
Robot Localization: Historical Context

• Initially, roboticists thought the world could be modeled exactly

• Path planning and control assumed perfect, exact, deterministic world

• Reactive robotics (behavior based, ala bug algorithms) were developed 
due to imperfect world models

• But Reactive robotics assumes accurate control and sensing to react –
also not realistic

• Reality: imperfect world models, imperfect control, imperfect sensing

• Solution: Probabilistic approach, incorporating model, sensor and 
control uncertainties into localization and planning

• Reality: these methods work empirically!



Requirements of a Map Representation for a Mobile Robot

• The precision of the map needs to match the precision with which the 
robot needs to achieve its goals

• The precision and type of features mapped must match the precision 
of the robot’s sensors

• The complexity of the map has direct impact on computational 
complexity for localization, navigation and map updating



ZürichLocalization II

Map Representation
Continuous Line-Based

a) Architecture map
b) Representation with set of finite or infinite lines
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ZürichLocalization II

Map Representation
Exact cell decomposition

 Exact cell decomposition - Polygons

Compact representation - shows adjacency of free space cells - useful for nav.
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ZürichLocalization II

Map Representation
Approximate cell decomposition

 Fixed cell decomposition - occupancy grids
 Narrow passages disappear
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ZürichLocalization II

Map Representation
Adaptive cell decomposition

 Example:  Hierarchical quadtree decomposition
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ZürichLocalization II

Map Representation
Topological map

node
(location)

edge
(connectivity)
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 A topological map represents the environment as a 
graph with nodes and edges. 
 Nodes correspond to spaces
 Edge correspond to physical connections between nodes

 Topological maps lack scale and
distances, but topological 
relationships (e.g., left, right, etc.)
are mantained



Zürich

Map Representation
Topological map

 London underground map

Localization II
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Mapping:  Occupancy Grids
• 2D metric occupancy grids are used

• Each grid cell has probability of the cell being occupied, Prob(occ(x,y))

• Occupancy grid integrates multiple sensors (e.g. sonar and stereo)



Sonar Sweeps 
a Wide Cone	


•  Obstacle could be 
anywhere on the arc 
at distance D.	


•  The space closer than 
D is likely to be free.	




Sonar scan Probabilistic Occupancy Grid



Updating Occupancy Grids
Using Bayesian Estimation

Reference:

An Introduction to AI Robotics by R. Murphy, MIT Press, chapter 11

http://www.profesaulosuna.com/data/files/ROBOTICA/ROBOTICS EBOOKS/Introduction to AI Robotics.pdf


Sonar Sensor Model

Region I:  Probable obstacle   Region II:  Probable free-space    Region III:  unknown



Mapping Sonar values to Occ grid values: Region I
Region I:  probable obstacle
R = max sensor range
β = Beam width (half-angle)
(r,α) = polar coordinates of grid point measured from sonar
s = sensor distance reading 
ε = tolerance band for distance reading
Max_occupied = Maximum certainty of obstacle (0.0 – 1.0)

If Grid[i][j] iff:   (r,a) within cone of uncertainty and
s – ε <  r  <  s + ε



Mapping Sonar values to Occ. grid values: Region II
Region II: probable free-space
R = max sensor range
β = Beam width (half-angle)
(r,α) = polar coordinates of grid point measured from sonar
s = sensor distance reading 
ε = tolerance band for distance reading
Max_occupied = Maximum certainty of obstacle (0.0 – 1.0)

Update Grid[i][j] iff:   (r,a) within cone of uncertainty and
r < s – ε



Region III: Unknown, don’t update these cells!

Region I:  Probable obstacle   Region II:  Probable free-space    Region III:  unknown



Bayes Rule for Sonar Updates
We want to find out the probability of the cell being occupied, given the new 
sensor reading s, and also knowing our prior probability of the cell being 
occupied:

the boxes



Example: Initial Grid at t_0

Robot at [21][10]

• Occ. Grid of 24 x 21 
• Each cell is 0.5 units square
• Robot at [21][10] at time t_1
• ε = 0.5 = tolerance 
• Max_occupied = 0.98
• R =10 units = max sonar rangeObstacle

at [3][10]

At t_0, EVERY CELL IS INITIALIZED with P_occ = 0.5

Before we start sensing, every cell is equally
Likely to be empty or contain an obstacle



Example: Sensor Reading at t_1

Robot at [21][10]

• Occ. Grid of 24 x 21 
• Each cell is 0.5 units square
• Robot at [21][10] at time t_1
• s = 9 units = sonar  reading
• ε = 0.5 = tolerance 
• Max_occupied = 0.98
• R =10 units = max sonar range
• Cell [3][10] is in region I (obstacle)

• Cell [3][10] is  r=9 units from 
robot at Angle α = 0 – in cone 
of uncertainty:

• r is in  range: s – ε <  r  <  s + ε

Obstacle
at [3][10]



Example: Bayes Rule Update at t_1 after sensor read

Robot at [21][10]

• Occ. Grid of 24 x 21 
• Each cell is 0.5 units square
• Robot at [21][10] at time t_1
• s = 9 units = sonar  reading
• ε = 0.5 = tolerance 
• Max_occupied = 0.98
• R =10 units = max sonar range
Cell [3][10] is in region I (obstacle)

Cell is 9 units from robot at 
Angle α = 0

Obstacle
at [3][10]



Example: Bayes Rule Update at t_2 after 2nd sensor read

Robot at [21][10]

• Robot at [15][10] at time t_2
• s = 6 units = sonar  reading
• ε = 0.5 = tolerance 
• Max_occupied = 0.98
• R =10 units = max sonar range
Cell [3][10] is in region I (obstacle)

Cell is 6 units from robot at 
Angle α = 0

Obstacle
at [3][10]



Bayes Updating

• Cell [3][10] had P(occ) = 0.5 at t_0

• Cell [3][10] had P(occ) = 0.54 at t_1 after first sensor read

• Cell [3][10] had P(occ) = 0.72 at t_2 after second sensor read

• Successive sensor readings provide confirmation of obstacle

• Note: can use other sensors to update the grid (e.g stereo vision)

• Note: need to update cells in Region II (freespace) as well!



Map Learning and High Speed 
Navigation in RHINO

Sebastian Thrun, Arno B¨ucken Wolfram 
Burgard Dieter Fox,Thorsten Fr¨ohlinghaus
Daniel Hennig Thomas Hofmann Michael 

Krell Timo Schmidt

An indoor mobile robot that uses sonar and 
vision to map its environment in real-time



Case Study: Map Learning and High Speed Navigation in RHINO

• Control is distributed and decentralized.  Onboard and offboard machines are dedicated to 
several subproblems of modeling and control.  Communication between modules is 
asynchronous - no central clock, and no central process controlller. 

• Whenever possible, anytime algorithms are employed to ensure that the robot operates in 
realtime.

• Hybrid architecture. Fast, reactive mechanisms are integrated with computationally intense, 
deliberative modules.

• Models, such as the two dimensional maps described below, are used at all levels of 
architecture.

• Whenever possible, models are learned from data.

• Machine learning algorithms are employed to increase the flexibility and the robustness of 
the system.  Learning has proven most useful close to the sensory side of the system, where 
algorithms such as artificial neural networks interpret the robot’s sensors. 

• Software is modular. A plug and play architecture allows us to quickly reconfigure the 
system, depending on the particular configuration and application.

• Sensor fusion. To maximize the robustness of the approach, most of the techniques 
described here rely on more than just a single type of sensor.



Sonar Data Interpretation

• Need to translate sonar distances into occupancy values: Prob(occ(x,y))

• Method: Neural Net, trained on sonar responses

• RHINO uses a 360⁰ ring of sonars

• Input to net: 4 readings nearest (x,y) – encoded as polar coordinates

• Output:  Prob(occ(x,y))

• Training data: train with physical robot on real known environments or use 
robot simulator

• May need to train anew in different environments –wall textures etc.

• Key point: multiple spatial readings needed to overcome noise and sonar 
effects
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StereoStereo

scene pointscene point

focal pointfocal point

image planeimage plane

StereoStereo

Basic Principle:  TriangulationBasic Principle:  Triangulation
•• Gives reconstruction as intersection of two raysGives reconstruction as intersection of two rays
•• Requires Requires point correspondencepoint correspondence
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Stereo CorrespondenceStereo Correspondence

Determine Pixel CorrespondenceDetermine Pixel Correspondence
•• Pairs of points that correspond to same scene pointPairs of points that correspond to same scene point

Epipolar Epipolar ConstraintConstraint
•• Reduces correspondence problem to 1D search along Reduces correspondence problem to 1D search along 

conjugateconjugate epipolarepipolar lineslines

epipolarepipolar planeplane
epipolarepipolar linelineepipolarepipolar lineline

Stereo Matching AlgorithmsStereo Matching Algorithms

Match Pixels in ConjugateMatch Pixels in Conjugate EpipolarEpipolar LinesLines
•• Assume color of point does not changeAssume color of point does not change

•• PitfallsPitfalls
>> specularities specularities 

>> lowlow--contrast regionscontrast regions

>> occlusionsocclusions

>> image errorimage error

>> camera calibration errorcamera calibration error

•• Numerous approachesNumerous approaches
>> dynamic programming [Baker 81,dynamic programming [Baker 81,OhtaOhta 85]85]

>> smoothness smoothness functionalsfunctionals

>> more images (more images (trinoculartrinocular, N, N--ocular) [ocular) [OkutomiOkutomi 93]93]

>> graph cuts [graph cuts [BoykovBoykov 00]00]



Stereo Data Interpretation

• Vertical edges (doorways, vertical corners, obstacles) are found in 
each image and triangulated for 3D depth. 

• 3D edge points are projected onto the occupancy grid after being 
enlarged by the robot radius

• Enlargement allows robot to navigate without hitting corners

• Stereo can miss featureless, homogeneous areas like blank walls

• Integration with sonar can improve mapping accuracy



image Vertical edges

Vertical edge
projection

Occupancy
grid

Results from Stereo matching



Updating over time

• Mobile robot is moving and making multiple measurements at each 
sensing time step

• Need to integrate the new values from the sensors with the current 
occupancy grid values

• These are probabilistic measures, so a Bayes rule update is used to 
find new probability of occupancy (more on this later….)



Integration results

Maps built in a single run (a) using only sonar sensors, (b) using only stereo information, and (c)
integrating both. Notice that sonar models the world more consistently, but misses the two sonar absorbing
Chairs which are found using stereo vision.



Topological Maps

• Compact representation, usually as a graph

• Nodes are distinct places, arcs (edges) represent adjacency

• Regions of free-space are nodes, and edges represent connections for 
adjacency 

• Method:
• Create Voronoi diagram
• Find critical points – bottlenecks or choke points in the Voronoi diagram
• Formally, a threshold epsilon for minimum distance to obstacle locally
• Find critical lines: partitions between regions at bottlenecks
• Partitions are used to form a graph. Nodes are regions, arcs are adjacent 

regions separated by critical lines




