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What is the SLAM problem?

• The problem could described in the following 
question:

“If we leave a robot in an unknown location in 
an unknown environment can the robot make 
a satisfactory map while simultaneously being 
able to find its pose in that map?”

• The solution to this problem was the “Holy 
Grail” of the field of mobile robotics.
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The SLAM Problem
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SLAM is the process by which a robot builds 
a map of the environment and, at the same
time, uses this map to compute its location

• Localization: inferring location given a map

• Mapping: inferring a map given a location

• SLAM: learning a map and locating the
robot simultaneously



The SLAM Problem

• SLAM is a chicken-or-egg problem:

→ A map is needed for localizing a robot

→ A pose estimate is needed to build a map

•Thus, SLAM is (regarded as) a hard problem in 

robotics
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Why is SLAM a hard problem?

SLAM: robot path and map are both unknown
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Why is SLAM a hard problem?

Robot
pose 

uncertainty

• In the real world, the mapping between
observations and landmarks is unknown

• Picking wrong data associations can have
catastrophic consequences
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The SLAM Problem (Difficulties)

• The bad news:
– Pretty difficult problem because it combines the 

difficulties of both the localization and mapping 
problem without  the essential assumptions of the 
known map or the known pose.  Classic chicken or 
egg problem.  Data Association problem also key.
 • The good news:

– The problem is considered solved but there are 
still some issues on having more general SLAM 
solutions and creating better maps.



Given:

• The robot’s controls

• Relative observations

Z ={z1, z2,...,zn} 
Wanted:

• Map of features

• Path of the robot

The SLAM Problem
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Structure of the Landmark-

based SLAM-Problem
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SLAM Applications

Indoors

Space

Undersea
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Underground



Representations

•Grid maps or scans

[Lu & Milios, 97; Gutmann, 98: Thrun 98; Burgard, 99; Konolige & Gutmann, 00; Thrun, 00; Arras,
99; Haehnel, 01;…]

• Landmark-based

[Leonard et al., 98; Castelanos et al., 99: Dissanayake et al., 2001; Montemerlo et al., 2002;…
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The SLAM Problem- Preliminaries(1)

• Xk : the state vector 
describing the location and 
orientation of the vehicle at 
time k.

• uk : the control vector 
applied the time k-1.

• mi: a vector describing the 
location of the ith landmark. 
The landmarks are 
motionless.

• zik : an observation taken 
from the vehicle of the 
location of the ith landmark 
at time k.



The SLAM Problem- Preliminaries(2)

• Also the following sets are defined:

– X0:k = {x0, x1,··· , xk}       Position estimates

– U0:k = {u1, u2,··· , uk}     Motion update controls

– Z0:k = {z1, z2,··· , zk}       Sensor measurements

– m = {m1, m2,··· , mn}     Landmark locations
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SLAM:
Simultaneous Localization and Mapping

• Full SLAM:

p(x1:t ,m | z1:t ,u1:t )

•Online SLAM:

p(xt ,m | z1:t ,u1:t )   …  p(x1:t ,m | z1:t ,u1:t ) dx1dx2...dxt1

Integrations (marginalization) typically

done one at a time

Estimates most recent pose and map!

Estimates entire path and map!



Full SLAM Problem

• We need to compute for all times k the probabilistic 
distribution of the joint posterior density of the 
landmarks and the state:

P(xk, m|Z0:k, U0:k, x0)  Why do we need the x0 element?

• In order to compute that probability we need to 
compute previously:

– P(zk|xk, m)  (measurement model)

– P(xk|xk−1, uk)  (motion model)

• Online SLAM just calculates the most recent 
state based upon the previous states 



Probabilistic SLAM - Updates

• Time update (prediction):

• Measurement update (correction):

• We can solve the localization problem with the assumption 
that we know the map:

• And the mapping problem with the assumption we know the 
location:



Structure of Probabilistic SLAM(1)

• The landmark locations estimates are highly 
correlated. We may know with high accuracy 
the relation between the landmarks even if 
the absolute location is uncertain!

• The correlations are increased for every 
observations. Also the estimates for the 
relative location for every landmark are 
improved monotonically as more observations 
are made!



Structure of Probabilistic SLAM(2)



Structure of Probabilistic SLAM(3)

• The observation made by the robot regarding the relative location 
of the landmarks can be considered nearly independent, because 
the relative location of the landmarks is independent from the 
robot’s coordinate frame.

• The observation made by the robot regarding the absolute location 
of the landmarks is more uncertain because the absolute location 
of each landmark is strongly related to the robots coordinate frame.

• Because of the correlations of the landmarks we can update the 
location of landmarks even we cannot observe. So the correlations 
are increased for every observation we make.

• Thus, the robot ‘s accuracy on building the relative map of the 
environment increased for more observations.



3 Solutions to SLAM Problem

• The goal is to find an appropriate representation for 
the observation and motion problem.

• Three different methods:

– Graph Slam

– EKF-SLAM: Using the Extended Kalman Filter.

– Using particle filters :

• Rao-Blackwellized particle filter (FastSLAM)
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Graph-Based SLAM ?? 
SLAM = simultaneous localization and  
mapping 
 
graph = representation of a set of  
objects where pairs of objects are  
connected by links encoding relations  
between the objects 
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Robot pose Constraint  

Graph-Based SLAM 

§  Nodes represent poses or locations  
§  Constraints connect the poses of the 

robot while it is moving 
§  Constraints are inherently uncertain 
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Graph-Based SLAM 

§  Observing previously seen areas 
generates constraints between non-
successive poses 

 

Robot pose Constraint  
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Idea of Graph-Based SLAM 

§  Use a graph to represent the problem 
§  Every node in the graph corresponds 

to a pose of the robot during mapping 
§  Every edge between two nodes 

corresponds to a spatial constraint  
between them 

§  Graph-Based SLAM: Build the graph 
and find a node configuration that 
minimize the error introduced by the 
(noisy) constraints  
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Create an Edge If… (1) 

§  …the robot moves from     to 
§  Edge corresponds to odometry 

The edge represents the 
odometry measurement 
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Create an Edge If… (2) 

§  …the robot observes the same part of 
the environment from     and from 

xi 

Measurement from     

xj 

Measurement from   
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The Graph with Landmarks 

§  Nodes can represent: 
§ Robot poses 
§ Landmark locations 

§  Edges can represent: 
§ Landmark observations  
§ Odometry measurements 

§  The minimization 
optimizes the landmark 
locations and robot 
poses  

Feature 

Pose 

Constraint 
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Graph-SLAM and Least Squares 

§  The nodes represent the state 
§  Given a state, we can compute what 

we expect to perceive 

Find a configuration of the  
nodes so that the real and  
predicted observations are  

as similar as possible
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Graph Slam 

• Treat constraints (motion and measurement) as “soft” elastic springs
• Want to minimize energy in the springs



© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

SLAM overview
 Let us assume that the robot 

uncertainty at its initial location is 
zero. 

 From this position, the robot 
observes a feature which is 
mapped with an uncertainty 
related to the exteroceptive 
sensor error model

5 - Localization and Mapping
5
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© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

SLAM overview
 As the robot moves, its pose 

uncertainty increases under the 
effect of the errors introduced by 
the odometry

5 - Localization and Mapping
5
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© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

SLAM overview
 At this point, the robot observes 

two features and maps them with 
an uncertainty which results from 
the combination of the 
measurement error with the robot 
pose uncertainty

 From this, we can notice that the 
map becomes correlated with the 
robot position estimate. Similarly, if 
the robot updates its position 
based on an observation of an 
imprecisely known feature in the 
map, the resulting position 
estimate becomes correlated with 
the feature location estimate.

5 - Localization and Mapping
5

15



© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

SLAM overview
 The robot moves again and its 

uncertainty increases under the 
effect of the errors introduced by 
the odometry

5 - Localization and Mapping
5
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© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

SLAM overview
 In order to reduce its uncertainty, 

the robot must observe features 
whose location is relatively well 
known. These features can for 
instance be landmarks that the 
robot has already observed 
before. 

 In this case, the observation is 
called loop closure detection.

 When a loop closure is detected, 
the robot pose uncertainty 
shrinks. 

 At the same time, the map is 
updated and the uncertainty of 
other observed features and all 
previous robot poses also reduce

5 - Localization and Mapping
5
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Linear 1-D Graph Slam

• Solution:  List all constraints in a linear system

• Absolute constraint:  X(0) = Q  - starting position

• Movement Constraints:  X(t) = X(t-1) + Dx(t)

• Measurement Constraints:  Use distance measure 
to landmark:

Landmark L(k) = X(t) + N

• Each constraint can be an estimate based upon a 
probability distribution



• For exact solution, we need 1 constraint per unknown

• Example:  X(0) = -3; X(1) =X(0) + 5; X(2) = X(1) + 3

• Each constraint is a linear equation in the unknowns

1  0  0          X(0)             -3 

-1  1  0          X(1)     =       5 A * X = B

0 -1  1          X(2)              3           X = A-1 * B

X = [-3  2  5]

Linear 1-D Graph Slam

1     0     0
A-1 =   1     1     0

1     1     1



X(0) X(1) X(2)

-3

Move 5 Move 3

L0
7

10

5

2

Now add Landmark (L0) constraints from sensing

loop loop

2 5Location: 
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Linear 1-D Graph Slam
• Now add landmark constraints, linking position with map:
• At X(0) see L(0) at distance 10; At X(1) see L(0) at distance 

5;  at X(2) see L(0) at distance 2
• Solution: 

1  0  0 0        X(0)             -3 
1 -1 0  0        X(1)     =     -5              A * X = B
0  1 -1 0        X(2)            -3               Cannot Invert A !
1  0  0 -1       L(0)            -10             X = A-1 * B
0  1  0 -1                           -5
0  0  1 -1                           -2

X = [-3  2  5 7]
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Linear 1-D Graph Slam
For overdetermined system, compute PseudoInverse Matrix:

A * X = B
AT *A * X = AT * B;   AT = transpose of A
X = (AT*A)-1 * AT * B;     ATA guaranteed to be square
(AT*A)-1 * AT      is PseudoInverse

Solution: 
1  0  0 0        X(0)             -3 
1 -1 0  0        X(1)     =     -5              
0  1 -1 0        X(2)            -3               
1  0  0 -1       L(0)            -10             
0  1  0 -1                           -5
0  0  1 -1                           -2

X = [-3  2  5 7]



Matlab Code: Least Squares 

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -2]

ATA = transpose(A)*A
ATB = transpose(A)*B
X= inv(ATA)*ATB;
disp('Solution:')
disp(X)

X(0) = -3; X(1) = 2; X(2)=5; L(0) = 7

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-2

ATA =
3    -1     0    -1

-1     3    -1    -1
0    -1     2    -1

-1    -1    -1     3
ATB =

-18
-3
1

17
Solution:

-3
2
5
7



X(0) X(1) X(2)

-3

Move 5 Move 3

L0
7

10

5

2

Consistent Solution:  If L0 is at 7, each loop is consistent 

loop loop

2 5Location: 
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Matlab Code: Inconsistent Measurements?

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -1]

Inconsistent measurement
Was X(2) +2 =L(0)
Now (X2) +1 =L(0)

ATA = transpose(A)*A
ATB = transpose(A)*B
X= inv(ATA)*ATB;
disp('Solution:')
disp(X)

Least squares shifts the robot locations and landmark
Location to reduce the overall error.  Notice the 
locations and the landmark are adjusted!  However X(0)
Remains unchanged as it has an absolute constraint 
(X(0) = fixed location)

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-1

ATA =
3    -1     0    -1

-1     3    -1    -1
0    -1     2    -1

-1    -1    -1     3
ATB =

-18
-3
1

16
Solution:

-3
2.125
5.5
6.875

Include an inconsistent measurement, find BEST solution



X(0) X(1) X(2)

-3

Orig. Move 5 Orig. Move 3

L0
6.875

10 (now 9.875)

5 (now 4.75)

1 (now 1.375loop loop

Location: 

Inconsistent Measurement Solution:  Adjust L0, 

X(1), X(2) to minimize error in measurements and movement.  
Now L0 = X(2) + 1.375, closer to measured value = 1.  Note 
ALL relative values are shifted to reduce global error. 
 
Compute least-error robot locations & landmark locations simultaneously
 
SLAM! 

2.125 5.5



Adding Confidence Measures

• Linear Least Squares allows us to include a weighting of each linear constraint. 
• If we know something about how confident a measure is, we can include that 

in the computation
• We weight each constraint by a diagonal matrix where the weights are 

1/variance for each constraint.  
• Highly confident constraints have low variance; 1/variance is large weight. 
• Unconfident constraints have high variance; 1/variance is small weight.
• Matrix Formulation for weighted Least Squares (A*X=B):

X = (AT * W * A)-1 *  AT * W * B

Weights amplify/attenuate measurements based on measurements variance



Matlab Code: Confidence Weights

% x0= -3, x1= x0+5; x2=x1+3; xo sees L0 at 10; x1 sees L0 at 
5, x2 sees L0 at 1
% we also have MUCH higher confidence (small variance) in 
% X(2)  measurement of L0
% use weight matrix where diagonals are 1/sigma**2 –
% variance in each measurement.  Use variance of 0.2 (1/.2 
=5)

A=[1 0 0 0;-1 1 0 0; 0 -1 1 0; 1 0 0  -1;0 1 0 -1; 0 0 1 -1]
B=[-3; 5; 3; -10; -5; -1]
W=[1 0 0 0 0 0 ; 0 1 0 0 0 0; 0 0 1 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 
0; 0 0 0 0 0 5]

ATWA = transpose(A)*W*A
ATWB = transpose(A)*W*B
X= inv(ATWA)*ATWB;
disp('Solution:')
disp(X)

Note: Notice that L0 location from X(2) is now closer to the 
Measured value of 1 due to confidence weights

A =
1     0     0     0

-1     1     0     0
0    -1     1     0
1     0     0    -1
0     1     0    -1
0     0     1    -1

B =
-3
5
3

-10
-5
-1

W =
1     0     0     0     0     0
0     1     0     0     0     0
0     0     1     0     0     0
0     0     0     1     0     0
0     0     0     0     1     0
0     0     0     0     0     5

ATWA =
3    -1     0    -1

-1     3    -1    -1
0    -1     6    -5

-1    -1    -5     7
ATWB =

-18
-3
-2
20

Solution:
-3.0000
2.1786
5.7143
6.8214

Include a weight on a measurement, scaled by 1/variance
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X(0) X(1) X(2)

-3

Orig. Move 5 Orig. Move 3 

L0
6.875 -> 6.8214

Orig. 10 

Orig. 5

Orig.2

Confidence Measures Solution:  Adjust L0, X(1), 

X(2) to minimize error in measurements and movement, 
given GREATER confidence in measurement of L0 from X(2).  
Now L0 = X(2) + 1.107, even closer to measured value = 1.  
Note ALL relative values are shifted to reduce global error.

loop loop

2.125 -> 2.7186 5.5 -> 5.7143



X(0) X(1) X(2)

5

Move 7 Move 2 

L0

2 4 2

Example: Multiple landmarks:  Can 
incorporate multiple landmarks – each 
measurement is a constraint.  In this example, 
X(0)=5, X(1)=X(0)+7, X(2)=X(1)+2; X(0) sees L0 
at 2, X(1) sees L1 at 4 and X(2) sees L1 at 2

loop loop

L1

Solution:
X(0)=   5.0000
X(1)=  12.0000
X(2)=  14.0000
L0=       7.0000
L1=     16.0000

If X(1) sees L0 at 4
and X(2) sees L1 at 2

Solution:
X(0)=   5.0000
X(1)=  12.0000
X(2)=  14.3000
L0=       6.0000
L1=     15.6667
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§  Solution 2: Gaussian Filtering (EKF, UKF) 
§  Track a Gaussian belief of the state/landmarks 
§  Assume all noise is Gaussian 
§  Follow the well-known “predict/correct” approach 

§  Pros 
§  Runs online 
§  Well understood 
§  Works well for low-uncertainty problems 

§  Cons 
§  Works poorly for high-uncertainty problems 
§  Unimodal estimate 
§  States must be well approximated by a Gaussian 

Introduction 24 

SLAM: EKF Slam 
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§  Solution 2: Particle Filtering 
§  Represent our belief by a series of samples 
§  Follow the well-known “predict/correct” approach 

§  Pros 
§  Noise densities can be from any distribution 
§  Works for multi-modal distribtuions 
§  Easy to implement 

§  Cons 
§  Does not scale to high-dimensional problems 
§  Requires many particles to have good convergence 

Introduction 34 

SLAM: The three main solutions 
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 Represent belief by random samples

 Estimation of non-Gaussian, nonlinear processes

 Sampling Importance Resampling (SIR) principle

 Draw the new generation of particles

 Assign an importance weight to each particle

 Resampling 

 Typical application scenarios are 

tracking, localization, …

Particle Filters
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 A particle filter can be used to solve both problems

 Localization: state space < x, y, >

 SLAM: state space < x, y, , map>
 for landmark maps = < l1, l2, …, lm>

 Problem: The number of particles needed to 

represent a posterior grows exponentially with 

the dimension of the state space!

Localization vs. SLAM

allen
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© R. Siegwart & D. Scaramuzza, ETH Zurich - ASL

5 - Localization and Mapping
5

27 Particle Filter SLAM: FastSLAM
 FastSLAM approach

 It solves the SLAM problem using particle filters. 
 Each particle k :estimate of robot path  and mean, and covariance of each of 

the n features: P[k] (Xt
[k] μ[k]; Σ1

[k] … μ[k] Σn
[k] )

 Particle filter update
 In the update step a new particle

distribution, given motion model and 
controls applied is generated.

a) For each particle:
1. Compare particle’s prediction of measurements with actual measurements
2. Particles whose predictions match the measurements are given a high weight

b) Filter resample:
• Resample particles based on weight
• Filter resample

• Assign each particle a weight depending on how well its estimate of the state 
agrees with the measurements and randomly draw particles from previous 
distribution based on weights creating a new distribution.
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Factored Posterior (Landmarks)

SLAM posterior
Robot path posterior

landmark positions

Factorization first introduced by Murphy in 1999

Does this help to solve the problem?

poses map observations & movements
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Knowledge of the robot’s true path renders 

landmark positions conditionally independent

Mapping using Landmarks

. . .

Landmark 1

observations

Robot poses

controls

x1 x2 xt

u1 ut-1

l2

l1

z1

z2

x3

u
1

z3

zt

Landmark 2

x
0

u0 
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Rao-Blackwellization

 This factorization is also called Rao-Blackwellization

 Given that the second term can be computed 

efficiently, particle filtering becomes possible!
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Factored Posterior

Robot path posterior
(localization problem) Conditionally 

independent 
landmark positions
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FastSLAM
 Rao-Blackwellized particle filtering based on 

landmarks     [Montemerlo et al., 2002]

 Each landmark is represented by a 2x2 

Extended Kalman Filter (EKF)

 Each particle therefore has to maintain M EKFs

Landmark 1 Landmark 2 Landmark M…x, y, 

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#1

Landmark 1 Landmark 2 Landmark M…x, y, Particle

#2

Particle

N

…
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FastSLAM – Action Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Landmark #1

Filter

Landmark #2

Filter
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FastSLAM – Sensor Update

Particle #1

Particle #2

Particle #3

Weight = 0.8

Weight = 0.4

Weight = 0.1
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FastSLAM  - Video
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Results – Victoria Park

 4 km traverse

 < 5 m RMS 
position error

 100 particles

Dataset courtesy of University of Sydney

Blue = GPS
Yellow = FastSLAM
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Data Association Problem

 A robust SLAM must consider possible data 
associations 

 Potential data associations depend also 
on the pose of the robot 

 Which observation belongs to which landmark?
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Multi-Hypothesis Data Association

 Data association is 
done on a per-particle 
basis

 Robot pose error is 
factored out of data 
association decisions
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Per-Particle Data Association

Was the observation
generated by the red
or the blue landmark?

P(observation|red) = 0.3 P(observation|blue) = 0.7

 Two options for per-particle data association

 Pick the most probable match

 Pick an random association weighted by 
the observation likelihoods

 If the probability is too low, remove the 
landmark
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- Real Time Object Level SlamMoving camera same as moving robotUse kinect Fusion to create 3D modelsDetect semantic objects from Kinect 3D modelsObjects are now "tracked" - higher level landmark      with constraintsCan even add Virtual Objects to real scene!see the video 
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