected component, anéioard, behind the pillars.

two starting points were computed for the positional opti-

mization: one central to the inner spherical surface, and one

central to the torroidal surface. Of these, one converges in a

local minima in a very tight area of the volume, close to one

of the posts on the object—so close, in fact, that positioning

the camera there would cause a collision between the gantry

camera body and the post. A goal of future research is to
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then produces six viewpoints— two of the searches could not
converge, due to the tiny size of the connected components—
of which four are too close to the fixture for collision-free
positioning, and one is under the Puma (inaccessible to our
gantry). Therefore, we have one result, shown graphically in
Figure 26.

Having now completed the planning for the entire task,
the Puma is moved through its task, pausing at each temporal
break for the gantry to reposition itself to the next computed
viewpoint. The images from these viewpoints while the robot
task is in motion are shown in Figures 23 and 26.

Several features of this experiment are worth noting. First,
notice the importance of using multiple starting points for the
search. Due to the number of local minima in the volumes and
additional unaccounted-for constraints (such as the accessi-
bility of a point by the gantry), itis desirable to have a number
of solutions from which to choose. Also, notice that during
the first interval, the camera is oriented nearly perpendicu-
Fig. 21. The computed volume swept by the Puma as it movig to the plane of the target features (the normal is (0,0,1),
through the first half of the trajectory. and the viewing direction i%0.0697, —0.0265 —0.9972).
Therefore, the features all project to nearly the same distance
along the optical axis, and so the depth of field required is
almost zero. This explains the absurdly high value for the
maximal aperture of 150.669 mm, or approximately f/0.083.
Also, the relative orientation of the optical axis and each of
the feature edges is nearly identical, yielding nearly identical
minimum-resolvable feature lengths.

Compare this with time-interval 2, where the camera has a
more off-axis view of the plane: there is a real constraint on
the aperture of around f/1.17 (still not very restrictive), and
the minimum resolvable feature lengths are quite different for
each of the edges, although still satisfying the constraints.

6. Conclusions

This paper has discussed the problem of dynamic sensor plan-
ning for vision sensors in an active robot work cell. It has
described the problem, detailed the constraints, and outlined
Fig. 22. The merged candidate voluiie embodying all task the various forms of the problem. Further, it has presented an
constraints during the first task interval. approach for solving a specific variant of this problem, called
the surveillance planning problem, and presented experimen-
tal results that demonstrate the usefulness of the approach.
include these positioning constraints into the system as welllith only one exception (Niepold, Sakane, and Shirai 1987),
The other answer is shown graphically in Figure 23. none of the sensor-planning systems we have found in the
Having successfully handled the first time interval, we proliterature discuss sensor planning when objects are moving.
ceed to the second. The volume swept by the Puma during The viewpoint-planning algorithm presented in this pa-
this interval is shown in Figure 24; the candidatelédorthis  per has some benefits over previous methods. Some of the
experiment is shown in Figure 25. This set actually has fowarlier work relies on simplifications of the constraints or as-
connected components. There is the large one clearly visibgimptions about certain imaging parameters. This eliminates
and three much smaller ones—precisely, those “sliver” conpossible solutions from consideration. Other systems use ex-
ponents present during the whole task interval. Again, thepensive nonlinear constrained optimizations, which are very
are in extremely close proximity to the fixture, and nearly insensitive to both the initial guess used and the weights as-
significant in volume. The viewpoint-computation algorithnsigned to the individual constraints. Still others rely on dis-
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Fig. 23. The small cone illustrates the computed camera position and orientation (left). The image taken from that position is
shown (right).

cretized approaches and tessellated search spaces, which can
be very costly when finer discretizations are used.

By carefully examining the relationships between the con-
straints, a new way of integrating the field-of-view and resolu-
tion constraints was found. It is this integration that permits
the computation of feasibility regions in three dimensions.
These feasibility regions differ from those used, for example,
by Cowan and Kovesi (1988), in that all feasible points are
included in the regions, without an implicit assumption of the
camera’s orientation.

This three-dimensional region can be searched indepen-
dently of the other camera parameters; subsequently, we can
solve for these other parameters. Therefore, our method in-
creases the size of the searchable region over previous meth-
ods, without resorting to a full-scale optimization of all pa-
rameters. Once a position and orientation have been found,
the computation o optimaiand the upper bound far, amax
allow for a synergy between the sensor and illumination plan-
ners.

The primary limitation in the viewpoint-computation algo-
rithm is that it may be unable to find a viewpoint that satisfies
the resolution constraint for all features; that is, the optimiza-
tion of the orientation is not guaranteed to converge, even
if there is a solution. Since none of the examples that were
run required an optimization of the orientation at all, it is
) ) difficult to know exactly under what circumstances the opti-
Fig. 24. The computed volume swept by the Puma as it MoVg§ization will fail, or to know what steps should be taken by
through the second half of the trajectory. the viewpoint-computation algorithm in this eventuality.

The temporal interval decomposition is, clearly, the coars-
est aspect of the method, and, therefore, the area most open to
future work. Before attacking this problemin more depth, one
must answer the question, “What makes an interval good?”
This is a difficult question, which we leave for future re-
searchers to answer.
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Fig. 25. The merged candidate voluviefor the second task interval, with and without the Puma.

Fig. 26. View showing one of the computed viewpoints and orientations as a cone (left); and the image taken from this
viewpoint (right).
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