Robot Localization: Historical Context

Initially, roboticists thought the world could be modeled exactly
Path planning and control assumed perfect, exact, deterministic world

Reactive robotics (behavior based, ala bug algorithms) were developed
due to imperfect world models

But Reactive robotics assumes accurate control and sensing to react —
also not realistic

Reality: imperfect world models, imperfect control, imperfect sensing

Solution: Probabilistic approach, incorporating model, sensor and
control uncertainties into localization and planning

Reality: these methods work empirically!



Requirements of a Map Representation for a Mobile Robot

* The precision of the map needs to match the precision with which the
robot needs to achieve its goals

* The precision and type of features mapped must match the precision
of the robot’s sensors

* The complexity of the map has direct impact on computational
complexity for localization, navigation and map updating



Map Representation
Continuous Line-Based

a) Architecture map
b) Representation with set of finite or infinite lines

| I

(a)
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Map Representation
Exact cell decomposition

= Exact cell decomposition - Polygons

Compact representation - shows adjacency of free space cells - useful for nav.
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Map Representation
Approximate cell decomposition

= Fixed cell decomposition - occupancy grids
= Narrow passages disappear
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Map Representation
Adaptive cell decomposition

= Example: Hierarchical quadtree decomposition
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Map Representation
Topological map

= A topological map represents the environment as a
graph with nodes and edges.
= Nodes correspond to spaces
= Edge correspond to physical connections between nodes

= Topological maps lack scale and
distances, but topological
relationships (e.g., left, right, etc.)
are mantained

node

(location)

edge
(connectivity)
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Map Representation
Topological map

= London underground map
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Mapping: Occupancy Grids
* 2D metric occupancy grids are used

* Each grid cell has probability of the cell being occupied, Prob(occ(x,y))

* Occupancy grid integrates multiple sensors (e.g. sonar and stereo)
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Sonar scan Probabilistic Occupancy Grid



Updating Occupancy Grids
Using Bayesian Estimation

Reference:
An Introduction to Al Robotics by R. Murphy, MIT Press, chapter 11



http://www.profesaulosuna.com/data/files/ROBOTICA/ROBOTICS EBOOKS/Introduction to AI Robotics.pdf

Sonar Sensor Model
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Mapping Sonar values to Occ grid values: Region |

probable obstacle

MaX Sensor range

Region I:

R
B

Beam width (half-angle)

polar coordinates of grid point measured from sonar

s = sensor distance reading

(r,a)

Maximum certainty of obstacle (0.0 — 1.0)

pied

tolerance band for distance reading

Max occu

€

(r,a) within cone of uncertainty and
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Unknown, don’t update these cells!

Region Il
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Bayes Rule for Sonar Updates

We want to find out the probability of the cell being occupied, given the new
sensor reading s, and also knowing our prior probability of the cell being
occupied:

Conditional probabilities for P(H |s)

The sensor model represents P(s|H): the probability that the sensor would
return the value being considered given it was really occupied. Unfortu-
nately, the probability of interest is P(H|s): the probability that the area
at gridli][j] is really occupied given a particular sensor reading. The laws
of probability don’t permit us to use the two conditionals interchangeably.
However, Bayes’ rule does specify the relationship between them:

P(s|H)P(H)

P(H|s) =

Substituting in Occupied for H, Eqn. 11.3 becomes:

P{s|0ccupied) P(Occupied)

P{Occupied|s) =

P(s|Occupied) P(Occupied) |+ P{s|Empty) P(Empty)

P(s|Occupied) and P(s|Empty) are known from the sensor model. The
other terms, P{Occupied) and P{Empty), are the unconditional probabili-
ties, or prior probabilities sometimes called priors. The priors are shown in the boxes



Example: Initial Grid at t_0O + Oce. Grid of 24 x 21

e Each cell is 0.5 units square
 Robot at [21][10] attimet_1
e €=0.5=tolerance
 Max_occupied =0.98

* R =10 units = max sonar range

[0][0

Obstacle e e e } -
at [3][10] O |

Sonar mode! parameters:

R=10
tolerance =+/- 0.5
Max_ occupied = 0.98

B=15

At t_O, EVERY CELL IS INITIALIZED with P_occ = 0.5

Before we start sensing, every cell is equally
Likely to be empty or contain an obstacle

Robot at [21][10]



Example: Sensor Readingatt 1 -

Obstacle
at [3][10]

Sonar mode! parameters:

R=10
tolerance =+/- 0.5
Max_occupied = 0.98

B=15

[23][20]

Robot at [21][10]

P(s|Occupied)

P(s|Empty)

Occ. Grid of 24 x 21

Each cell is 0.5 units square

Robot at [21][10] at time t_1

s =9 units = sonar reading

€ = 0.5 = tolerance

Max_occupied = 0.98

R =10 units = max sonar range
Cell [3][10] is in region | (obstacle)

Cell [3][10] is r=9 units from
robot at Angle a =0 —in cone
of uncertainty:

risin range:s—e€<r < s+¢

Ry By
r )t g/ ,
- 5 % A AL gccupied
109y iwﬁ
o )t 5
- ¢ 5 ) 5 0.98 = 0.54

= 1.0~ P(s|Occupied)
= 1.0 0.54 = 046




Example: Bayes Rule Update at t 1 after sensor read

o1 Occ. Grid of 24 x 21

SRR T SRR TS * Each cell is 0.5 units square
HENNNEEENNL SN + Robot at [21][10] at time t_1
Obstacle Pttt @i ipirbpi * s=9units = sonar reading
at [3][10] b4ttt L + €=0.5 = tolerance
* Max_occupied =0.98
* R =10 units = max sonar range
R=10 Cell [3][10] is in region | (obstacle)

tolerance =+/- 0.5 . .
Max_occupied = 0.98 Cell is 9 units from robot at

...................................................................... B=15 Angle a =0
S | Tt P(se,|0) = 0.54

R, I < P(su|E) = 0.46
P(s,|0) = 0.50

' B S S S e A i e ] Sonar model parameters:

Plse,|E) = 0.50

This yields:

[23][20] BBl ] = P(s, |O)P(O]s¢,)
7 P(s, [0)P(Olse, ) + Pls,|EYP(Elsey)
(0.54)(0.50)

Robot at [21][10] g}?ié) (0.50) + (0.46)(0.50)
= .04

P(E|sy,) = 1-P(O]sy,) =046




Example: Bayes Rule Update at t 2 after Z“d sensor read

[0][0]

Obstacle

at (3][10] R

............

. « Max_occupied = 0.98

Robot at [15][10] at time t_2
* s=6units =sonar reading
* g£=0.5=tolerance

* R =10 units = max sonar range
Cell [3][10] is in region | (obstacle)
Cell is 6 units from robot at

Anglea =0

Sonar model parameters:

R=10
tolerance =+/- 0.5
Max_occupied = 0.98

B=15 P(sy|Occupied) = 0.69

P(sy|Empty) = 0.31

P{s34,|0)P(O]s,)

T P(3e|O)P(Olse) + P(se| EYP(Els)

[

i

i (0.69)(0.54) + (0.31)(0.46)
= (.72

Robot at [21][10] P{Eié‘{g) e | - p(()t‘sfﬁ} = (}.28



Bayes Updating

e Cell [3
e Cell [3]
e Cell [3

10
10]
10

had P(occ) =0.5att O
had P(occ) = 0.54 at t_1 after first sensor read

had P(occ) = 0.72 at t_2 after second sensor read

* Successive sensor readings provide confirmation of obstacle

* Note: can use other sensors to update the grid (e.g stereo vision)

* Note: need to update cells in Region Il (freespace) as well!



Map Learning and High Speed
Navigation in RHINO

Sebastian Thrun, Arno B ucken Wolfram

Burgard Dieter Fox,Thorsten Fr ohlinghaus

Daniel Hennig Thomas Hofmann Michael
Krell Timo Schmidt

An indoor mobile robot that uses sonar and
vision to map its environment in real-time



Case Study: Map Learning and High Speed Navigation in RHINO

* Control is distributed and decentralized. Onboard and offboard machines are dedicated to
several subproblems of modeling and control. Communication between modules is
asynchronous - no central clock, and no central process controlller.

. Whlenever possible, anytime algorithms are employed to ensure that the robot operates in
realtime.

e Hybrid architecture. Fast, reactive mechanisms are integrated with computationally intense,
deliberative modules.

* Models, such as the two dimensional maps described below, are used at all levels of
architecture.

* Whenever possible, models are learned from data.

* Machine learning algorithms are employed to increase the flexibility and the robustness of
the system. Learning has proven most useful close to the sensory side of the system, where
algorithms such as artificial neural networks interpret the robot’s sensors.

* Software is modular. A plug and play architecture allows us to quickly reconfigure the
system, depending on the particular configuration and application.

* Sensor fusion. To maximize the robustness of the approach, most of the techniques
described here rely on more than just a single type of sensor.



Sonar Data Interpretation

* Need to translate sonar distances into occupancy values: Prob(occ(x,y))
* Method: Neural Net, trained on sonar responses

e RHINO uses a 360° ring of sonars

* Input to net: 4 readings nearest (x,y) — encoded as polar coordinates

e Output: Prob(occ(x,y))

* Training data: train with physical robot on real known environments or use
robot simulator

* May need to train anew in different environments —wall textures etc.

* Key point: multiple spatial readings needed to overcome noise and sonar
effects
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Stereo Data Interpretation

* Vertical edges (doorways, vertical corners, obstacles) are found in
each image and triangulated for 3D depth.

* 3D edge points are projected onto the occupancy grid after being
enlarged by the robot radius

* Enlargement allows robot to navigate without hitting corners
* Stereo can miss featureless, homogeneous areas like blank walls
* Integration with sonar can improve mapping accuracy



image Vertical edges
|
| |
|
|
\
§
Vertical edge o Occupancy
projection L grid

Results from Stereo matching



Updating over time

* Mobile robot is moving and making multiple measurements at each
sensing time step

* Need to integrate the new values from the sensors with the current
occupancy grid values

* These are probabilistic measures, so a Bayes rule update is used to
find new probability of occupancy (more on this later....)



Integration results

Maps built in a single run (a) using only sonar sensors, (b) using only stereo information, and (c)
integrating both. Notice that sonar models the world more consistently, but misses the two sonar absorbing

Chairs which are found using stereo vision.



Topological Maps

* Compact representation, usually as a graph
* Nodes are distinct places, arcs (edges) represent adjacency

* Regions of free-space are nodes, and edges represent connections for
adjacency

* Method:

* Create Voronoi diagram

* Find critical points — bottlenecks or choke points in the Voronoi diagram
* Formally, a threshold epsilon for minimum distance to obstacle locally

* Find critical lines: partitions between regions at bottlenecks

 Partitions are used to form a graph. Nodes are regions, arcs are adjacent
regions separated by critical lines






