
Robot Path Planning

Sampling-Based Planners
– PRM: Probabilistic Roadmap Methods
– RRTs: Rapidly-exploring Random Trees

Sampling-Based Planners

• Explicit Geometry based planners (VGRAPH, Voronoi)
are impractical in high dimensional spaces.

• Exact solutions with complex geometries are provably
exponential

• Sampling based planners can often create plans in high-
dimensional spaces efficiently

• Rather than Compute the collision free space explicitly,
we Sample it

Sampling-Based Planners

• Idea: Generate random configuration of robot in C-Space
• Check to see if it is in C-Free or collides with a member of

C-Obstacles
• Find N collision free configs, link them into a graph
• Uses fast collision detection - full knowledge of C-Obstacles
• Collision detection is separate module - can be application

and robot specific
• Different approaches for single-query and multi-query

requests:
– Single: Is there a path from Configuration A to

Configuration B?
– Multiple: Is there a path between ANY 2 configurations

Sampling-Based Planners

• Complete Planner: always answers a path planning
query correctly in bounded time, including no-path

• Probabilistic Complete Planner: if a solution exists,
planner will eventually find it, using denser and denser
random sampling

• Resolution Complete Planner: same as above but based
on a deterministic sampling (e.g. sampling on a fixed
grid).

Probabilistic Roadmap Planner - PRM

• Roadmap is a graph G(V,E)
• Robot configuration q in Q-Free is a vertex
• Edge (q1, q2) implies collision-free path between these

robot configurations – local planner needed here
• A metric is needed for distance between configurations:

dist(q1,q2) (e.g. Euclidean distance)
• Uses coarse sampling of the nodes, and fine sampling of

the edges
• Collison free vertices, edges form a roadmap in Q-Free

PRM Roadmap Construction

• Initially empty roadmap Graph G
• A robot configuration q is randomly chosen
• If q→Q-Free (collision free configuration) then add to G
• Repeat until N vertices chosen
• For each vertex q, select k nearest neighbors
• Local planner tries to connect q to neighbor q’
• If connect successful (i.e. collision free local path), add

edge (q, q’)

PRM

2D planar environment with obstacles

PRM

1. Randomly sample C-Space for N collision-free configurations

PRM

2. Link each vertex in Q-Free with K nearest neighbors

PRM

2. Link each vertex in Q-Free with K nearest neighbors

PRM

3. Connect start and goal to nearest node in roadmap

start

goal

PRM

4. Graph Search for shortest path

start

goal

PRM

Handles multiple queries-once on roadmap, finds a path

start

goal

PRM Planner: Step 2, Finding a Path

• Given q_init and q_goal, need to connect
each to the roadmap

• Find k nearest neigbors of q_init and
q_goal in roadmap, plan local path Δ

• Problem: Roadmap Graph may have
disconnected components…

• Need to find connections from q_init,
q_goal to same component

• Once on roadmap, use Dijkstra algorithm

PRM

Problem: Graph may not be fully connected!

start

goal

X

X

X

PRM

Problem: Graph may not be fully connected!

start

goal

PRM

Solution: Denser sampling – more and closer neighbors

start

goal

PRM Planner Details

Choosing configurations:
• Use random sampling of entire C-Space
• However, collision free areas are easy to navigate, don’t

need many samples
• Collision regions are where planner needs to find denser

samples –tight navigation areas
• OBPRM: Obstacle-Based PRM

– if config q is in collision, then re-sample in the vicinity
of the collision to find safe config near obstacle

– Choose random direction and small distance from q
to generate nearby sample in Q-Free

– Biases sampling to regions where collisions likely

PRM Planner Details

Finding nearest neighbors:
– Brute force search – cost is O(N)
– Faster method: Use K-D tree

• K-D tree decomposes dimensions by splitting into 2
regions alternating each dimension

• Search is fast and efficient
• Cost is O(sqrt(N)) for dimension D=2

KD-Tree Construction

Order of insertion:

(52,76), (27,41), (12,28), (70,71), (2,12), (40,95), (62,82), (54,10), (48,50)

52,76

27,41 70,71

12,28 40,95 54,10 62,82

2,12 48,50

(40,95)

(27,41)

(48,50)

(2,12)

(12,28)

(52,76)
(62,82)

(70,71)

(54,10)

X dim

X dim

Y dim

Y dim

Split

KD-Tree Fast Range Query
Find points in Rectangle around Query point. Example: find all points in rectangle 10<X<30, 25<Y<45.

Once points found, a simple distance calculation finds nearest neighbor

52,76

27,41 70,71

12,28 40,95 54,10 62,82

2,12 48,50

(40,95)

(27,41)

(48,50)

(2,12)

(12,28)

(52,76)
(62,82)

(70,71)

(54,10)

X dim

X dim

Y dim

Y dim

Split

allen
Typewritten Text
returns (27,41),(12,28)- only searches part of tree

Local Planner
• Used to find collision free paths between nearby nodes
• Also used to connect q_start and q_goal to the roadmap
• Called frequently, needs to be efficient
• Incremental: sample along straight line path in C-Space
• Step-size needs to be small to find collisions
• Subdivision: Check midpoint of straight line path,

recursively sample segment’s midpoints for collisions

q’
q’’

1 2 3 4 65 q’
q’’

3 2 4 1 56

Step_size

• Is configuration q “closer” to q1 or q2?
• Distance metric needed between 2 configurations
• Ideally, distance is the swept volume of robot as it moves

between configs q and q’ - difficult to compute
• Each config is vector of joint angles
• Possible metric: take sum of joint angle differences?

But this ignores movement (trans. and rotation) of the robot!

q1 q2q

Distance Function

• Articulated robots: choose set of P points on robot,
concatenate them, and create a vector of size P ∙ D (dimension
of workspace).

• Intuitively, a “sampling” of the object’s Euclidean domain.
• For configuration q, sample(q) is the vector of P points

transformed by the translation and rotation that is config q
• Transform each of the P points into the vector sample(q). Do

same for configuration q’, create sample(q’).

• In 3D, distance is Euclidean distance between the 3∙P vectors:
d(q,q’) = || sample(q) - sample(q’)||

• Rigid robot: just choose 2 points of maximal extent as samples

q1 q2q

Distance Function

6-DOF Path Planning Example
• Robot: Rigid non-convex object in 3 space
• Obstacle: Solid wall with small opening
• Configuration of solid object: q=(Translation, Rotation)
• Random X,Y,Z configuration is chosen for translation
• Random axis and angle of rotation chosen for rotation
• Distance measure uses 2 extreme points on object,

p1 and p2: ||p1 - p1’|| + ||p2 - p2’||
• Local planner: Check for collision by interpolating along

3-D translation and rotation angle about axis

p1’

p2

p1
p2’

https://youtu.be/I39OrkmHZSs
allen
Typewritten Text
video

allen
Typewritten Text

allen
Typewritten Text

RRT: Rapidly-exploring Random Trees

• Single query planner to get from config A to config B
• Randomly sample Q-Free for path from q_start to

q_goal, growing a tree towards goal
• Can use 2 trees, rooted at q_start and q_goal.
• As trees grow, the eventually share a common node, and

are merged into a path

T

q

q_new

q_rand

RRT: Build Tree Algorithm

• Start node is root of tree
• Generate new random config q_rand
• Find nearest tree node q
• Move along path (q, q_rand) distance step_size
• If collision free, add q_new as new tree node
• Repeat…

step_size

start

goal

RRTs

start

goal

• Expand tree, one node a time, from start node
• Randomly generate new sample config each time
• Try to connect sample to nearest node in the tree
• Create new node small distance (step_size) towards

sample (if collision free) – local planner invoked here

start

goal

allen
Typewritten Text

RRTs

start

goal

• Once tree reaches the goal, we have a path
• Path is not optimal in any sense
• Path can be different each time - stochastic
• Scales to higher dimensions

RRT: How do we reach the goal?
1. As we add node q_new, see if it is within step_size of goal

• If so, see if we can add edge (q_new, q_goal)
2. Bias: q_rand determines what direction we go

• What if q_rand == q_goal?
• Greedy algorithm, can get stuck in local minima
• Idea: Use q_goal as q_rand just some of the time
• Moves tree towards goal every now and then
• Just 5% bias towards goal can improve performance

T
q

q_new

q_rand

start

goal

RRT: Too Much Bias

start

goal

If q_rand == q_goal all the time:
• Greedily tries to reach goal
• Gets trapped
• Randomness is needed to search the space

q_rand

BiDirectional RRT
Use 2 trees (T_1, T_2) one rooted at start, one at goal

To connect the trees (and form a path):
• Expand tree T_1 randomly, add node q_new_1
• Expand T_2 towards q_new_1

• If tree T_2 connects to q_new_1, path formed, done!
else add a q_new_2 for tree T_2

• Now Swap trees T1, T2 and repeat the process

allen
Typewritten Text

q_1

q_new

q_2

T_1

T_2

start

goal

BiDirectional RRT

q_start

q_goal

Original Path
Shorter Path

• Try connecting non-adjacent configurations
• Choose q_1 and q_2 randomly, try to connect.
• Greedy approach: try connecting points q_0,

q_1, …q_n to q_goal.

Optimizing Paths

Time-lapse paths

RRT Summary

• Efficient way to form goal-directed search without explicit
computation of C-Free

• Scales to higher dimensions – multi-DOF robots
• Performance is related to local planner
• step-size is an important parameter
• nearest-neighbor computation can slow performance
• Kinodynamic Planning: Can also include velocity and

other constraints in building trees
• Website: http://msl.cs.uiuc.edu/rrt

http://msl.cs.uiuc.edu/rrt

Path Planning Summary

• Many methods to choose from
• Depends on dimensionality of C-Space, application
• Tradeoffs: computation time, accuracy, optimality, safety
• Most methods are purely kinematic:

– Plans do not incorporate dynamics
– A kinematic path for a bi-ped humanoid robot may not be

realizable if robot falls or isn’t stable
– Solution: find kinematic paths between KNOWN stable robot

configurations
– Can add dynamics stabilizer to the resulting kinematic path to

insure stability
• Paths may not be smooth in Cartesian space –

especially true with sampling-based methods

