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46. Simultaneous Localization
and Mapping

Cyrill Stachniss, John J. Leonard, Sebastian Thrun

This chapter provides a comprehensive intro-
duction in to the simultaneous localization and
mapping problem, better known in its abbreviated
form as SLAM. SLAM addresses the main percep-
tion problem of a robot navigating an unknown
environment. While navigating the environment,
the robot seeks to acquire a map thereof, and
at the same time it wishes to localize itself us-
ing its map. The use of SLAM problems can be
motivated in two different ways: one might be in-
terested in detailed environment models, or one
might seek to maintain an accurate sense of a mo-
bile robot’s location. SLAM serves both of these
purposes.

We review the three major paradigms from
which many published methods for SLAM are de-
rived: (1) the extended Kalman filter (EKF); (2)
particle filtering; and (3) graph optimization. We
also review recent work in three-dimensional (3-D)
SLAM using visual and red green blue dis-
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tance-sensors (RGB-D), and close with a discussion
of open research problems in robotic mapping.

This chapter provides a comprehensive introduction
into one of the key enabling technologies of mobile
robot navigation: simultaneous localization and map-
ping, or in short SLAM. SLAM addresses the problem
of acquiring a spatial map of an environment while si-
multaneously localizing the robot relative to this model.
The SLAM problem is generally regarded as one of the
most important problems in the pursuit of building truly
autonomous mobile robots. It is of great practical im-
portance; if a robust, general-purpose solution to SLAM
can be found, then many new applications of mobile
robotics will become possible.
While the problem is deceptively easy to state, it
presents many challenges, despite significant progress
made in this area. At present, we have robust methods
for mapping environments that are mainly static, struc-

tured, and of limited size. Robustly mapping unstruc-
tured, dynamic, and large-scale environments in an on-
line fashion remains largely an open research problem.

The historical roots of methods that can be applied
to address the SLAM problem can be traced back to
Gauss [46.1], who is largely credited for inventing the
least squares method. In the Twentieth Century, a num-
ber of fields outside robotics have studied the making
of environment models from a moving sensor platform,
most notably in photogrammetry [46.2–4] and com-
puter vision [46.5]. Strongly related problems in these
fields are bundle adjustment and structure from mo-
tion. SLAM builds on this work, often extending the
basic paradigms into more scalable algorithms. Mod-
ern SLAM systems often view the estimation problem
as solving a sparse graph of constraints and applying
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nonlinear optimization to compute the map and the tra-
jectory of the robot. As we strive to enable long-lived
autonomous robots, an emerging challenge is to handle
massive sensor data streams.

This chapter begins with a definition of the SLAM
problem, which shall include a brief taxonomy of dif-
ferent versions of the problem. The centerpiece of this
chapter is a layman introduction into the three major
paradigms in this field, and the various extensions that
exist. As the reader will quickly recognize, there is no
single best solution to the SLAM method. The method

chosen by the practitioner will depend on a number of
factors, such as the desired map resolution, the update
time, and the nature of the features in the map, and so
on. Nevertheless, the three methods discussed in this
chapter cover the major paradigms in this field.

For more a detailed treatment of SLAM, we refer
the reader to Durrant-Whyte and Bailey [46.6, 7], who
provide an in-depth tutorial for SLAM, Grisetti et al.
for a tutorial on graph-based SLAM [46.8], and Thrun
et al., which dedicates a number of chapters to the topic
of SLAM [46.9].

46.1 SLAM: Problem Definition

The SLAM problem is defined as follows: A mobile
robot roams an unknown environment, starting at an
initial location x0. Its motion is uncertain, making it
gradually more difficult to determine its current pose in
global coordinates. As it roams, the robot can sense its
environment with a noisy sensor. The SLAM problem
is the problem of building a map of the environment
while simultaneously determining the robot’s position
relative to this map given noisy data.

46.1.1 Mathematical Basis

Formally, SLAM is best described in probabilistic ter-
minology. Let us denote time by t, and the robot
location by xt. For mobile robots on a flat ground, xt is
usually a three-dimensional vector, comprising its two-
dimensional (2-D) coordinate in the plane plus a single
rotational value for its orientation. The sequence of lo-
cations, or path, is then given as

XT D fx0; x1; x2; : : : ; xTg : (46.1)

Here T is some terminal time (T might be 1). The
initial location x0 often serves as a point of reference
for the estimation algorithm; other positions cannot be
sensed.

Odometry provides relative information between
two consecutive locations. Let ut denote the odometry
that characterized the motion between time t� 1 and
time t; such data might be obtained from the robot’s
wheel encoders or from the controls given to those mo-
tors. Then the sequence

UT D fu1; u2; u3 : : : ; uTg (46.2)

characterizes the relative motion of the robot. For noise-
free motion,UT would be sufficient to recover the poses
from the initial location x0. However, odometry mea-

surements are noisy, and path integration techniques
inevitably diverge from the truth.

Finally, the robot senses objects in the environment.
Let m denote the true map of the environment. The
environment may be comprised of landmarks, objects,
surfaces, etc., and m describes their locations. The en-
vironment map m is often assumed to be time-invariant,
i. e., static.

The robot measurements establish information be-
tween features in m and the robot location xt. If we,
without loss of generality, assume that the robot takes
exactly one measurement at each point in time, the se-
quence of measurements is given as

ZT D fz1; z2; z3; : : : ; zTg : (46.3)

Figure 46.1 illustrates the variables involved in the
SLAM problem. It shows the sequence of locations and
sensor measurements, and the causal relationships be-
tween these variables. This diagram represents a graph-

zt+1

x t+1x tx t –1

ztzt –1

ut+1utut –1

m

Fig. 46.1 Graphical model of the SLAM problem. Arcs in-
dicate causal relationships, and shaded nodes are directly
observable to the robot. In SLAM, the robot seeks to re-
cover the unobservable variables
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ical model for SLAM. It is useful in understanding the
dependencies in the problem at hand.

The SLAM problem is now the problem of recov-
ering a model of the world m and the sequence of
robot locations XT from the odometry and measurement
data. The literature distinguishes two main forms of the
SLAM problem, which are both of equal practical im-
portance. One is known as the full SLAM problem: it
involves estimating the posterior over the entire robot
path together with the map

p.XT ;m j ZT ;UT / : (46.4)

Written in this way, the full SLAM problem is the
problem of calculating the joint posterior probability
over XT and m from the available data. Notice that the
variables right of the conditioning bar are all directly
observable to the robot, whereas those on the left are
the ones that we want. As we shall see, algorithms for
the full SLAM problem are often batch, that is, they
process all data at the same time.

The second, equally important SLAM problem is
the online SLAM problem. This problem is defined via

p.xt;m j Zt;Ut/ : (46.5)

Online SLAM seeks to recover the present robot loca-
tion, instead of the entire path. Algorithms that address
the online problem are usually incremental and can pro-
cess one data item at a time. In the literature, such
algorithms are typically called filters.

To solve the SLAM problem, the robot needs to
be endowed with two more models: a mathematical
model that relates odometry measurements ut to robot
locations xt�1 and xt; and a model that relates measure-
ments zt to the environmentm and the robot location xt.
These models correspond to the arcs in Fig. 46.1.

In SLAM, it is common to think of those mathemat-
ical models as probability distributions: p.xt j xt�1; ut/
characterizes the probability distribution of the location
xt assuming that a robot started at a known location
xt�1 and measured the odometry data ut. And likewise,
p.zt j xt;m/ is the probability for measuring zt if this
measurement is taken at a known location xt in a known
environmentm. Of course, in the SLAM problemwe do
not know the robot location, and neither do we know the
environment. As we shall see, Bayes rule takes care of
this, by transforming these mathematical relationships
into a form where we can recover probability distribu-
tions over those latent variables from the measured data.

46.1.2 Example: SLAM in Landmark Worlds

One common setting of SLAM involves an assumption
that the environment is populated by point-landmarks.

When building 2-D maps, point-landmarks may cor-
respond to door posts and corners of rooms, which,
when projected into a 2-D map are characterized by
a point coordinate. In a 2-D world, each point-landmark
is characterized by two coordinate values. Hence the
world is a vector of size 2N, where N is the number
of point-landmarks in the world. In a commonly stud-
ied setting, the robot can sense three things: the relative
range to nearby landmarks, their relative bearing, and
the identity of these landmarks. The range and bearing
may be noisy, but in the most simple case the identity
of the sensed landmarks is known perfectly. Determin-
ing the identity of the sensed landmarks is also known
as the data association problem. In practice, it is one of
the most difficult problems in SLAM.

To model the above described setup, one begins
with defining the exact, noise-free measurement func-
tion. The measurement function h describes the work-
ings of the sensors: it accepts as input a description of
the environment m and a robot location xt, and it com-
putes the measurement

h.xt;m/ : (46.6)

Computing h is straightforward in our simplified land-
mark setting; it is a simple exercise in trigonometry. The
probabilistic measurement model can be derived from
this measurement function by adding a noise term. It
is a probability distribution that peaks at the noise-free
value h.xt;m/ but allows for measurement noise, for ex-
ample,

p.zt j xt;m/DN .h.xt;m/;Qt/ : (46.7)

Here N denotes the 2-D normal distribution, which is
centered at h.xt;m/. The 2-by-2 matrix Qt is the noise
covariance, indexed by time.

The motion model is derived from a kinematic
model of robot motion. Given the location vector xt�1

and the motion ut, textbook kinematics tells us how to
calculate xt. Let this function be denoted by g

g.xt�1; ut/ : (46.8)

The motion model may then be defined by a normal dis-
tribution centered at g.xt�1; ut/ but subject to Gaussian
noise

p.xt j xt�1; ut/DN .g.xt�1; ut/;Rt/ : (46.9)

Here Rt is a covariance. It is of size 3-by-3, since the
location is a three-dimensional 3-D vector.

With these definitions, we have all we need to
develop a SLAM algorithm. While in the literature,
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point-landmark problems with range-bearing sensing
are by far the most studied, SLAM algorithms are not
confined to landmark worlds. But no matter what the
map representation and the sensor modality, any SLAM
algorithm needs a similarly crisp definition of the fea-
tures in m, the measurement model p.zt j xt;m/, and the
motion model p.xt j xt�1; ut/. Note that none of those
distributions has to be restricted to Gaussian noise as
done in the example above.

46.1.3 Taxonomy of the SLAM Problem

SLAM problems are distinguished along a number of
different dimensions. Most important research papers
identify the type of problems addressed by making the
underlying assumptions explicit. We already encoun-
tered one such distinction: full versus online. Other
common distinctions are as follows:

Volumetric Versus Feature-Based
In volumetric SLAM, the map is sampled at a resolution
high enough to allow for photo-realistic reconstruction
of the environment. The map m in volumetric SLAM
is usually quite high-dimensional, with the result that
the computation can be quite involved. Feature-based
SLAM extracts sparse features from the sensor stream.
The map is then only comprised of features. Our
point-landmark example is an instance of feature-based
SLAM. Feature-based SLAM techniques tend to be
more efficient, but their results may be inferior to volu-
metric SLAM due to the fact that the extraction of fea-
tures discards information in the sensor measurements.

Topological Versus Metric
Somemapping techniques recover only a qualitative de-
scription of the environment, which characterizes the
relation of basic locations. Such methods are known as
topological. A topological map might be defined over
a set of distinct places and a set of qualitative rela-
tions between these places (e.g., place A is adjacent to
place B). Metric SLAM methods provide metric infor-
mation between the relation of such places. In recent
years, topological methods have fallen out of fashion,
despite ample evidence that humans often use topolog-
ical information for navigation.

Known Versus Unknown Correspondence
The correspondence problem is the problem of relat-
ing the identity of sensed things to other sensed things.
In the landmark example above, we assumed that the
identity of landmarks is known. Some SLAM algo-
rithms make such an assumption, others do not. The
ones that do not provide special mechanisms for es-
timating the correspondence of measured features to

previously observed landmarks in the map. The prob-
lem of estimating the correspondence is known as data
association problem. It is one of the most difficult prob-
lems in SLAM.

Static Versus Dynamic
Static SLAM algorithms assume that the environment
does not change over time. Dynamic methods allow
for changes in the environment. The vast literature on
SLAM assumes static environments. Dynamic effects
are often treated just as measurement outliers. Meth-
ods that reason about motion in the environment are
more involved, but they tend to be more robust in most
applications.

Small Versus Large Uncertainty
SLAM problems are distinguished by the degree of
location uncertainty that they can handle. The most sim-
ple SLAM algorithms allow only for small errors in
the location estimate. They are good for situations in
which a robot goes down a path that does not intersect
itself, and then returns along the same path. In many
environments it is possible to reach the same location
from multiple directions. Here the robot may accrue
a large amount of uncertainty. This problem is known
as the loop closing problem. When closing a loop, the
uncertainty may be large. The ability to close loops is
a key characteristic of modern-day SLAM algorithms.
The uncertainty can be reduced if the robot can sense
information about its position in some absolute coor-
dinate frame, e.g., through the use of a satellite-based
global positioning system (GPS) receiver.

Active Versus Passive
In passive SLAM algorithms, some other entity controls
the robot, and the SLAM algorithm is purely observing.
The vast majority of algorithms are of this type; they
give the robot designer the freedom to implement ar-
bitrary motion controllers, and pursue arbitrary motion
objectives. In active SLAM, the robot actively explores
its environment in the pursuit of an accurate map. Ac-
tive SLAM methods tend to yield more accurate maps
in less time, but they constrain the robot motion. There
exist hybrid techniques in which the SLAM algorithm
controls only the pointing direction of the robot’s sen-
sors, but not the motion direction.

Single-Robot Versus Multi-Robot
Most SLAM problems are defined for a single robot
platform, although recently the problem of multi-
robot exploration has gained in popularity. Multi-robot
SLAM problems come in many flavors. In some, robots
get to observe each other, in others, robots are told their
relative initial locations. Multirobot SLAM problems
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are also distinguished by the type of communication al-
lowed between the different robots. In some, the robots
can communicate with no latency and infinite band-
width. More realistic are setups in which only nearby
robots can communicate, and the communication is
subject to latency and bandwidth limitations.

Any-Time and Any-Space
Robots that do all computations onboard have limited
resources in memory and computation power. Any-
time and any-space SLAM systems are an alternative

to traditional methods. They enable the robot to com-
pute a solution given the resource constraints of the
system. The more resources available, the better the
solution.

As this taxonomy suggests, there exists a flurry of
SLAM algorithms. Most modern-day conferences ded-
icate multiple sessions to SLAM. This chapter focuses
on the very basic SLAM setup. In particular it assumes
a static environment with a single robot. Extensions are
discussed towards the end of this chapter, in which the
relevant literature is discussed.

46.2 The Three Main SLAM Paradigms

This section reviews three basic SLAM paradigms,
from which most others are derived. The first, known as
EKF SLAM, is in robotics historically the earliest but
has become less popular due to its limiting computa-
tional properties and issues resulting from performing
single linearizations only. The second approach uses
nonparametric statistical filtering techniques known as
particle filters. It is a popular method for online SLAM
and provides a perspective on addressing the data asso-
ciation problem in SLAM. The third paradigm is based
on graphical representations and successfully applies
sparse nonlinear optimization methods to the SLAM
problem. It is the main paradigm for solving the full
SLAM problem and recently also incremental tech-
niques are available.

46.2.1 Extended Kalman Filters

Historically, the EKF formulation of SLAM is the earli-
est, and perhaps the most influential, SLAM algorithm.
EKF SLAM was introduced in [46.10, 11] and [46.12,
13], which were the first papers to propose the use of
a single state vector to estimate the locations of the
robot and a set of features in the environment, with an
associated error covariance matrix representing the un-
certainty in these estimates, including the correlations
between the vehicle and feature state estimates. As the
robot moves through its environment taking measure-
ments, the system state vector and covariance matrix
are updated using the extended Kalman filter [46.14,
15]. As new features are observed, new states are added
to the system state vector; the size of the system covari-
ance matrix grows quadratically.

This approach assumes a metrical, feature-based
environmental representation, in which objects can be
effectively represented as points in an appropriate pa-
rameter space. The position of the robot and the loca-
tions of features form a network of uncertain spatial
relationships. The development of appropriate repre-

sentations is a critical issue in SLAM, and intimately
related to the topics of sensing and world modeling dis-
cussed in Chap. 36 and in Part C.

The EKF algorithm represents the robot estimate by
a multivariate Gaussian

p.xt;m j Zt;Ut/DN .�t;† t/ : (46.10)

The high-dimensional vector �t contains the robot’s
best estimate of its own current location xt and the
location of the features in the environment. In our
point-landmark example, the dimension of �t would be
3C 2N, since we need three variables to represent the
robot location and 2N variables for the N landmarks in
the map.

The matrix † t is the covariance of the robot’s as-
sessment of its expected error in the guess �t. The
matrix † t is of size .3C 2N/� .3C 2N/ and it is pos-
itive semi-definite. In SLAM, this matrix is usually
dense. The off-diagonal elements capture the correla-
tions in the estimates of different variables. Nonzero
correlations come along because the robot’s location is
uncertain, and as a result the locations of the landmarks
in the maps are uncertain.

The EKF SLAM algorithm is easily derived for our
point-landmark example. Suppose, for a moment, the
motion function g and the measurement function hwere
linear in their arguments. Then, the vanilla Kalman fil-
ter, as described in any textbook on Kalman filtering,
would be applicable. EKF SLAM linearizes the func-
tions g and h using Taylor series expansion. In its most
basic form and in the absence of any data association
problems, EKF SLAM is basically the application of
the EKF to the online SLAM problem.

Figure 46.2 illustrates the EKF SLAM algorithm for
an artificial example. The robot navigates from a start
pose that serves as the origin of its coordinate system.
As it moves, its own pose uncertainty increases, as in-
dicated by uncertainty ellipses of growing diameter. It

http://dx.doi.org/10.1007/978-3-319-32552-1_36
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a) b)

c) d)

Fig.46.2a–d EKF applied to the
online SLAM problem. The robot’s
path is a dotted line, and its estimates
of its own position are shaded ellipses.
Eight distinguishable landmarks of
unknown location are shown as small
dots, and their location estimates are
shown as white ellipses. In (a–c)
the robot’s positional uncertainty is
increasing, as is its uncertainty about
the landmarks it encounters. In (d) the
robot senses the first landmark again,
and the uncertainty of all landmarks
decreases, as does the uncertainty
of its current pose (image courtesy
of Michael Montemerlo, Stanford
University)

also senses nearby landmarks and maps them with an
uncertainty that combines the fixed measurement uncer-
tainty with the increasing pose uncertainty. As a result,
the uncertainty in the landmark locations grows over
time. The interesting transition happens in Fig. 46.2d:
Here the robot observes the landmark it saw in the very
beginning of mapping, and whose location is relatively
well known. Through this observation, the robot’s pose
error is reduced, as indicated in Fig. 46.2d – notice
the very small error ellipse for the final robot pose.
This observation also reduces the uncertainty for other
landmarks in the map. This phenomenon arises from
a correlation that is expressed in the covariance matrix
of the Gaussian posterior. Since most of the uncertainty
in earlier landmark estimates is caused by the robot
pose, and since this very uncertainty persists over time,
the location estimates of those landmarks are correlated.
When gaining information on the robot’s pose, this in-
formation spreads to previously observed landmarks.
This effect is probably the most important characteristic
of the SLAM posterior [46.16]. Information that helps
localize the robot is propagated through the map, and as
a result improves the localization of other landmarks in
the map.

With a few adaptations, EKF SLAM can also be ap-
plied in the presence of uncertain data association. If
the identity of observed features is unknown, the basic

EKF idea becomes inapplicable. The solution here is
to reason about the most likely data association when
a landmark is observed. This is usually done based
on proximity: which of the landmarks in the map cor-
responds most likely to the landmark just observed?
The proximity calculation considers the measurement
noise and the actual uncertainty in the poster estimate,
and the metric used in this calculation is known as
a Mahalanobis distance, which is a weighted quadratic
distance. To minimize the chances of false data asso-
ciations, many implementations use visible features to
distinguish individual landmarks and associate groups
of landmarks observed simultaneously [46.17, 18], al-
though distinct features can also be computed from
laser data [46.19, 20]. Typical implementations also
maintain a provisional landmark list and only add
landmarks to the internal map when they have been
observed sufficiently frequently [46.16, 21]. With an
appropriate landmark definition and careful implemen-
tation of the data association step, EKF SLAM has been
applied successfully in a wide range of environments,
using airborne, underwater, indoor, and various other
platforms.

The basic formulation of EKF SLAM assumes that
the location of features in the map is fully observable
from a single position of the robot. The method has
been extended to situations with partial observability,
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with range-only [46.22] or angle-only [46.23, 24] mea-
surements. The technique has also been utilized using
a feature-less representation, in which the state consists
of current and past robot poses, and measurements take
the form of constraints between the poses (derived for
example from laser scan matching or from camera mea-
surements) [46.25, 26].

A key concern of the EKF approach to SLAM
lies in the quadratic nature of the covariance matrix.
A number of researchers have proposed extensions to
the EKF SLAM algorithms that achieve scalability, for
example through submap decomposition [46.27–30].
A related family of approaches [46.31–34] employs the
Extended Information Filter, which operates on the in-
verse of the covariance matrix. A key insight is that
whereas the EKF covariance is densely populated, the
information matrix is sparse when the full robot tra-
jectory is maintained, leading to the development of
efficient algorithms and providing a conceptual link
to the pose graph optimization methods described in
Sect. 46.2.3.

The issues of consistency and convergence in
EKF SLAM have been investigated in [46.35, 36].
Observability-based rules for designing consistent EKF
SLAM estimators are presented in [46.37].

46.2.2 Particle Methods

The second principal SLAM paradigm is based on par-
ticle filters. Particle filters can be traced back to [46.38],
but they have become popular only in the last two
decades. Particle filters represent a posterior through
a set of particles. For the novice in SLAM, each par-
ticle is best thought as a concrete guess as to what
the true value of the state may be. By collecting many
such guesses into a set of guesses, or set of particles,
the particle filter approximates the posterior distribu-
tion. Under mild conditions, the particle filter has been
shown to approach the true posterior as the particle set
size goes to infinity. It is also a nonparametric repre-
sentation that represents multimodal distributions with
ease.

The key problem with the particle filter in the con-
text of SLAM is that the space of maps and robot paths
is huge. Suppose we have a map with 100 features. How
many particles would it take to populate that space?
In fact, particle filters scale exponentially with the di-
mension of the underlying state space. Three or four
dimensions are thus acceptable, but 100 dimensions are
generally not.

The trick to make particle filters amenable to the
SLAM problem goes back to [46.39, 40] and is known
as Rao–Blackwellization. It has been introduced into
the SLAM literature in [46.41], followed by [46.42],

who coined the name fastSLAM (fast simultaneous lo-
calization and mapping). Let us first explain the basic
FastSLAM algorithm on the simplified point-landmark
example, and then discuss the justification for this ap-
proach.

At any point in time, FastSLAM maintains K parti-
cles of the type

XŒk�
t ;�

Œk�
t;1; : : : ;�

Œk�
t;N ;†

Œk�
t;1; : : : ;†

Œk�
t;N : (46.11)

Here Œk� is the index of the sample. This expression
states that a particle contains:

� A sample path XŒk�
t , and

� A set of N 2-D Gaussians with means �
Œk�
t;n and

variances †Œk�
t;n), one for each landmark in the en-

vironment.

Here n is the index of the landmark (with 1	 n	
N). From that it follows that K particles possess K path
samples. It also possessesKN Gaussians, each of which
models exactly one landmark for one of the particles.

Initializing FastSLAM is simple: just set each parti-
cle’s robot location to the starting coordinates, typically
.0; 0; 0/T, and zero the map. The particle update then
proceeds as follows:

� When an odometry reading is received, new loca-
tion variables are generated stochastically, one for
each of the particles. The distribution for generat-
ing those location particles is based on the motion
model

xŒk�t 
 p.xt j xŒk�t�1; ut/ : (46.12)

Here xŒk�t�1 is the previous location, which is part
of the particle. This probabilistic sampling step is
easily implemented for any robot whose kinematics
can be computed.� When a measurement zt is received, two things hap-
pen: first, FastSLAM computes for each particle the
probability of the new measurement zt. Let the in-
dex of the sensed landmark be n. Then the desired
probability is defined as follows

w Œk�
t DN .zt j xŒk�t ;�Œk�

t;n;†
Œk�
t;n/ : (46.13)

The factor w Œk�
t is called the importance weight,

since it measures how important the particle is in
the light of the new sensor measurement. As before,
N denotes the normal distribution, but this time it
is calculated for a specific value, zt. The importance
weights of all particles are then normalized so that
they sum to 1.
Next, FastSLAM draws with replacement from the
set of existing particles a set of new particles. The
probability of drawing a particle is its normalized
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importance weight. This step is called resampling.
The intuition behind resampling is that particles
for which the measurement is more plausible have
a higher chance of surviving the resampling pro-
cess.
Finally, FastSLAM updates for the new particle set
the mean �

Œk�
t;n and covariance †Œk�

t;n, based on the
measurement zt. This update follows the standard
EKF update rules – note that the extended Kalman
filters maintained in FastSLAM are, in contrast to
EKF SLAM, all low-dimensional (typically 2-D).

This all may sound complex, but FastSLAM is
quite easy to implement. Sampling from the motion
model usually involves simple kinematic calculations.
Computing the importance of a measurement is often
straightforward too, especially for Gaussian measure-
ment noise. And updating a low-dimensional particle
filter is also not complicated.

FastSLAM has been shown to approximate the full
SLAM posterior. The derivation of FastSLAM exploits
three techniques: Rao–Blackwellization, conditional in-
dependence, and resampling. Rao–Blackwellization is
the following concept. Suppose we would like to com-
pute a probability distribution p.a;b/, where a and b
are arbitrary random variables. The vanilla particle filter
would draw particles from the joint distributions, that
is, each particle would have a value for a and one for b.
However, if the conditional p.b j a/ can be described in
closed form, it is equally legitimate to just draw parti-
cles from p.a/, and attach to each particle a closed-form
description of p.b j a/. This trick is known as Rao–
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ut–1 ut+1ut
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Fig. 46.3 The SLAM problem depicted as Bayes network graph.
The robot moves from location xt�1 to location xtC2, driven by
a sequence of controls. At each location xt it observes a nearby
feature in the map mD fm1;m2;m3g. This graphical network illus-
trates that the location variables separate the individual features in
the map from each other. If the locations are known, there remains
no other path involving variables whose value is not known, be-
tween any two features in the map. This lack of a path renders the
posterior of any two features in the map conditionally independent
(given the locations)

Blackwellization, and it yields better results than sam-
pling from the joint. FastSLAM applies this technique,
in that it samples from the path posterior p.XŒk�

t j Ut;Zt/
and represents the map p.m j XŒk�

t ;Ut;Zt/ in Gaussian
form.

FastSLAM also breaks down the posterior over
maps (conditioned on paths) into sequences of low-
dimensional Gaussians. The justification for this de-
composition is subtle. It arises from a specific condi-
tional independence assumption that is native to SLAM.
Fig. 46.3 illustrates the concept graphically. In SLAM,
knowledge of the robot path renders all landmark esti-
mates independent. This is easily shown for the graph-
ical network in Fig. 46.3: we find that if we remove
the path variables from Fig. 46.3, then the landmark
variables are all disconnected [46.43]. Thus, in SLAM
any dependence between multiple landmark estimates
is mediated through the robot path. This subtle but
important observation implies that even if we used
a large, monolithic Gaussian for the entire map (one
per particle, of course), the off-diagonal element be-
tween different landmarks would simply remain zero.
It is therefore legitimate to implement the map more
efficiently, using N small Gaussians, one for each land-
mark. This explains the efficient map representation in
FastSLAM.

Figure 46.4 shows results for a point-feature prob-
lem; here the point features are the centers of tree
trunks as observed by an outdoor robot. The dataset
used here is known as the Victoria Park dataset [46.44].
Fig. 46.4a shows the path of the vehicle obtained by
integrating the vehicle controls, without perception. As
can be seen, controls are a poor predictor of location for
this vehicle; after 30min of driving, the estimated po-
sition of the vehicle is well over 100m away from its
GPS position.

The FastSLAM algorithm has a number of inter-
esting properties. First, it solves both full and online
SLAM problems. Each particle has a sample of an en-
tire path but the actual update equation only uses the
most recent pose. This makes FastSLAM a filter. Sec-
ond, FastSLAM can maintain multiple data association
hypotheses. It is straightforward to make data associa-
tion decisions on a per-particle basis, instead of having
to adopt the same hypothesis for the entire filter. While
we will not give any mathematical justification, we
note that the resulting FastSLAM algorithm can even
deal with unknown data association – something that
the extended Kalman filter cannot claim. And third,
FastSLAM can be implemented very efficiently using
advanced tree methods to represent the map estimates,
the update can be performed in time logarithmic in the
size of the map N, and linear in the number of parti-
cles M.
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a) b) c)Raw vehicle path FastSLAM (solid), GPS path (dashed) Path and map with aerial image

Fig. 46.4 (a) Vehicle path predicted by the odometry; (b) True path (dashed line) and FastSLAM 1.0 path (solid line);
(c) Victoria Park results overlaid on aerial imagery with the GPS path in blue (dashed), average FastSLAM 1.0 path in
yellow (solid), and estimated features as yellow dots (data and aerial image courtesy of José Guivant and Eduardo Nebot,
Australian Centre for Field Robotics)

a) b)

Fig. 46.5 Occupancy grid map generated from laser range data and based on pure odometry (image courtesy of Dirk
Hähnel, University of Freiburg)

FastSLAM has been extended in several ways. One
set of variants are grid-based versions of FastSLAM,
in which the Gaussians used to model point landmarks
are replaced by an occupancy grid map [46.45–47]. The
variant of [46.46] is illustrated in Fig. 46.5.

Figure 46.6 illustrates a simplified situation with
three particles just before closing a large loop. The three
different particles each stand for different paths, and
they also posses their own local maps. When the loop
is closed importance resampling selects those particles

whose maps are most consistent with the measure-
ment. A resulting large-scale map is shown in Fig. 46.5.
Further extensions can be found in [46.48, 49], whose
methods are called DP-SLAM and operate on ances-
try trees to provide efficient tree update methods for
grid-based maps. Related to that, approximations to
FastSLAM in which particles share their maps have
been proposed [46.50].

The works in [46.45, 47, 51] provide ways to in-
corporate new observations into the location sampling
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Map of particle 1 Map of particle 1 Map of particle 1

3 particles and their trajectories

Fig. 46.6 Application of the grid-based variant of the FastSLAM algorithm. Each particle carries its own map and the
importance weights of the particles are computed based on the likelihood of the measurements given the particle’s own
map

process for landmarks and grid maps, based on prior
work in [46.52]. This leads to an improved sampling
process

xŒk�t 
 p.zt j mŒk�
t�1; xt/ p.xt j xŒk�t�1; ut/

p.zt j mŒk�
t�1; x

Œk�
t�1; ut/

; (46.14)

which incorporates the odometry and the observation
at the same time. Using an improved proposal dis-
tribution leads to more accurately sampled locations.
This in turn leads to more accurate maps and requires
a smaller number of particles compared to approaches
using the sampling process given in (46.12). This ex-
tension makes FastSLAM and especially its grid-based
variants robust tools for addressing the SLAM problem.

Finally, there are approaches that aim to overcome
the assumption that the observations show Gaussian
characteristics. As shown in [46.47], there are sev-
eral situations in which the model is nonGaussian and
also multimodal. A sum of Gaussians model on a per-
particle bases, however, can be efficiently considered
in the particle filter and it eliminates this problem in
practice without introducing additional computational
demands.

The so-far developed particle filters-based SLAM
systems suffer from two problems. First, the number of
samples that are required to compute consistent maps
is often set manually by making an educated guess.
The larger the uncertainty that the filter needs to rep-
resent during mapping, the more critical becomes this

parameter. Second, nested loops combined with exten-
sive re-visits of previously mapped areas can lead to
particle depletion, which in turn may prevent the system
from estimating a consistent map. Adaptive resampling
strategies [46.45], particles sharing maps [46.50], or fil-
ter backup approaches [46.53] improve the situation but
cannot eliminate this problem in general.

46.2.3 Graph-Based
Optimization Techniques

A third family of algorithms solves the SLAM problem
through nonlinear sparse optimization. They draw their
intuition from a graphical representation of the SLAM
problem and the first working solution in robotics was
proposed in [46.54]. The graph-based representation
used here is closely related to a series of papers [46.55–
64]. We note that most of the earlier techniques are
offline and address the full SLAM problem. In more
recent years, new incremental versions that effectively
re-use the previously computed solution have been pro-
posed such as [46.65–67].

The basic intuition of graph-based SLAM is a fol-
lows. Landmarks and robot locations can be thought of
as nodes in a graph. Every consecutive pair of locations
xt�1; xt is tied together by an edge that represents the
information conveyed by the odometry reading ut. Fur-
ther edges exist between the nodes that correspond to
locations xt and landmarks mi, assuming that at time t
the robot sensed landmark i. Edges in this graph are
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soft constraints. Relaxing these constraints yields the
robot’s best estimate for the map and the full path.

The construction of the graph is illustrated in
Fig. 46.7. Suppose at time tD 1, the robot senses
landmark m1. This adds an arc in the (yet highly in-
complete) graph between x1 and m1. When caching
the edges in a matrix format (which happens to cor-
respond to a quadratic equation defining the resulting
constraints), a value is added to the elements be-
tween x1 and m1, as shown on the right hand side of
Fig. 46.7a.

Now suppose the robot moves. The odometry read-
ing u2 leads to an arc between nodes x1 and x2, as
shown in Fig. 46.7b. Consecutive application of these
two basic steps leads to an graph of increasing size,
as illustrated in Fig. 46.7c. Nevertheless this graph is
sparse, in that each node is only connected to a small
number of other nodes (assuming a sensor with limited
sensing range). The number of constraints in the graph
is (at worst) linear in the time elapsed and in the num-
ber of nodes in the graph.

m2

x2 x3 x4x1

m3
m4m1
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Fig.46.7a–c Illustration of the graph construction. The (a)
diagram shows the graph, the (b) the constraints in matrix
form. (a) Observation ls landmark m1. (b) Robot motion
from x1 to x2. (c) Several steps later

If we think of the graph as a spring-mass mod-
el [46.60], computing the SLAM solution is equivalent
to computing the state of minimal energy of this model.
To see, we note that the graph corresponds to the log-
posterior of the full SLAM problem (46.4)

log p.XT ;m j ZT ;UT / : (46.15)

Without derivation, we state that this logarithm is of the
form

log p.XT ;m j ZT ;UT/

D constC
X
t

log p.xt j xt�1; ut/

C
X
t

log p.zt j xt;m/ ; (46.16)

assuming independence between the individual obser-
vations and odometry readings. Each constraint of the
form log p.xt j xt�1; ut/ is the result of exactly one robot
motion event, and it corresponds to an edge in the graph.
Likewise, each constraint of the form log p.zt j xt;m/ is
the result of one sensor measurement, to which we can
also find a corresponding edge in the graph. The SLAM
problem is then simply to find the mode of this equa-
tion, i. e.,

X�

T ;m
� D argmax

XT ;m
log p.XT ;m j ZT ;UT/ : (46.17)

Without derivation, we note that under the Gaussian
noise assumptions, which was made in the point-
landmark example, this expression resolves to the fol-
lowing quadratic form

log p.XT ;m j ZT ;UT/D const

C
X
t

Œxt � g.xt�1; ut/�
T R�1

t Œxt � g.xt�1; ut/�„ ƒ‚ …
odometry reading

C
X
t

Œzt � h.xt;m/�
T Q�1

t Œzt � h.xt;m/�„ ƒ‚ …
feature observation

:

(46.18)

This quadratic form yields a sparse system of equations
and a number of efficient optimization techniques can
be applied. Common choices include direct methods
such as sparse Cholesky and QR decomposition, or iter-
ative ones such as gradient descent, conjugate gradient,
and others. Most SLAM implementations rely on iter-
atively linearizing the functions g and h, in which case
the objective in (46.18) becomes quadratic in all of its
variables.

Extensions to support an effective correction of
large-scale graphs are hierarchical methods. One of
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the first is the ATLAS framework [46.25], which con-
structs a two-level hierarchy combining a Kalman filter
that operates in the lower level and a global optimiza-
tion at the higher level. Similar to that, Hierarchical
SLAM [46.68] is a technique for using independent
local maps, which are merged in case of re-visiting
a place. A fully hierarchical approach has been pre-
sented in [46.65]. It builds a multilevel pose-graph and
employs an incremental, lazy optimization scheme that
allows for optimizing large graphs and at the same time
can be executed at each step during mapping. An al-
ternative hierarchical approach is [46.69], which recur-
sively partitions the graph into multiple-level submaps
using the nested dissection algorithm.

When it comes to computing highly accurate envi-
ronment reconstructions, approaches that do not only
optimize the poses of the robot but also each indi-
vidual measurement of a dense sensor often provide
better results. In the spirit of bundle adjustment [46.4],
approaches for laser scanners [46.70] and Kinect cam-
eras [46.71] have been proposed.

The graphical paradigm can be extended to han-
dle the data association problems as we can integrate
additional knowledge on data association into (46.18).
Suppose some oracle informed us that landmarks mi

and mj in the map corresponded to one and the same
physical landmark in the world. Then, we can ei-
ther remove mj from the graph and attach all adjacent
edges to mi, or we can add a soft correspondence con-
straint [46.72] of the form

.mj�mi/
T � .mj�mi/ : (46.19)

Here � is 2-by-2 diagonal matrix whose coefficients de-
termine the penalty for not assigning identical locations
to two landmarks (hence we want � to be large). Since
graphical methods are usually used for the full SLAM
problem, the optimization can be interleaved with the
search for the optimal data association.

Data association errors typically have a strong im-
pact in the resulting map estimate. Even a small number
of wrong data associations is likely to result in incon-
sistent map estimates. Recently, novel approaches have
been proposed that are robust under a certain number of
false associations. For example, [46.73, 74] propose an
iterative procedure that allows for disabling constraints,
an action that is associated with a cost. A generalization
of this method introduced in [46.75] formulates [46.74]
as a robust cost function also reducing the compu-
tational requirements. Such approaches can deal with
a significant number of false associations and still pro-
vide high-quality maps. Consistency checks for loop
closure hypotheses can be found in other approaches
as well, both in the front-end [46.76] and in the opti-

mizer [46.77]. There has also been an extension that can
deal with multimodal constraints [46.78], proposing
a max-mixture representation for maintaining efficiency
of the log likelihood optimizing in (46.16). As a result
of that, the multimodal extension has only little im-
pact on the runtime and can easily be incorporated in
most optimizers. Also robust cost function are used for
SLAM, for example pseudo Huber and several alterna-
tives [46.75, 79–81].

Graphical SLAM methods have the advantage that
they scale to much higher-dimensional maps than EKF
SLAM, exploiting the sparsity of the graph. The key
limiting factor in EKF SLAM is the covariance matrix,
which takes space (and update time) quadratic in the
size of the map. No such constraint exists in graphical
methods. The update time of the graph is constant, and
the amount of memory required is linear (under some
mild assumptions). A further advantage of graph-based
methods over the EKF is their ability to constantly re-
linearize the error function which often leads to better
results. Performing the optimization can be expensive,
however. Technically, finding the optimal data associa-
tion is suspected to be an NP-hard problem, although in
practice the number of plausible assignments is usually
small. The continuous optimization of the log likeli-
hood function in (46.18) depends among other things
on the number and size of loops in the map. Also the
initialization can have a strong impact on the result and
a good initial guess can simplify the optimization sub-
stantially [46.8, 82, 83].

We note that the graph-based paradigm is very
closely linked to information theory, in that the soft con-
straints constitute the information the robot has on the
world (in an information-theoretic sense [46.92]). Most
methods in the field are offline and they optimize for
the entire robot path. If the robot path is long, the opti-
mization may become cumbersome. Over the last five
years, however, incremental optimization techniques
have been proposed that aim at providing a sufficient
but not necessarily perfect model of the environment
at every point in time. This allows a robot to make
decisions based on the current model, for example, to
determine exploration goals. In this context, incremen-
tal variants [46.93, 94] of stochastic gradient descent
techniques [46.8, 91] have been proposed that estimate
which part of the graph requires re-optimization given
new sensor data. Incremental methods [46.66, 79, 95] in
the smoothing and mapping framework can be execute
at each step of the mapping process and achieve the
performance by variable ordering and selective relin-
earization. As also evaluated in [46.96] for the SLAM
problem, variable ordering impacts the performance of
the optimization. Others use hierarchical data struc-
tures [46.89] and pose-graphs [46.97] combined with
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Table 46.1 Recent open-source graph-based SLAM implementations

Name Comment
Dynamic covariance
scaling (DCS) [46.75]

Optimization with a robust cost function for dealing with outliers
Integrated into g2o

g2o [46.80] Flexible and easily extendable optimization framework for SLAM
Comes with different optimization approaches and error functions
Supports external plugins

GTSAM2.1 [46.79] Flexible optimization framework for SLAM and SFMstructure from motion
Implements direct and iterative optimization techniques
Implements smoothing and mapping (SAM), iSAM, and iSAM2
Implements bundle adjustment for Visual SLAM and SFM

HOG-Man [46.65] Incremental optimization approach via hierarchical pose graphs and lazy optimization
Requires pose-graphs with full rank constraints

iSAM2 [46.66] General incremental nonlinear optimization with variable elimination
Variable re-ordering to retain sparsity
On-demand re-linearization of selected variables

KinFu (KinectFusion
reimplemented)

Open source reimplementation of KinectFusion [46.84] within the point cloud library (PCL)
Dense and highly accurate reconstruction using a Kinect camera
Currently limited to medium sized rooms

MaxMixture [46.78] Optimization for multimodal constraints and outliers
Robust to outliers
Plugin for g2o

Parallel tracking and
mapping (PTAM) [46.85]

System for tracking a hand-held monocular camera and observed features
Operates on comparably small workspaces

RGBD-SLAM [46.86] Kinect-frontend for HOG-Man and g2o
Fairly standard combination of SURF matching and RANSAC

ScaViSLAM [46.87] SLAM system for stereo and Kinect-style cameras
Combines local bundle adjustment with sparse global optimization for on-the-fly processing

SLAM6-D [46.88] SLAM system that operates on point clouds from 3-D laser data
Applies iterative closest point algorithm (ICP) and global relaxation

Sparse surface adjustment
(SSA) [46.70, 71]

Optimizes robot poses and proximity sensor data jointly
Provides smooth surface estimates
Assumes a range sensor (e.g., laser scanner, Kinect, or similar)

TreeMap [46.89] Incremental optimization approach
Update in O .logN/ time
Provides only a mean estimate

TORO [46.90] Optimization approach that extends stochastic gradient descent (SGD) [46.91]
Robust under bad initial guesses
Recovers quickly from large errors but slow convergence at minimum
Assumes that constraints have roughly spherical covariance matrices
Provides only a mean estimate

Vertigo [46.74] Switchable constraints for robust optimization
Plugin for g2o

a lazy optimization for on-the-fly mapping [46.65]. As
an alternative to global methods, relative optimization
approaches [46.98] aim at computing locally consistent
geometric maps but only topological maps on the global
scale. Hybrid approaches [46.87] seek to combine the
best of both worlds.

There also exists a number of cross-overs that ma-
nipulate the graph online so as to factor out past
robot location variables. The resulting algorithms are
filters [46.25, 33, 99, 100], and they tend to be inti-
mately related to information filter methods. Many of
the original attempts to decompose EKF SLAM repre-
sentations into smaller submaps to scale up are based

on motivations that are not dissimilar to the graphical
approach [46.27, 28, 101].

Recently, researchers addressed the problem of
long-term operation and frequent revisits of already
mapped terrain. To avoid densely connected pose-
graphs that lead to slow convergence behavior, the robot
can switch between SLAM and localization, can merge
nodes to avoid a growth of the graph [46.90, 102], or
can discard nodes or edges [46.32, 103–105].

Graphical and optimization-based SLAM algorithm
are still subject of intense research and the paradigm
scales to maps large numbers of nodes [46.25, 55, 57,
59, 63–65, 89, 90, 106, 107]. Arguably, the graph-based



Part
E
|46.3

1166 Part E Moving in the Environment

paradigm has generated some the largest SLAM maps
ever built. Furthermore, the SLAM community started
to release flexible optimization frameworks and SLAM
implementations under open source licenses to sup-
port further developments and to allow for efficient
comparisons, (Table 46.1). Especially the optimization
frameworks [46.66, 79, 80] are flexible and powerful
state of the art tools for developing graph-based SLAM
systems. They can be either used as a black box or can
be easily extended though plugins.

46.2.4 Relation of Paradigms

The three paradigms just discussed cover the vast ma-
jority of work in the field of SLAM. As discussed,
EKF SLAM comes with a computational hurdle that
poses serious scaling limitations and the linearization
may lead to inconsistent maps. The most promising ex-
tensions of EKF SLAM are based on building local
submaps; however, in many ways the resulting algo-
rithms resemble the graph-based approach.

Particle filter methods sidestep some of the is-
sues arising from the natural inter-feature correlations
in the map – which hindered the EKF. By sampling
from robot poses, the individual landmarks in the map

become independent, and hence are decorrelated. As
a result, FastSLAM can represent the posterior by
a sampled robot pose, and many local, independent
Gaussians for its landmarks. The particle representation
offers advantages for SLAM as it allows for compu-
tationally efficient updates and for sampling over data
associations. On the negative side, the number of neces-
sary particles can grow very large, especially for robots
seeking to map multiple nested loops.

Graph-based methods address the full SLAM prob-
lem, hence are in the standard formulation not online.
They draw their intuition form the fact that SLAM
can be modeled by a sparse graph of soft constraints,
where each constraint either corresponds to a motion or
a measurement event. Due to the availability of highly
efficient optimization methods for sparse nonlinear op-
timization problems, graph-based SLAM has become
the method of choice for building large-scale maps.
Recent developments have brought up several graph-
based methods for incremental map building that can
be executed at every time step during navigation. Data
association search can be incorporated into the basic
mathematical framework and different approaches that
are even robust under wrong data associations are avail-
able today.

46.3 Visual and RGB-D SLAM

A popular and important topic in recent years has been
Visual SLAM – the challenge of building maps and
tracking the robot pose in full 6-DOF using data from
cameras [46.108] or RGB-D (Kinect) sensors [46.86,
109]. Visual sensors offer a wealth of information that
enables the construction of rich 3-D models of the
world. They also enable difficult issues such as loop-
closing to be addressed in novel ways using appearance
information [46.110]. Visual SLAM is anticipated to
be a critical area for future research in perception for
robotics, as we seek to develop low-cost systems that
are capably of intelligent physical interaction with the
world.

Attempting SLAM with monocular, stereo, om-
nidirectional, or RGB-D cameras raises the level-of-
difficulty of many of the SLAM components, such
as data association and computational efficiency, de-
scribed above. A key challenge is robustness. Many
visual SLAM applications of interest, such as aug-
mented reality [46.85], entail handheld camera motions,
which present greater difficulties for state estimation,
in comparison to the motion of a wheeled robot across
a flat floor.

Visual navigation and mapping was a key early goal
in the mobile robotics community [46.111, 112], but

early approaches were hampered by the lack of suffi-
cient computational resources to handle massive video
data streams. Early approaches were typically based
on extended Kalman filters [46.113–116], but did not
compute the full covariance for the feature poses and
camera trajectory, resulting in a loss of consistency.
Visual SLAM is closely related to the structure from
motion (SFM) problem in computer vision [46.4, 5].
Historically, SFM was primarily concerned with off-
line batch processing, whereas SLAM seeks to achieve
a solution for online operation, suitable for closed-loop
interaction of a robot or user with its environment. In
comparison to laser scanners, cameras provide a fire hy-
drant of information, making online processing nearly
impossible until recent increases in computation have
become available.

Davison was an early pioneer in developing com-
plete visual SLAM systems, initially using a real-time
active stereo head [46.121] that tracked distinctive vi-
sual features with a full covariance EKF approach. Sub-
sequent work developed the first real-time SLAM sys-
tem that operated with a single freely moving camera
as the only data source [46.23, 122]. This system could
build sparse, room-size maps of indoor scenes at 30Hz
frame-rate in real-time, a notable historical achievement
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Fig. 46.8 (a) A 2-km path and 50 000 frames estimated for the New College Dataset (after [46.117]) using relative
bundle adjustment (after [46.98]). (b) the relative bundle adjustment solution is easily improved by taking FAB-MAP
(after [46.118]) loop-closures into account – this is achieved without global optimization (after [46.119]). Sibley et al.
advocate that relative metric accuracy and topological consistency are the requirements for autonomous navigation,
and these are better achieved using a relative manifold representation instead of using a conventional single Euclidean
representation [46.120]

a) b)

Fig. 46.9 (a) 3-D Model and (b) close-up view of a corridor environment in the Paul G. Allen building at University of
Washington built from Kinect data (after [46.109]; image courtesy of Peter Henry, University of Washington)

in visual SLAM research. A difficulty encountered with
initial monocular SLAM [46.23] was coping with the
initialization of points that were far away from the cam-
era, due to nonGaussian distributions of such feature lo-
cations resulting from poor depth information. This lim-
itation was overcome in [46.24], introducing an inverse
depth parameterization for monocular SLAM, a key
development for enabling a unified treatment of initial-
ization and tracking of visual features in real-time.

A milestone in creating robust visual SLAM sys-
tems was the introduction of keyframes in parallel
tracking and mapping (PTAM) [46.85], which sep-
arated the tasks of keyframe mapping and localiza-
tion into parallel threads, improving robustness and
performance for online processing. Keyframes are
now a mainstream concept for complexity reduc-
tion in visual SLAM systems. Related approaches
using keyframes include [46.87, 123–126]. The work
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in [46.108] analyzes the tradeoffs between filtering and
keyframe-based bundle adjustment in visual SLAM,
and concluded that keyframe bundle adjustment outper-
forms filtering, as it provides the most accuracy per unit
of computing time.

As pointed out by Davison and other researchers,
an appealing aspect of visual SLAM is that camera
measurements can provide odometry information, and
indeed visual odometry is a key component of modern
SLAM systems [46.127]. Here, [46.128] and [46.129]
provide an extensive tutorial of techniques for visual
odometry, including feature detection, feature match-
ing, outlier rejection, and constraint estimation, and
trajectory optimization. Finally, a publicly available vi-
sual odometry library [46.130] that is optimized for
efficient operation on small unmanned aerial vehicles
is available today.

Visual information offers a tremendous source of in-
formation for loop closing, not present in the canonical
2-D laser SLAM systems developed in the early 2000s.
The work in [46.110] was one of the first to employ
techniques for visual object recognition [46.131] to lo-
cation recognition. More recently FAB-MAP [46.118,
132] has demonstrated appearance-only place recogni-
tion at large scale, mapping trajectories with a length
of 1000km. Combining a bag-of-features approach
with a probabilistic place model and Chow–Liu tree
inference leads to place recognition that is robust
against perceptual aliasing while remaining compu-
tationally efficient. Other work on place recognition
includes [46.133], which combines bag-of-words loop
closing with tests of geometrical consistency based on
conditional random fields (Fig. 46.8).

The techniques described above have formed the
basis for a number of notable large-scale SLAM sys-
tems developed in recent years. A 2008 special is-
sue of the IEEE Transactions on Robotics provides
a good snapshot of recent state-of-the-art SLAM tech-
niques [46.135]. Other notable recent examples in-
clude [46.98, 119, 126, 136–138]. The idea of employ-
ing relative bundle adjustment [46.98] to compute a full
maximum likelihood solution in an online fashion,
even for loop closures, by employing a manifold rep-
resentation that does not attempt to enforce Euclidean
constraints results in maps that can be computed at
high frame rate (see also Fig. 46.8). Finally, view-based
mapping systems [46.126, 136, 137] aim at large-scale
and/or life-long visual mapping based on the pose
graph optimization techniques described above in Sec-
tion 46.2.3.

Several compelling 3-D mapping and localization
have been created in recent years with RGB-D (Kinect)
sensors. The combination of direct range measurements
with dense visual imagery can enable dramatic im-

provements in mapping and navigation systems for in-
door environments. State-of-the-art RGB-D SLAM sys-
tems include [46.109] and [46.86]. Figure 46.9 shows
examples of the output of these systems.

Other researchers aim at exploiting the surface
properties of scanned environments to correct for sen-

a)

b)

c)

Fig.46.10a–c Results obtained with KinectFusion (af-
ter [46.134]). (a) A local scene as a normal map and (b) as
a Phong-shaded rendering. The (c) image depicts a larger
scene (image courtesy of Richard Newcombe, Imperial
College London)
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Fig. 46.11 Spatially ex-
tended KinectFusion output
produced in real-time with
Kintinuous (after [46.139])

sor noise of range sensors such as the Kinect [46.71].
They jointly optimize the poses of the sensor and
the positions of the surface points measured and it-
eratively refine the structure of the error function
by recomputing the data associations after each opti-
mization, resulting in accurate smooth models of the
environment.

An emerging area for future research is the de-
velopment of fully dense processing methods that
exploit recent advances in commodity graphical pro-
cessing unit (GPU) technology. Kinect-based dense
tracking and mapping, a fully-dense method for small-
scale visual tracking and reconstruction is described
in [46.140]. Dense modeling and tracking are achieved

via highly parallelized operations on commodity GPU
hardware to yield a system that outperforms previ-
ous methods such as PTAM for challenging camera
trajectories. Dense methods offer an interesting per-
spective from which to address long-standing problems,
such as visual odometry, from a fresh perspective,
without requiring explicit feature detection and match-
ing [46.141]. KinectFusion [46.84, 134] is a dense mod-
eling system that tracks the 3-D pose of a handheld
Kinect while concurrently reconstructing high-quality
scene 3-D models in real-time. See Fig. 46.10 for an
example. KinectFusion has been applied to spatially ex-
tended environments in [46.139, 142]. An example is
shown in Fig. 46.11.

46.4 Conclusion and Future Challenges

This chapter has provided an introduction into SLAM,
which is defined as the problem faced by a mobile
platform roaming an unknown environment, and seek-
ing to localize itself while concurrently building a map
of the environment. The chapter discussed three main
paradigms in SLAM, which are based on the ex-
tended Kalman filter, particle filters, and graph-based
sparse optimization techniques, and then described re-
cent progress in Visual/Kinect SLAM.

The following references provide an in-depth tuto-
rial on SLAM and much greater depth of coverage on
the details of popular SLAM algorithms. Furthermore,
several implementations of popular SLAM systems, in-
cluding most of the approaches listed in Table 46.1,
can be found in online resources such as http://www.
openslam.org or in the references [46.6, 9, 21, 62].

The considerable progress in SLAM in the past
decade is beyond doubt. The core state estimation at

http://www.openslam.org
http://www.openslam.org
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the heart of SLAM is now quite well understood,
and a number of impressive implementations have
been developed, including several widely used open
source software implementations and some commer-
cial projects. None-the-less, a number of open research
challenges remain for the general problem of robotic
mapping in complex and dynamic environments over
extended periods of time, including robots sharing, ex-
tending, and revising previously built models, efficient
failure recovery, zero user intervention, and operation
on resource-constrained systems. Another exciting area
for the future is the further development of fully dense
visual mapping systems exploiting the latest advances
in GPU hardware development.

An ultimate goal is to realize the challenge of per-
sistent navigation and mapping – the capability for
a robot to perform SLAM robustly for days, weeks,
or months at a time with minimal human supervi-
sion, in complex and dynamic environments. Taking
the limit as t!1 poses difficult challenges to most
current algorithms; in fact, most robot mapping and
navigation algorithms are doomed to fail with the
passage of time, as errors inevitably accrue. Despite
recent encouraging solutions [46.102, 105], more re-
search is needed for techniques that can recover from
mistakes and enable robots to deal with changes in
the environment and enabling a long-term autonomous
existence.
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